Probing mechanical selection in diverse eukaryotic genomes through accurate prediction of 3D DNA mechanics
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, preprinty
Grantová podpora
R35 GM143949
NIGMS NIH HHS - United States
R35 GM149357
NIGMS NIH HHS - United States
Wellcome Trust - United Kingdom
R35 GM122569
NIGMS NIH HHS - United States
R35 GM134842
NIGMS NIH HHS - United States
PubMed
39763889
PubMed Central
PMC11703244
DOI
10.1101/2024.12.22.629997
PII: 2024.12.22.629997
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Connections between the mechanical properties of DNA and biological functions have been speculative due to the lack of methods to measure or predict DNA mechanics at scale. Recently, a proxy for DNA mechanics, cyclizability, was measured by loop-seq and enabled genome-scale investigation of DNA mechanics. Here, we use this dataset to build a computational model predicting bias-corrected intrinsic cyclizability, with near-perfect accuracy, solely based on DNA sequence. Further, the model predicts intrinsic bending direction in 3D space. Using this tool, we aimed to probe mechanical selection - that is, the evolutionary selection of DNA sequence based on its mechanical properties - in diverse circumstances. First, we found that the intrinsic bend direction of DNA sequences correlated with the observed bending in known protein-DNA complex structures, suggesting that many proteins co-evolved with their DNA partners to capture DNA in its intrinsically preferred bent conformation. We then applied our model to large-scale yeast population genetics data and showed that centromere DNA element II, whose consensus sequence is unknown, leaving its sequence-specific role unclear, is under mechanical selection to increase the stability of inner-kinetochore structure and to facilitate centromeric histone recruitment. Finally, in silico evolution under strong mechanical selection discovered hallucinated sequences with cyclizability values so extreme that they required experimental validation, yet, found in nature in the densely packed mitochondrial(mt) DNA of Namystynia karyoxenos, an ocean-dwelling protist with extreme mitochondrial gene fragmentation. The need to transmit an extraordinarily large amount of mtDNA, estimated to be > 600 Mb, in combination with the absence of mtDNA compaction proteins may have pushed mechanical selection to the extreme. Similarly extreme DNA mechanics are observed in bird microchromosomes, although the functional consequence is not yet clear. The discovery of eccentric DNA mechanics in unrelated unicellular and multicellular eukaryotes suggests that we can predict extreme natural biology which can arise through strong selection. Our methods offer a way to study the biological functions of DNA mechanics in any genome and to engineer DNA sequences with desired mechanical properties.
Biological Sciences University of Edinburgh Edinburgh Scotland United Kingdom
College of Medicine Yonsei University Seoul Republic of Korea
Department of Biophysics Johns Hopkins University Baltimore MD USA
Department of Biosciences Durham University Durham United Kingdom
Department of Neurobiology and Biophysics University of Washington Seattle WA USA
Department of Pediatrics Harvard Medical School Boston MA USA
Division of Genetics and Genomics Boston Children's Hospital Boston MA USA
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Basu A., Bobrovnikov D.G., Cieza B., Arcon J.P., Qureshi Z., Orozco M. & Ha T. Deciphering the mechanical code of the genome and epigenome. Nat Struct Mol Biol 29, 1178–1187 (2022). PubMed PMC
