The Antiplatelet Effect of 4-Methylcatechol in a Real Population Sample and Determination of the Mechanism of Action

. 2022 Nov 13 ; 14 (22) : . [epub] 20221113

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36432485

Grantová podpora
NU21-02-00135 Czech Health Research Concil
GAUK 1322120-C3 Charles University, grant agency
SVV 260 549 Charles University
UHHK, 00179906 MH CZ - DRO

A polyphenol-rich diet has beneficial effects on cardiovascular health. However, dietary polyphenols generally have low bioavailability and reach low plasma concentrations. Small phenolic metabolites of these compounds formed by human microbiota are much more easily absorbable and could be responsible for this effect. One of these metabolites, 4-methylcatechol (4-MC), was suggested to be a potent anti-platelet compound. The effect of 4-MC was tested ex vivo in a group of 53 generally healthy donors using impedance blood aggregometry. The mechanism of action of this compound was also investigated by employing various aggregation inducers/inhibitors and a combination of aggregometry and enzyme linked immunosorbent assay (ELISA) methods. 4-MC was confirmed to be more potent than acetylsalicylic acid on both arachidonic acid and collagen-triggered platelet aggregation. Its clinically relevant effect was found even at a concentration of 10 μM. Mechanistic studies showed that 4-MC is able to block platelet aggregation caused by the stimulation of different pathways (receptors for the von Willebrand factor and platelet-activating factor, glycoprotein IIb/IIIa, protein kinase C, intracellular calcium elevation). The major mechanism was defined as interference with cyclooxygenase-thromboxane synthase coupling. This study confirmed the strong antiplatelet potential of 4-MC in a group of healthy donors and defined its mechanism of action.

Zobrazit více v PubMed

Gasparyan A.Y., Watson T., Lip G.Y. The role of aspirin in cardiovascular prevention: Implications of aspirin resistance. J. Am. Coll. Cardiol. 2008;51:1829–1843. doi: 10.1016/j.jacc.2007.11.080. PubMed DOI

Giorgi M.A., Cohen Arazi H., Gonzalez C.D., Di Girolamo G. Beyond efficacy: Pharmacokinetic differences between clopidogrel, prasugrel and ticagrelor. Expert Opin. Pharmacother. 2011;12:1285–1295. doi: 10.1517/14656566.2011.550573. PubMed DOI

Tantry U.S., Bliden K.P., Chaudhary R., Novakovic M., Rout A., Gurbel P.A. Vorapaxar in the treatment of cardiovascular diseases. Future Cardiol. 2020;16:373–384. doi: 10.2217/fca-2019-0090. PubMed DOI PMC

Kasmeridis C., Apostolakis S., Lip G.Y.H. Aspirin and aspirin resistance in coronary artery disease. Curr. Opin. Pharmacol. 2013;13:242–250. doi: 10.1016/j.coph.2012.12.004. PubMed DOI

Mărginean A., Bănescu C., Scridon A., Dobreanu M. Anti-platelet Therapy Resistance—Concept, Mechanisms and Platelet Function Tests in Intensive Care Facilities. J. Crit. Care Med. 2016;2:6–15. doi: 10.1515/jccm-2015-0021. PubMed DOI PMC

Lopez L.R., Guyer K.E., Torre I.G., Pitts K.R., Matsuura E., Ames P.R. Platelet thromboxane (11-dehydro-Thromboxane B2) and aspirin response in patients with diabetes and coronary artery disease. World J. Diabetes. 2014;5:115–127. doi: 10.4239/wjd.v5.i2.115. PubMed DOI PMC

Applová L., Karlíčková J., Warncke P., Macáková K., Hrubša M., Macháček M., Tvrdý V., Fischer D., Mladěnka P. 4-Methylcatechol, a Flavonoid Metabolite with Potent Antiplatelet Effects. Mol. Nutr. Food Res. 2019;63:1900261. doi: 10.1002/mnfr.201900261. PubMed DOI

Fukuhara K., Ishikawa K., Yasuda S., Kishishita Y., Kim H.K., Kakeda T., Yamamoto M., Norii T., Ishikawa T. Intracerebroventricular 4-methylcatechol (4-MC) ameliorates chronic pain associated with depression-like behavior via induction of brain-derived neurotrophic factor (BDNF) Cell. Mol. Neurobiol. 2012;32:971–977. doi: 10.1007/s10571-011-9782-2. PubMed DOI PMC

