The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NU21-02-00135
Czech Health Research Concil
GAUK 1322120-C3
Charles University, grant agency
SVV 260 549
Charles University
UHHK, 00179906
MH CZ - DRO
PubMed
36432485
PubMed Central
PMC9694226
DOI
10.3390/nu14224798
PII: nu14224798
Knihovny.cz E-zdroje
- Klíčová slova
- aggregation, blood, flavonoid, human, metabolite, platelet,
- MeSH
- fenoly MeSH
- imunologické testy * MeSH
- katecholy * farmakologie MeSH
- lidé MeSH
- polyfenoly MeSH
- vyšetření funkce trombocytů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-methylcatechol MeSH Prohlížeč
- fenoly MeSH
- katecholy * MeSH
- polyfenoly MeSH
A polyphenol-rich diet has beneficial effects on cardiovascular health. However, dietary polyphenols generally have low bioavailability and reach low plasma concentrations. Small phenolic metabolites of these compounds formed by human microbiota are much more easily absorbable and could be responsible for this effect. One of these metabolites, 4-methylcatechol (4-MC), was suggested to be a potent anti-platelet compound. The effect of 4-MC was tested ex vivo in a group of 53 generally healthy donors using impedance blood aggregometry. The mechanism of action of this compound was also investigated by employing various aggregation inducers/inhibitors and a combination of aggregometry and enzyme linked immunosorbent assay (ELISA) methods. 4-MC was confirmed to be more potent than acetylsalicylic acid on both arachidonic acid and collagen-triggered platelet aggregation. Its clinically relevant effect was found even at a concentration of 10 μM. Mechanistic studies showed that 4-MC is able to block platelet aggregation caused by the stimulation of different pathways (receptors for the von Willebrand factor and platelet-activating factor, glycoprotein IIb/IIIa, protein kinase C, intracellular calcium elevation). The major mechanism was defined as interference with cyclooxygenase-thromboxane synthase coupling. This study confirmed the strong antiplatelet potential of 4-MC in a group of healthy donors and defined its mechanism of action.
Zobrazit více v PubMed
Gasparyan A.Y., Watson T., Lip G.Y. The role of aspirin in cardiovascular prevention: Implications of aspirin resistance. J. Am. Coll. Cardiol. 2008;51:1829–1843. doi: 10.1016/j.jacc.2007.11.080. PubMed DOI
Giorgi M.A., Cohen Arazi H., Gonzalez C.D., Di Girolamo G. Beyond efficacy: Pharmacokinetic differences between clopidogrel, prasugrel and ticagrelor. Expert Opin. Pharmacother. 2011;12:1285–1295. doi: 10.1517/14656566.2011.550573. PubMed DOI
Tantry U.S., Bliden K.P., Chaudhary R., Novakovic M., Rout A., Gurbel P.A. Vorapaxar in the treatment of cardiovascular diseases. Future Cardiol. 2020;16:373–384. doi: 10.2217/fca-2019-0090. PubMed DOI PMC
Kasmeridis C., Apostolakis S., Lip G.Y.H. Aspirin and aspirin resistance in coronary artery disease. Curr. Opin. Pharmacol. 2013;13:242–250. doi: 10.1016/j.coph.2012.12.004. PubMed DOI
Mărginean A., Bănescu C., Scridon A., Dobreanu M. Anti-platelet Therapy Resistance—Concept, Mechanisms and Platelet Function Tests in Intensive Care Facilities. J. Crit. Care Med. 2016;2:6–15. doi: 10.1515/jccm-2015-0021. PubMed DOI PMC
