Low abundance of Archaeorhizomycetes among fungi in soil metatranscriptomes

. 2016 Dec 23 ; 6 () : 38455. [epub] 20161223

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28009005

The Archaeorhizomycetes are recently discovered fungi with poorly resolved ecology. Even their abundance in soil fungal communities is currently disputed. Here we applied a PCR-independent, RNA-based metatranscriptomic approach to determine their abundance among fungi in eleven different soils across Europe. Using small subunit (SSU) ribosomal RNA transcripts as marker, we detected Archaeorhizomycetes in 17 out of 28 soil metatranscriptomes. They had average relative SSU rRNA abundance of 2.0% with a maximum of 9.4% among fungal SSU rRNAs. Network analysis revealed that they co-occur with arbuscular mycorrhizal Glomerales, which is in line with their previously suggested association with plant roots. Moreover, Archaeorhizomycetes ranked among the potential keystone taxa. This metatranscriptomic survey exemplifies the usage of non-targeted molecular approaches for the study of soil fungi. It provides PCR- and DNA-independent evidence for the low abundance of Archaeorhizomycetes in soil fungal communities, although they might be non-negligible players despite their low abundance.

Zobrazit více v PubMed

Rosling A. et al.. Archaeorhizomycetes: Unearthing an Ancient Class of Ubiquitous Soil Fungi. Science (80-.). 333, 876–879 (2011). PubMed

Rosling A., Timling I. & Taylor D. L. In Genomics of Soil- and Plant-Associated Fungi (eds Horwitz B. A., Mukherjee P. K., Mukherjee M. & Kubicek C. P.) 36, 333–349 (Springer-Verlag Berlin Heidelberg, 2013).

Porter T. M. et al.. Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life. Mol. Phylogenet. Evol. 46, 635–644 (2008). PubMed

Tedersoo L. et al.. Global diversity and geography of soil fungi. Science (80-.). 346, 1078 (2014). PubMed

Schadt C. W. & Rosling A. Comment on ‘Global diversity and geography of soil fungi’. Science (80-.). 348, 1438–1438 (2015). PubMed

Tedersoo L. et al.. Response to Comment on ‘Global diversity and geography of soil fungi’. Science (80-.). 349, 936 (2015). PubMed

Urich T. et al.. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3 (2008). PubMed PMC

Urich T. & Schleper C. In Handbook of Molecular Microbial Ecology I (ed de Brujin F.) 587–596 (John Wiley & Sons, Inc., 2011).

Tveit A., Schwacke R., Svenning M. M. & Urich T. Organic carbon transformations in high-Arctic peat soils: key functions and microorganisms. ISME J. 7, 299–311 (2013). PubMed PMC

Geisen S. et al.. Metatranscriptomic census of active protists in soils. ISME J. doi: 10.1038/ismej.2015.30 (2015). PubMed DOI PMC

Epelde L., Lanzén A., Blanco F., Urich T. & Garbisu C. Adaptation of soil microbial community structure and function to chronic metal contamination at an abandoned Pb-Zn mine. FEMS Microbiol. Ecol. 91, 1–11 (2015). PubMed

Beulig F. et al.. Altered carbon turnover processes and microbiomes in soils under long-term extremely high CO2 exposure. Nat. Microbiol. 1, 15025 (2016). PubMed

Tedersoo L. et al.. Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10, 1–43 (2015).

Schadt C. W., Martin A. P., Lipson D. a. & Schmidt S. K. Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301, 1359–1361 (2003). PubMed

Faust K. et al.. Microbial co-occurrence relationships in the Human Microbiome. PLoS Comput. Biol. 8 (2012). PubMed PMC

Shannon P. et al.. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504 (2003). PubMed PMC

Schmieder R. & Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–4 (2011). PubMed PMC

Kopylova E., Noé L. & Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–7 (2012). PubMed

Quast C. et al.. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013). PubMed PMC

Lanzén A. et al.. CREST - Classification Resources for Environmental Sequence Tags. PLoS One 7 (2012). PubMed PMC

Huson D. H., Auch A. F., Qi J. & Schuster S. C. MEGAN analysis of metagenomic data. Genome Res. 17, 377–86 (2007). PubMed PMC

Berry D. & Widder S. Deciphering microbial interactions and detecting keystone species with co-occurrence networks. Front. Microbiol. 5, 1–14 (2014). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...