Gezginci-Oktayoglu S., Coskun E., Ercin M., Bolkent S. 4-Methylcatechol prevents streptozotocin-induced acute kidney injury through modulating NGF/TrkA and ROS-related Akt/GSK3β/β-catenin pathways. Int. Immunopharmacol. 2018;64:52–59. doi: 10.1016/j.intimp.2018.08.017. PubMed DOI

Hsieh Y.-L., Lin W.-M., Lue J.-H., Chang M.-F., Hsieh S.-T. Effects of 4-Methylcatechol on Skin Reinnervation: Promotion of Cutaneous Nerve Regeneration After Crush Injury. J. Neuropathol. Exp. Neurol. 2009;68:1269–1281. doi: 10.1097/NEN.0b013e3181c17b46. PubMed DOI

Ishikawa K., Yasuda S., Fukuhara K., Iwanaga Y., Ida Y., Ishikawa J., Yamagata H., Ono M., Kakeda T., Ishikawa T. 4-Methylcatechol prevents derangements of brain-derived neurotrophic factor and TrkB-related signaling in anterior cingulate cortex in chronic pain with depression-like behavior. Neuroreport. 2014;25:226–232. doi: 10.1097/WNR.0000000000000072. PubMed DOI

Del Rio D., Rodriguez-Mateos A., Spencer J.P.E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid. Redox Signal. 2013;18:1818–1892. doi: 10.1089/ars.2012.4581. PubMed DOI PMC

Mursu J., Voutilainen S., Nurmi T., Tuomainen T.P., Kurl S., Salonen J.T. Flavonoid intake and the risk of ischaemic stroke and CVD mortality in middle-aged Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Br. J. Nutr. 2008;100:890–895. doi: 10.1017/S0007114508945694. PubMed DOI

Feliciano R.P., Boeres A., Massacessi L., Istas G., Ventura M.R., Nunes Dos Santos C., Heiss C., Rodriguez-Mateos A. Identification and quantification of novel cranberry-derived plasma and urinary (poly)phenols. Arch. Biochem. Biophys. 2016;599:31–41. doi: 10.1016/j.abb.2016.01.014. PubMed DOI

Nieman D.C., Gillitt N.D., Knab A.M., Shanely R.A., Pappan K.L., Jin F., Lila M.A. Influence of a polyphenol-enriched protein powder on exercise-induced inflammation and oxidative stress in athletes: A randomized trial using a metabolomics approach. PLoS ONE. 2013;8:e72215. doi: 10.1371/journal.pone.0072215. PubMed DOI PMC

Stalmach A., Edwards C.A., Wightman J.D., Crozier A. Colonic catabolism of dietary phenolic and polyphenolic compounds from Concord grape juice. Food Funct. 2013;4:52–62. doi: 10.1039/C2FO30151B. PubMed DOI

Pan P., Skaer C.W., Stirdivant S.M., Young M.R., Stoner G.D., Lechner J.F., Huang Y.W., Wang L.S. Beneficial Regulation of Metabolic Profiles by Black Raspberries in Human Colorectal Cancer Patients. Cancer Prev. Res. 2015;8:743–750. doi: 10.1158/1940-6207.CAPR-15-0065. PubMed DOI PMC

Krcmova L., Solichova D., Melichar B., Kasparova M., Plisek J., Sobotka L., Solich P. Determination of neopterin, kynurenine, tryptophan and creatinine in human serum by high throuput HPLC. Talanta. 2011;85:1466–1471. doi: 10.1016/j.talanta.2011.06.027. PubMed DOI

Chemical C. Thromboxane B2 ELISA Kit (Item No. 501020) [(accessed on 8 January 2022)]. Available online: https://www.caymanchem.com/product/501020.