Segal E., Fondufe-Mittendorf Y., Chen L., Thastrom A., Field Y., Moore I.K., Wang J.P. & Widom J. A genomic code for nucleosome positioning. Nature 442, 772–8 (2006). PubMed PMC
Shore D., Langowski J. & Baldwin R.L. DNA flexibility studied by covalent closure of short fragments into circles. Proc Natl Acad Sci U S A 78, 4833–7 (1981). PubMed PMC
Vafabakhsh R. & Ha T. Extreme bendability of DNA less than 100 base pairs long revealed by single-molecule cyclization. Science 337, 1097–101 (2012). PubMed PMC
Basu A., Bobrovnikov D.G., Qureshi Z., Kayikcioglu T., Ngo T.T.M., Ranjan A., Eustermann S., Cieza B., Morgan M.T., Hejna M., Rube H.T., Hopfner K.P., Wolberger C., Song J.S. & Ha T. Measuring DNA mechanics on the genome scale. Nature 589, 462–467 (2021). PubMed PMC
Li K., Carroll M., Vafabakhsh R., Wang X.A. & Wang J.P. DNAcycP: a deep learning tool for DNA cyclizability prediction. Nucleic Acids Res 50, 3142–3154 (2022). PubMed PMC
Khan S.R., Sakib S., Rahman M.S. & Samee M.A.H. DeepBend: An interpretable model of DNA bendability. iScience 26, 105945 (2023). PubMed PMC
Jiang W.J., Hu C., Lai F., Pang W., Yi X., Xu Q., Wang H., Zhou J., Zhu H., Zhong C., Kuang Z., Fan R., Shen J., Zhou X., Wang Y.J., Wong C.C.L., Zheng X. & Wu H.J. Assessing base-resolution DNA mechanics on the genome scale. Nucleic Acids Res 51, 9552–9566 (2023). PubMed PMC
Back G. & Walther D. Predictions of DNA mechanical properties at a genomic scale reveal potentially new functional roles of DNA flexibility. NAR Genom Bioinform 5, lqad097 (2023). PubMed PMC
Brogaard K., Xi L., Wang J.P. & Widom J. A map of nucleosome positions in yeast at base-pair resolution. Nature 486, 496–501 (2012). PubMed PMC
Luger K., Mader A.W., Richmond R.K., Sargent D.F. & Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–60 (1997). PubMed
Schumacher M.A., den Hengst C.D., Bush M.J., Le T.B.K., Tran N.T., Chandra G., Zeng W., Travis B., Brennan R.G. & Buttner M.J. The MerR-like protein BldC binds DNA direct repeats as cooperative multimers to regulate Streptomyces development. Nat Commun 9, 1139 (2018). PubMed PMC
Malecka K.A., Dheekollu J., Deakyne J.S., Wiedmer A., Ramirez U.D., Lieberman P.M. & Messick T.E. Structural Basis for Cooperative Binding of EBNA1 to the Epstein-Barr Virus Dyad Symmetry Minimal Origin of Replication. J Virol 93(2019). PubMed PMC
Ru H., Mi W., Zhang P., Alt F.W., Schatz D.G., Liao M. & Wu H. DNA melting initiates the RAG catalytic pathway. Nat Struct Mol Biol 25, 732–742 (2018). PubMed PMC
Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. & Bourne P.E. The Protein Data Bank. Nucleic Acids Res 28, 235–42 (2000). PubMed PMC
Chua E.Y., Vasudevan D., Davey G.E., Wu B. & Davey C.A. The mechanics behind DNA sequence-dependent properties of the nucleosome. Nucleic Acids Res 40, 6338–52 (2012). PubMed PMC
Lowary P.T. & Widom J. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276, 19–42 (1998). PubMed
Makde R.D., England J.R., Yennawar H.P. & Tan S. Structure of RCC1 chromatin factor bound to the nucleosome core particle. Nature 467, 562–6 (2010). PubMed PMC
Vasudevan D., Chua E.Y.D. & Davey C.A. Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J Mol Biol 403, 1–10 (2010). PubMed
Tan S. & Davey C.A. Nucleosome structural studies. Curr Opin Struct Biol 21, 128–36 (2011). PubMed PMC
Ngo T.T., Zhang Q., Zhou R., Yodh J.G. & Ha T. Asymmetric unwrapping of nucleosomes under tension directed by DNA local flexibility. Cell 160, 1135–44 (2015). PubMed PMC
Yang Z. & Bielawski J.P. Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15, 496–503 (2000). PubMed PMC