Lopez L.R., Guyer K.E., Torre I.G., Pitts K.R., Matsuura E., Ames P.R. Platelet thromboxane (11-dehydro-Thromboxane B2) and aspirin response in patients with diabetes and coronary artery disease. World J. Diabetes. 2014;5:115–127. doi: 10.4239/wjd.v5.i2.115. PubMed DOI PMC
Applová L., Karlíčková J., Warncke P., Macáková K., Hrubša M., Macháček M., Tvrdý V., Fischer D., Mladěnka P. 4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol. Nutr. Food Res. 2019;63:1900261. doi: 10.1002/mnfr.201900261. PubMed DOI
Fukuhara K., Ishikawa K., Yasuda S., Kishishita Y., Kim H.K., Kakeda T., Yamamoto M., Norii T., Ishikawa T. Intracerebroventricular 4-methylcatechol (4-MC) ameliorates chronic pain associated with depression-like behavior via induction of brain-derived neurotrophic factor (BDNF) Cell. Mol. Neurobiol. 2012;32:971–977. doi: 10.1007/s10571-011-9782-2. PubMed DOI PMC
Gezginci-Oktayoglu S., Coskun E., Ercin M., Bolkent S. 4-Methylcatechol prevents streptozotocin-induced acute kidney injury through modulating NGF/TrkA and ROS-related Akt/GSK3β/β-catenin pathways. Int. Immunopharmacol. 2018;64:52–59. doi: 10.1016/j.intimp.2018.08.017. PubMed DOI
Hsieh Y.-L., Lin W.-M., Lue J.-H., Chang M.-F., Hsieh S.-T. Effects of 4-Methylcatechol on Skin Reinnervation: Promotion of Cutaneous Nerve Regeneration After Crush Injury. J. Neuropathol. Exp. Neurol. 2009;68:1269–1281. doi: 10.1097/NEN.0b013e3181c17b46. PubMed DOI
Ishikawa K., Yasuda S., Fukuhara K., Iwanaga Y., Ida Y., Ishikawa J., Yamagata H., Ono M., Kakeda T., Ishikawa T. 4-Methylcatechol prevents derangements of brain-derived neurotrophic factor and TrkB-related signaling in anterior cingulate cortex in chronic pain with depression-like behavior. Neuroreport. 2014;25:226–232. doi: 10.1097/WNR.0000000000000072. PubMed DOI
Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC
Mursu J., Voutilainen S., Nurmi T., Tuomainen T.P., Kurl S., Salonen J.T. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2008;100:890–895. doi: 10.1017/S0007114508945694. PubMed DOI
Feliciano R.P., Boeres A., Massacessi L., Istas G., Ventura M.R., Nunes Dos Santos C., Heiss C., Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch. Biochem. Biophys. 2016;599:31–41. doi: 10.1016/j.abb.2016.01.014. PubMed DOI
Nieman D.C., Gillitt N.D., Knab A.M., Shanely R.A., Pappan K.L., Jin F., Lila M.A. Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: A randomized trial using a metabolomics approach. PLoS ONE. 2013;8:e72215. doi: 10.1371/journal.pone.0072215. PubMed DOI PMC
Stalmach A., Edwards C.A., Wightman J.D., Crozier A. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food Funct. 2013;4:52–62. doi: 10.1039/C2FO30151B. PubMed DOI
Pan P., Skaer C.W., Stirdivant S.M., Young M.R., Stoner G.D., Lechner J.F., Huang Y.W., Wang L.S. Beneficial Regulation of Metabolic Profiles by Black Raspberries in Human Colorectal Cancer Patients. Cancer Prev. Res. 2015;8:743–750. doi: 10.1158/1940-6207.CAPR-15-0065. PubMed DOI PMC
Krcmova L., Solichova D., Melichar B., Kasparova M., Plisek J., Sobotka L., Solich P. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high throuput HPLC. Talanta. 2011;85:1466–1471. doi: 10.1016/j.talanta.2011.06.027. PubMed DOI
Chemical C. Thromboxane B2 ELISA Kit (Item No. 501020) [(accessed on 8 January 2022)]. Available online: https://www.caymanchem.com/product/501020.
