Small change - big consequence: The impact of C15-C16 double bond in a D‑ring of estrone on estrogen receptor activity
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37468002
DOI
10.1016/j.jsbmb.2023.106365
PII: S0960-0760(23)00120-6
Knihovny.cz E-zdroje
- Klíčová slova
- Apoptosis, Docking of steroid library, Estrogen receptor alpha, Luciferase assay, Mitochondrial membrane potential,
- MeSH
- alfa receptor estrogenů genetika metabolismus MeSH
- estradiol farmakologie terapeutické užití MeSH
- estron * farmakologie MeSH
- fulvestrant farmakologie terapeutické užití MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory prsu * farmakoterapie metabolismus MeSH
- receptory pro estrogeny metabolismus MeSH
- simulace molekulového dockingu MeSH
- tamoxifen farmakologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- alfa receptor estrogenů MeSH
- estradiol MeSH
- estron * MeSH
- fulvestrant MeSH
- receptory pro estrogeny MeSH
- tamoxifen MeSH
Estrogen receptor alpha (ER) is a key biomarker for breast cancer, and the presence or absence of ER in breast and other hormone-dependent cancers decides treatment regimens and patient prognosis. ER is activated after ligand binding - typically by steroid. 2682 steroid compounds were used in a molecular docking study to identify novel ligands for ER and to predict compounds that may show anticancer activity. The effect of the most promising compounds was determined by a novel luciferase reporter assay. Two compounds, 7 and 12, showing ER inhibitory activity comparable to clinical inhibitors such as tamoxifen or fulvestrant were selected. We propose that the inhibitory effect of compounds 7 and 12 on ER is related to the presence of a double bond in their D-ring, which may protect against ER activation by reducing the electron density of the keto group, or may undergo metabolism leading to an active compound. Western blotting revealed that compound 12 decreased the level of ER in the breast cancer cell line MCF7, which was associated with reduced expression of both isoforms of the progesterone receptor, a well-known downstream target of ER. However, compound 12 has a different mechanism of action from fulvestrant. Furthermore, we found that compound 12 interferes with mitochondrial functions, probably by disrupting the electron transport chain, leading to induction of the intrinsic apoptotic pathway even in ER-negative breast cancer cells. In conclusion, the combination of computational and experimental methods shown here represents a rapid approach to determine the activity of compounds towards ER. Our data will not only contribute to research focused on the regulation of ER activity but may also be useful for the further development of novel steroid receptor-targeted drugs applicable in clinical practice.
Citace poskytuje Crossref.org