Moses A.M. Statistical tests for natural selection on regulatory regions based on the strength of transcription factor binding sites. BMC Evol Biol 9, 286 (2009). PubMed PMC
Vaishnav E.D., de Boer C.G., Molinet J., Yassour M., Fan L., Adiconis X., Thompson D.A., Levin J.Z., Cubillos F.A. & Regev A. The evolution, evolvability and engineering of gene regulatory DNA. Nature 603, 455–463 (2022). PubMed PMC
Peter J., De Chiara M., Friedrich A., Yue J.X., Pflieger D., Bergstrom A., Sigwalt A., Barre B., Freel K., Llored A., Cruaud C., Labadie K., Aury J.M., Istace B., Lebrigand K., Barbry P., Engelen S., Lemainque A., Wincker P., Liti G. & Schacherer J. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018). PubMed PMC
Clarke L. & Carbon J. The structure and function of yeast centromeres. Annu Rev Genet 19, 29–55 (1985). PubMed
Cleveland D.W., Mao Y. & Sullivan K.F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–21 (2003). PubMed
McAinsh A.D. & Marston A.L. The Four Causes: The Functional Architecture of Centromeres and Kinetochores. Annu Rev Genet 56, 279–314 (2022). PubMed PMC
Santaguida S. & Musacchio A. The life and miracles of kinetochores. EMBO J 28, 2511–31 (2009). PubMed PMC
Biggins S. The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194, 817–46 (2013). PubMed PMC
Bram R.J. & Kornberg R.D. Isolation of a Saccharomyces cerevisiae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol Cell Biol 7, 403–9 (1987). PubMed PMC
Meraldi P., McAinsh A.D., Rheinbay E. & Sorger P.K. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biol 7, R23 (2006). PubMed PMC
Lechner J. & Carbon J. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64, 717–25 (1991). PubMed
Baker R.E. & Rogers K. Genetic and genomic analysis of the AT-rich centromere DNA element II of Saccharomyces cerevisiae. Genetics 171, 1463–75 (2005). PubMed PMC
Popchock A.R., Larson J.D., Dubrulle J., Asbury C.L. & Biggins S. Direct observation of coordinated assembly of individual native centromeric nucleosomes. EMBO J 42, e114534 (2023). PubMed PMC
Dechassa M.L., Wyns K., Li M., Hall M.A., Wang M.D. & Luger K. Structure and Scm3-mediated assembly of budding yeast centromeric nucleosomes. Nat Commun 2, 313 (2011). PubMed PMC
Dendooven T., Zhang Z., Yang J., McLaughlin S.H., Schwab J., Scheres S.H.W., Yatskevich S. & Barford D. Cryo-EM structure of the complete inner kinetochore of the budding yeast point centromere. Sci Adv 9, eadg7480 (2023). PubMed PMC
Gillespie J.H. Molecular Evolution over the Mutational Landscape. Evolution 38, 1116–1129 (1984). PubMed
Anishchenko I., Pellock S.J., Chidyausiku T.M., Ramelot T.A., Ovchinnikov S., Hao J., Bafna K., Norn C., Kang A., Bera A.K., DiMaio F., Carter L., Chow C.M., Montelione G.T. & Baker D. De novo protein design by deep network hallucination. Nature 600, 547–552 (2021). PubMed PMC
Crothers D.M., Haran T.E. & Nadeau J.G. Intrinsically bent DNA. J Biol Chem 265, 7093–6 (1990). PubMed
Koo H.S., Wu H.M. & Crothers D.M. DNA bending at adenine . thymine tracts. Nature 320, 501–6 (1986). PubMed
Hagerman P.J. Sequence dependence of the curvature of DNA: a test of the phasing hypothesis. Biochemistry 24, 7033–7 (1985). PubMed
Thomas J.O. & Travers A.A. HMG1 and 2, and related ‘architectural’ DNA-binding proteins. Trends Biochem Sci 26, 167–74 (2001). PubMed
Travers A.A. Priming the nucleosome: a role for HMGB proteins? EMBO Rep 4, 131–6 (2003). PubMed PMC
Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. Basic local alignment search tool. J Mol Biol 215, 403–10 (1990). PubMed