Mladěnka P., Zatloukalová L., Filipský T., Hrdina R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic. Biol. Med. 2010;49:963–975. doi: 10.1016/j.freeradbiomed.2010.06.010. PubMed DOI
Rothwell J.A., Urpi-Sarda M., Boto-Ordoñez M., Llorach R., Farran-Codina A., Barupal D.K., Neveu V., Manach C., Andres-Lacueva C., Scalbert A. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol. Nutr. Food Res. 2016;60:203–211. doi: 10.1002/mnfr.201500435. PubMed DOI PMC
Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilařová V., Applová L., Nováková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vasc. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI
Kamato D., Thach L., Bernard R., Chan V., Zheng W., Kaur H., Brimble M., Osman N., Little P.J. Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Front. Cardiovasc. Med. 2015;2:14. doi: 10.3389/fcvm.2015.00014. PubMed DOI PMC
Mizuno N., Itoh H. Functions and Regulatory Mechanisms of Gq-Signaling Pathways. Neurosignals. 2009;17:42–54. doi: 10.1159/000186689. PubMed DOI
Grabarek J., Ware J.A. Protein kinase C activation without membrane contact in platelets stimulated by bryostatin. J. Biol. Chem. 1993;268:5543–5549. doi: 10.1016/S0021-9258(18)53355-X. PubMed DOI
Carr M.E., Jr., Carr S.L., Grant S. A sensitive platelet activation-based functional assay for the antileukemic agent bryostatin 1. Anticancer. Drugs. 1995;6:384–391. doi: 10.1097/00001813-199506000-00004. PubMed DOI
Authi K.S., Bokkala S., Patel Y., Kakkar V.V., Munkonge F. Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: Relationship to Ca2+ pools and relevance in platelet activation. Pt 1Biochem. J. 1993;294:119–126. doi: 10.1042/bj2940119. PubMed DOI PMC
Thastrup O., Linnebjerg H., Bjerrum P.J., Knudsen J.B., Christensen S.B. The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations. Biochim. Biophys. Acta. 1987;927:65–73. doi: 10.1016/0167-4889(87)90066-8. PubMed DOI
Shibata K., Kitayama S., Morita K., Shirakawa M., Okamoto H., Dohi T. Regulation by protein kinase C of platelet-activating factor- and thapsigargin-induced calcium entry in rabbit neutrophils. Jpn. J. Pharmacol. 1994;66:273–276. doi: 10.1254/jjp.66.273. PubMed DOI
Margaritis A., Priora R., Frosali S., Di Giuseppe D., Summa D., Coppo L., Di Stefano A., Di Simplicio P. The role of protein sulfhydryl groups and protein disulfides of the platelet surface in aggregation processes involving thiol exchange reactions. Pharmacol. Res. 2011;63:77–84. doi: 10.1016/j.phrs.2010.09.004. PubMed DOI
Yan B., Smith J.W. Mechanism of integrin activation by disulfide bond reduction. Biochemistry. 2001;40:8861–8867. doi: 10.1021/bi002902i. PubMed DOI
Ono T., Yamada K., Chikazawa Y., Ueno M., Nakamoto S., Okuno T., Seno K. Characterization of a novel inhibitor of cytosolic phospholipase A2alpha, pyrrophenone. Biochem. J. 2002;363:727–735. doi: 10.1042/bj3630727. PubMed DOI PMC
Prévost N., Mitsios J.V., Kato H., Burke J.E., Dennis E.A., Shimizu T., Shattil S.J. Group IVA cytosolic phospholipase A2 (cPLA2alpha) and integrin alphaIIbbeta3 reinforce each other’s functions during alphaIIbbeta3 signaling in platelets. Blood. 2009;113:447–457. doi: 10.1182/blood-2008-06-162032. PubMed DOI PMC
