Low abundance of Archaeorhizomycetes among fungi in soil metatranscriptomes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28009005
PubMed Central
PMC5180174
DOI
10.1038/srep38455
PII: srep38455
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- fylogeneze MeSH
- genové regulační sítě MeSH
- Glomeromycota klasifikace genetika MeSH
- metagenom genetika MeSH
- půdní mikrobiologie * MeSH
- transkriptom genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The Archaeorhizomycetes are recently discovered fungi with poorly resolved ecology. Even their abundance in soil fungal communities is currently disputed. Here we applied a PCR-independent, RNA-based metatranscriptomic approach to determine their abundance among fungi in eleven different soils across Europe. Using small subunit (SSU) ribosomal RNA transcripts as marker, we detected Archaeorhizomycetes in 17 out of 28 soil metatranscriptomes. They had average relative SSU rRNA abundance of 2.0% with a maximum of 9.4% among fungal SSU rRNAs. Network analysis revealed that they co-occur with arbuscular mycorrhizal Glomerales, which is in line with their previously suggested association with plant roots. Moreover, Archaeorhizomycetes ranked among the potential keystone taxa. This metatranscriptomic survey exemplifies the usage of non-targeted molecular approaches for the study of soil fungi. It provides PCR- and DNA-independent evidence for the low abundance of Archaeorhizomycetes in soil fungal communities, although they might be non-negligible players despite their low abundance.
Zobrazit více v PubMed
Rosling A. et al.. Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi. Science (80-.). 333, 876–879 (2011). PubMed
Rosling A., Timling I. & Taylor D. L. In Genomics of Soil- and Plant-Associated Fungi (eds Horwitz B. A., Mukherjee P. K., Mukherjee M. & Kubicek C. P.) 36, 333–349 (Springer-Verlag Berlin Heidelberg, 2013).
Porter T. M. et al.. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol. Phylogenet. Evol. 46, 635–644 (2008). PubMed
Tedersoo L. et al.. Global diversity and geography of soil fungi. Science (80-.). 346, 1078 (2014). PubMed
Schadt C. W. & Rosling A. Comment on ‘Global diversity and geography of soil fungi’. Science (80-.). 348, 1438–1438 (2015). PubMed
Tedersoo L. et al.. Response to Comment on ‘Global diversity and geography of soil fungi’. Science (80-.). 349, 936 (2015). PubMed
Urich T. et al.. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3 (2008). PubMed PMC
Urich T. & Schleper C. In Handbook of Molecular Microbial Ecology I (ed de Brujin F.) 587–596 (John Wiley & Sons, Inc., 2011).
Tveit A., Schwacke R., Svenning M. M. & Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 7, 299–311 (2013). PubMed PMC
Geisen S. et al.. Metatranscriptomic census of active protists in soils. ISME J. doi: 10.1038/ismej.2015.30 (2015). PubMed DOI PMC
Epelde L., Lanzén A., Blanco F., Urich T. & Garbisu C. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiol. Ecol. 91, 1–11 (2015). PubMed
Beulig F. et al.. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure. Nat. Microbiol. 1, 15025 (2016). PubMed
Tedersoo L. et al.. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).
Schadt C. W., Martin A. P., Lipson D. a. & Schmidt S. K. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301, 1359–1361 (2003). PubMed
Faust K. et al.. Microbial co-occurrence relationships in the Human Microbiome. PLoS Comput. Biol. 8 (2012). PubMed PMC
Shannon P. et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003). PubMed PMC
Schmieder R. & Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–4 (2011). PubMed PMC
Kopylova E., Noé L. & Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–7 (2012). PubMed
Quast C. et al.. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013). PubMed PMC
Lanzén A. et al.. CREST - Classification Resources for Environmental Sequence Tags. PLoS One 7 (2012). PubMed PMC
Huson D. H., Auch A. F., Qi J. & Schuster S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–86 (2007). PubMed PMC
Berry D. & Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 1–14 (2014). PubMed PMC