Kaur B., Zahonova K., Valach M., Faktorova D., Prokopchuk G., Burger G. & Lukes J. Gene fragmentation and RNA editing without borders: eccentric mitochondrial genomes of diplonemids. Nucleic Acids Res 48, 2694–2708 (2020). PubMed PMC
Valach M., Moreira S., Petitjean C., Benz C., Butenko A., Flegontova O., Nenarokova A., Prokopchuk G., Batstone T., Lapebie P., Lemogo L., Sarrasin M., Stretenowich P., Tripathi P., Yazaki E., Nara T., Henrissat B., Lang B.F., Gray M.W., Williams T.A., Lukes J. & Burger G. Recent expansion of metabolic versatility in Diplonema papillatum, the model species of a highly speciose group of marine eukaryotes. BMC Biol 21, 99 (2023). PubMed PMC
Lukes J., Wheeler R., Jirsova D., David V. & Archibald J.M. Massive mitochondrial DNA content in diplonemid and kinetoplastid protists. IUBMB Life 70, 1267–1274 (2018). PubMed PMC
Satoh M. & Kuroiwa T. Organization of multiple nucleoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 196, 137–40 (1991). PubMed
Bogenhagen D.F., Rousseau D. & Burke S. The layered structure of human mitochondrial DNA nucleoids. J Biol Chem 283, 3665–3675 (2008). PubMed
Hensen F., Cansiz S., Gerhold J.M. & Spelbrink J.N. To be or not to be a nucleoid protein: a comparison of mass-spectrometry based approaches in the identification of potential mtDNA-nucleoid associated proteins. Biochimie 100, 219–26 (2014). PubMed
Brewer L.R., Friddle R., Noy A., Baldwin E., Martin S.S., Corzett M., Balhorn R. & Baskin R.J. Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p. Biophys J 85, 2519–24 (2003). PubMed PMC
Gustafsson C.M., Falkenberg M. & Larsson N.G. Maintenance and Expression of Mammalian Mitochondrial DNA. Annu Rev Biochem 85, 133–60 (2016). PubMed
Butenko A., Opperdoes F.R., Flegontova O., Horak A., Hampl V., Keeling P., Gawryluk R.M.R., Tikhonenkov D., Flegontov P. & Lukes J. Evolution of metabolic capabilities and molecular features of diplonemids, kinetoplastids, and euglenids. BMC Biol 18, 23 (2020). PubMed PMC
Jensen R.E. & Englund P.T. Network news: the replication of kinetoplast DNA. Annu Rev Microbiol 66, 473–91 (2012). PubMed
Prokopchuk G., Tashyreva D., Yabuki A., Horak A., Masarova P. & Lukes J. Morphological, Ultrastructural, Motility and Evolutionary Characterization of Two New Hemistasiidae Species. Protist 170, 259–282 (2019). PubMed
Wu R. & Li H. Positioned and G/C-capped poly(dA:dT) tracts associate with the centers of nucleosome-free regions in yeast promoters. Genome Res 20, 473–84 (2010). PubMed PMC
Li N., Lam W.H., Zhai Y., Cheng J., Cheng E., Zhao Y., Gao N. & Tye B.K. Structure of the origin recognition complex bound to DNA replication origin. Nature 559, 217–222 (2018). PubMed
Marini J.C., Levene S.D., Crothers D.M. & Englund P.T. Bent helical structure in kinetoplast DNA. Proc Natl Acad Sci U S A 79, 7664–8 (1982). PubMed PMC
Burkhoff A.M. & Tullius T.D. The unusual conformation adopted by the adenine tracts in kinetoplast DNA. Cell 48, 935–43 (1987). PubMed
Sutormin D., Rubanova N., Logacheva M., Ghilarov D. & Severinov K. Single-nucleotide-resolution mapping of DNA gyrase cleavage sites across the Escherichia coli genome. Nucleic Acids Res 47, 1373–1388 (2019). PubMed PMC
Chakraborty A., Lyonnais S., Battistini F., Hospital A., Medici G., Prohens R., Orozco M., Vilardell J. & Sola M. DNA structure directs positioning of the mitochondrial genome packaging protein Abf2p. Nucleic Acids Res 45, 951–967 (2017). PubMed PMC
Farge G. & Falkenberg M. Organization of DNA in Mammalian Mitochondria. Int J Mol Sci 20(2019). PubMed PMC
Chollet F. keras, (2015).