Gerrard J.M., White J.G., Peterson D.A. The platelet dense tubular system: Its relationship to prostaglandin synthesis and calcium flux. Thromb. Haemost. 1978;40:224–231. doi: 10.1055/s-0038-1648656. PubMed DOI
Hrubša M., Alva R., Parvin M.S., Macáková K., Karlíčková J., Fadraersada J., Konečný L., Moravcová M., Carazo A., Mladěnka P. Comparison of Antiplatelet Effects of Phenol Derivatives in Humans. Biomolecules. 2022;12:117. doi: 10.3390/biom12010117. PubMed DOI PMC
Nitta A., Ito M., Fukumitsu H., Ohmiya M., Ito H., Sometani A., Nomoto H., Furukawa Y., Furukawa S. 4-Methylcatechol Increases Brain-Derived Neurotrophic Factor Content and mRNA Expression in Cultured Brain Cells and in Rat Brain In Vivo. J. Pharmacol. Exp. Ther. 1999;291:1276. PubMed
Glässer G., Graefe E.U., Struck F., Veit M., Gebhardt R. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine. 2002;9:33–40. doi: 10.1078/0944-7113-00080. PubMed DOI
Morita K., Arimochi H., Ohnishi Y. In vitro cytotoxicity of 4-methylcatechol in murine tumor cells: Induction of apoptotic cell death by extracellular pro-oxidant action. J. Pharmacol. Exp. Ther. 2003;306:317–323. doi: 10.1124/jpet.103.050351. PubMed DOI
Furukawa Y., Urano T., Minamimura M., Nakajima M., Okuyama S., Furukawa S. 4-Methylcatechol-induced heme oxygenase-1 exerts a protective effect against oxidative stress in cultured neural stem/progenitor cells via PI3 kinase/Akt pathway. Biomed. Res. 2010;31:45–52. doi: 10.2220/biomedres.31.45. PubMed DOI
Payton F., Bose R., Alworth W.L., Kumar A.P., Ghosh R. 4-Methylcatechol-induced oxidative stress induces intrinsic apoptotic pathway in metastatic melanoma cells. Biochem. Pharmacol. 2011;81:1211–1218. doi: 10.1016/j.bcp.2011.03.005. PubMed DOI PMC
Senger D.R., Hoang M.V., Kim K.H., Li C., Cao S. Anti-inflammatory activity of Barleria lupulina: Identification of active compounds that activate the Nrf2 cell defense pathway, organize cortical actin, reduce stress fibers, and improve cell junctions in microvascular endothelial cells. J. Ethnopharmacol. 2016;193:397–407. doi: 10.1016/j.jep.2016.09.017. PubMed DOI PMC
Li C.J., Jiang Y.W., Chen S.X., Li H.J., Chen L., Liu Y.T., Gao S., Zhao Y., Zhu X.L., Wang H.T., et al. 4-Methylcatechol inhibits cell growth and testosterone production in TM3 Leydig cells by reducing mitochondrial activity. Andrologia. 2017;49:e12581. doi: 10.1111/and.12581. PubMed DOI
Karatug Kacar A., Gezginci-Oktayoglu S., Bolkent S. 4-Methylcatechol stimulates apoptosis and reduces insulin secretion by decreasing betacellulin and inhibin beta-A in INS-1 beta-cells. Hum. Exp. Toxicol. 2018;37:1123–1130. doi: 10.1177/0960327118758365. PubMed DOI
Yi X., Zhou Q., Lin J., Chi L. Aspirin resistance in Chinese stroke patients increased the rate of recurrent stroke and other vascular events. Int J. Stroke. 2013;8:535–539. doi: 10.1111/j.1747-4949.2012.00929.x. PubMed DOI
Kim J.D., Park C.-Y., Ahn K.J., Cho J.H., Choi K.M., Kang J.G., Kim J.H., Lee K.Y., Lee B.W., Mok J.O., et al. Non-HDL cholesterol is an independent risk factor for aspirin resistance in obese patients with type 2 diabetes. Atherosclerosis. 2014;234:146–151. doi: 10.1016/j.atherosclerosis.2014.01.015. PubMed DOI