Mladěnka P., Zatloukalová L., Filipský T., Hrdina R. Cardiovascular effects of flavonoids are not caused only by direct antioxidant activity. Free Radic. Biol. Med. 2010;49:963–975. doi: 10.1016/j.freeradbiomed.2010.06.010. PubMed DOI

Rothwell J.A., Urpi-Sarda M., Boto-Ordoñez M., Llorach R., Farran-Codina A., Barupal D.K., Neveu V., Manach C., Andres-Lacueva C., Scalbert A. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol. Nutr. Food Res. 2016;60:203–211. doi: 10.1002/mnfr.201500435. PubMed DOI PMC

Pourová J., Najmanová I., Vopršalová M., Migkos T., Pilařová V., Applová L., Nováková L., Mladěnka P. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vasc. Pharmacol. 2018;111:36–43. doi: 10.1016/j.vph.2018.08.008. PubMed DOI

Kamato D., Thach L., Bernard R., Chan V., Zheng W., Kaur H., Brimble M., Osman N., Little P.J. Structure, Function, Pharmacology, and Therapeutic Potential of the G Protein, Gα/q,11. Front. Cardiovasc. Med. 2015;2:14. doi: 10.3389/fcvm.2015.00014. PubMed DOI PMC

Mizuno N., Itoh H. Functions and Regulatory Mechanisms of Gq-Signaling Pathways. Neurosignals. 2009;17:42–54. doi: 10.1159/000186689. PubMed DOI

Grabarek J., Ware J.A. Protein kinase C activation without membrane contact in platelets stimulated by bryostatin. J. Biol. Chem. 1993;268:5543–5549. doi: 10.1016/S0021-9258(18)53355-X. PubMed DOI

Carr M.E., Jr., Carr S.L., Grant S. A sensitive platelet activation-based functional assay for the antileukemic agent bryostatin 1. Anticancer. Drugs. 1995;6:384–391. doi: 10.1097/00001813-199506000-00004. PubMed DOI

Authi K.S., Bokkala S., Patel Y., Kakkar V.V., Munkonge F. Ca2+ release from platelet intracellular stores by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone: Relationship to Ca2+ pools and relevance in platelet activation. Pt 1Biochem. J. 1993;294:119–126. doi: 10.1042/bj2940119. PubMed DOI PMC

Thastrup O., Linnebjerg H., Bjerrum P.J., Knudsen J.B., Christensen S.B. The inflammatory and tumor-promoting sesquiterpene lactone, thapsigargin, activates platelets by selective mobilization of calcium as shown by protein phosphorylations. Biochim. Biophys. Acta. 1987;927:65–73. doi: 10.1016/0167-4889(87)90066-8. PubMed DOI

Shibata K., Kitayama S., Morita K., Shirakawa M., Okamoto H., Dohi T. Regulation by protein kinase C of platelet-activating factor- and thapsigargin-induced calcium entry in rabbit neutrophils. Jpn. J. Pharmacol. 1994;66:273–276. doi: 10.1254/jjp.66.273. PubMed DOI

Margaritis A., Priora R., Frosali S., Di Giuseppe D., Summa D., Coppo L., Di Stefano A., Di Simplicio P. The role of protein sulfhydryl groups and protein disulfides of the platelet surface in aggregation processes involving thiol exchange reactions. Pharmacol. Res. 2011;63:77–84. doi: 10.1016/j.phrs.2010.09.004. PubMed DOI

Yan B., Smith J.W. Mechanism of integrin activation by disulfide bond reduction. Biochemistry. 2001;40:8861–8867. doi: 10.1021/bi002902i. PubMed DOI

Ono T., Yamada K., Chikazawa Y., Ueno M., Nakamoto S., Okuno T., Seno K. Characterization of a novel inhibitor of cytosolic phospholipase A2alpha, pyrrophenone. Biochem. J. 2002;363:727–735. doi: 10.1042/bj3630727. PubMed DOI PMC

Prévost N., Mitsios J.V., Kato H., Burke J.E., Dennis E.A., Shimizu T., Shattil S.J. Group IVA cytosolic phospholipase A2 (cPLA2alpha) and integrin alphaIIbbeta3 reinforce each other’s functions during alphaIIbbeta3 signaling in platelets. Blood. 2009;113:447–457. doi: 10.1182/blood-2008-06-162032. PubMed DOI PMC