Kingma D.P. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
Virtanen P., Gommers R., Oliphant T.E., Haberland M., Reddy T., Cournapeau D., Burovski E., Peterson P., Weckesser W., Bright J., van der Walt S.J., Brett M., Wilson J., Millman K.J., Mayorov N., Nelson A.R.J., Jones E., Kern R., Larson E., Carey C.J., Polat I., Feng Y., Moore E.W., VanderPlas J., Laxalde D., Perktold J., Cimrman R., Henriksen I., Quintero E.A., Harris C.R., Archibald A.M., Ribeiro A.H., Pedregosa F., van Mulbregt P. & SciPy C. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 17, 261–272 (2020). PubMed PMC
Kent W.J. BLAT--the BLAST-like alignment tool. Genome Res 12, 656–64 (2002). PubMed PMC
Cherry J.M., Hong E.L., Amundsen C., Balakrishnan R., Binkley G., Chan E.T., Christie K.R., Costanzo M.C., Dwight S.S., Engel S.R., Fisk D.G., Hirschman J.E., Hitz B.C., Karra K., Krieger C.J., Miyasato S.R., Nash R.S., Park J., Skrzypek M.S., Simison M., Weng S. & Wong E.D. Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Res 40, D700–5 (2012). PubMed PMC
Drew H.R., Wing R.M., Takano T., Broka C., Tanaka S., Itakura K. & Dickerson R.E. Structure of a B-DNA dodecamer: conformation and dynamics. Proc Natl Acad Sci U S A 78, 2179–83 (1981). PubMed PMC
Aitken C.E., Marshall R.A. & Puglisi J.D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys J 94, 1826–35 (2008). PubMed PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., Tinevez J.Y., White D.J., Hartenstein V., Eliceiri K., Tomancak P. & Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–82 (2012). PubMed PMC
Yurchenko V., Votypka J., Tesarova M., Klepetkova H., Kraeva N., Jirku M. & Lukes J. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol (Praha) 61, 97–112 (2014). PubMed
Roy R., Hohng S. & Ha T. A practical guide to single-molecule FRET. Nat Methods 5, 507–16 (2008). PubMed PMC
Paul T. & Myong S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protoc 3, 101152 (2022). PubMed PMC
Lee K.S. & Ha T. smCamera: all-in-one software package for single-molecule data acquisition and data analysis. Journal of the Korean Physical Society (2024).
Ngo K.X., Kodera N., Katayama E., Ando T. & Uyeda T.Q. Cofilin-induced unidirectional cooperative conformational changes in actin filaments revealed by high-speed atomic force microscopy. Elife 4(2015). PubMed PMC
Brogaard K.R., Xi L., Wang J.P. & Widom J. A chemical approach to mapping nucleosomes at base pair resolution in yeast. Methods Enzymol 513, 315–34 (2012). PubMed PMC
Tashyreva D., Simpson A.G.B., Prokopchuk G., Skodova-Sverakova I., Butenko A., Hammond M., George E.E., Flegontova O., Zahonova K., Faktorova D., Yabuki A., Horak A., Keeling P.J. & Lukes J. Diplonemids - A Review on “New” Flagellates on the Oceanic Block. Protist 173, 125868 (2022). PubMed
Bailey T.L. & Elkan C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2, 28–36 (1994). PubMed