Gerrard J.M., White J.G., Peterson D.A. The platelet dense tubular system: Its relationship to prostaglandin synthesis and calcium flux. Thromb. Haemost. 1978;40:224–231. doi: 10.1055/s-0038-1648656. PubMed DOI

Hrubša M., Alva R., Parvin M.S., Macáková K., Karlíčková J., Fadraersada J., Konečný L., Moravcová M., Carazo A., Mladěnka P. Comparison of Antiplatelet Effects of Phenol Derivatives in Humans. Biomolecules. 2022;12:117. doi: 10.3390/biom12010117. PubMed DOI PMC

Nitta A., Ito M., Fukumitsu H., Ohmiya M., Ito H., Sometani A., Nomoto H., Furukawa Y., Furukawa S. 4-Methylcatechol Increases Brain-Derived Neurotrophic Factor Content and mRNA Expression in Cultured Brain Cells and in Rat Brain In Vivo. J. Pharmacol. Exp. Ther. 1999;291:1276. PubMed

Glässer G., Graefe E.U., Struck F., Veit M., Gebhardt R. Comparison of antioxidative capacities and inhibitory effects on cholesterol biosynthesis of quercetin and potential metabolites. Phytomedicine. 2002;9:33–40. doi: 10.1078/0944-7113-00080. PubMed DOI

Morita K., Arimochi H., Ohnishi Y. In vitro cytotoxicity of 4-methylcatechol in murine tumor cells: Induction of apoptotic cell death by extracellular pro-oxidant action. J. Pharmacol. Exp. Ther. 2003;306:317–323. doi: 10.1124/jpet.103.050351. PubMed DOI

Furukawa Y., Urano T., Minamimura M., Nakajima M., Okuyama S., Furukawa S. 4-Methylcatechol-induced heme oxygenase-1 exerts a protective effect against oxidative stress in cultured neural stem/progenitor cells via PI3 kinase/Akt pathway. Biomed. Res. 2010;31:45–52. doi: 10.2220/biomedres.31.45. PubMed DOI

Payton F., Bose R., Alworth W.L., Kumar A.P., Ghosh R. 4-Methylcatechol-induced oxidative stress induces intrinsic apoptotic pathway in metastatic melanoma cells. Biochem. Pharmacol. 2011;81:1211–1218. doi: 10.1016/j.bcp.2011.03.005. PubMed DOI PMC

Senger D.R., Hoang M.V., Kim K.H., Li C., Cao S. Anti-inflammatory activity of Barleria lupulina: Identification of active compounds that activate the Nrf2 cell defense pathway, organize cortical actin, reduce stress fibers, and improve cell junctions in microvascular endothelial cells. J. Ethnopharmacol. 2016;193:397–407. doi: 10.1016/j.jep.2016.09.017. PubMed DOI PMC

Li C.J., Jiang Y.W., Chen S.X., Li H.J., Chen L., Liu Y.T., Gao S., Zhao Y., Zhu X.L., Wang H.T., et al. 4-Methylcatechol inhibits cell growth and testosterone production in TM3 Leydig cells by reducing mitochondrial activity. Andrologia. 2017;49:e12581. doi: 10.1111/and.12581. PubMed DOI

Karatug Kacar A., Gezginci-Oktayoglu S., Bolkent S. 4-Methylcatechol stimulates apoptosis and reduces insulin secretion by decreasing betacellulin and inhibin beta-A in INS-1 beta-cells. Hum. Exp. Toxicol. 2018;37:1123–1130. doi: 10.1177/0960327118758365. PubMed DOI

Yi X., Zhou Q., Lin J., Chi L. Aspirin resistance in Chinese stroke patients increased the rate of recurrent stroke and other vascular events. Int J. Stroke. 2013;8:535–539. doi: 10.1111/j.1747-4949.2012.00929.x. PubMed DOI

Kim J.D., Park C.-Y., Ahn K.J., Cho J.H., Choi K.M., Kang J.G., Kim J.H., Lee K.Y., Lee B.W., Mok J.O., et al. Non-HDL cholesterol is an independent risk factor for aspirin resistance in obese patients with type 2 diabetes. Atherosclerosis. 2014;234:146–151. doi: 10.1016/j.atherosclerosis.2014.01.015. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace