Rapid method for screening of both calcium and magnesium chelation with comparison of 21 known metal chelators

. 2024 Dec ; 29 (7-8) : 785-800. [epub] 20241018

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, srovnávací studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid39422739

Grantová podpora
CZ.02.01.01/00/22_008/0004607 NETPHARM
SVV 260 663 Charles University

Odkazy

PubMed 39422739
PubMed Central PMC11638374
DOI 10.1007/s00775-024-02078-6
PII: 10.1007/s00775-024-02078-6
Knihovny.cz E-zdroje

Chelation is the rational treatment modality in metal overload conditions, but chelators are often non-selective and can, hence, cause an imbalance in the homeostasis of physiological metals including calcium and magnesium. The aim of this study was to develop an affordable, rapid but sensitive and precise method for determining the degree of chelation of calcium and magnesium ions and to employ this method for comparison on a panel of known metal chelators. Spectrophotometric method using o-cresolphthalein complexone (o-CC) was developed and its biological relevance was confirmed in human platelets by impedance aggregometry. The lowest detectable concentration of calcium and magnesium ions by o-CC was 2.5 μM and 2 μM, respectively. The indicator was stable for at least 110 days. Four and seven out of twenty-one chelators strongly chelated calcium and magnesium ions, respectively. Importantly, the chelation effect of clinically used chelators was not negligible. Structure-activity relationships for eight quinolin-8-ols showed improvements in chelation particularly in the cases of dihalogen substitution, and a negative linear relationship between pKa and magnesium chelation was observed. Calcium chelation led to inhibition of platelet aggregation in concentrations corresponding to the complex formation. A novel method for screening of efficacy and safety of calcium and magnesium ion chelation was developed and validated.

Zobrazit více v PubMed

Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226. 10.3390/nu7095388 PubMed PMC

Yu J et al (2018) Calcium content mediated hemostasis of calcium-modified oxidized microporous starch. J Biomater Sci Polym Ed 29(14):1716–1728. 10.1080/09205063.2018.1481585 PubMed

Fiorentini D et al (2021) Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients. 10.3390/nu13041136 PubMed PMC

Luo H et al (2017) Hypomagnesemia predicts postoperative biochemical hypocalcemia after thyroidectomy. BMC Surg 17(1):62. 10.1186/s12893-017-0258-2 PubMed PMC

Pham PC et al (2014) Hypomagnesemia: a clinical perspective. Int J Nephrol Renovasc Dis 7:219–230. 10.2147/ijnrd.S42054 PubMed PMC

Schafer AL, Shoback DM (2000) Hypocalcemia: diagnosis and treatment. In: Feingold KR et al (eds) Endotext. MDText.com Inc, South Dartmouth

Benamor M, Aguerssif N (2008) Simultaneous determination of calcium and magnesium by derivative spectrophotometry in pharmaceutical products. Spectrochim Acta A Mol Biomol Spectrosc 69(2):676–681. 10.1016/j.saa.2007.05.020 PubMed

Tesfaldet ZO, van Staden JF, Stefan RI (2004) Spectrophotometric determination of magnesium in pharmaceutical preparations by cost-effective sequential injection analysis. Talanta 64(4):981–988. 10.1016/j.talanta.2004.04.026 PubMed

Saurina J et al (2002) Determination of calcium and total hardness in natural waters using a potentiometric sensor array. Anal Chim Acta 464:89–98. 10.1016/S0003-2670(02)00474-9

de Armas G et al (2000) Fluorimetric sequential injection determination of magnesium using 8-hydroxiquinoline-5-sulfonic acid in a micellar medium. Talanta 52(1):77–82. 10.1016/s0039-9140(99)00339-2 PubMed

Xu Z et al (2022) Characterization of chelation and absorption of calcium by a mytilus edulis derived osteogenic peptide. Front Nutr 9:840638. 10.3389/fnut.2022.840638 PubMed PMC

Catapano MC et al (2018) A simple, cheap but reliable method for evaluation of zinc chelating properties. Bioorg Chem 77:287–292. 10.1016/j.bioorg.2018.01.015 PubMed

Říha M et al (2013) Novel method for rapid copper chelation assessment confirmed low affinity of D-penicillamine for copper in comparison with trientine and 8-hydroxyquinolines. J Inorg Biochem 123:80–87. 10.1016/j.jinorgbio.2013.02.011 PubMed

Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicology 283(2–3):65–87 PubMed

Liu ZD, Hider RC (2002) Design of clinically useful iron(III)-selective chelators. Med Res Rev 22(1):26–64. 10.1002/med.1027 PubMed

Lei Y, Nosoudi N, Vyavahare N (2014) Targeted chelation therapy with EDTA-loaded albumin nanoparticles regresses arterial calcification without causing systemic side effects. J Control Rel 196:79–86. 10.1016/j.jconrel.2014.09.029 PubMed PMC

Carillo KD et al (2019) Magnesium and calcium reveal different chelating effects in a steroid compound: a model study of prednisolone using NMR spectroscopy. Steroids 150:108429. 10.1016/j.steroids.2019.108429 PubMed

Creighton AM (1976) Bis Diketopperazines. In US3941790, Editor

Jirkovský E et al (2018) Pharmacokinetics of the cardioprotective drug dexrazoxane and its active metabolite ADR-925 with focus on cardiomyocytes and the heart. J Pharmacol Exp Ther 364(3):433–446. 10.1124/jpet.117.244848 PubMed

Hrubša M et al (2022) The antiplatelet effect of 4-methylcatechol in a real population sample and determination of the mechanism of action. Nutrients 14(22):4798 PubMed PMC

Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Suppl 1):S23-30. 10.2215/cjn.05910809 PubMed

Abd Elnabi MK et al (2023) Toxicity of heavy metals and recent advances in their removal: a review. Toxics. 10.3390/toxics11070580 PubMed PMC

McDowell LA, Kudaravalli P, Sticco KL (2022) Iron overload. StatPearls. StatPearls Publishing LLC, Treasure Island PubMed

Mareček ZBR (2013) Wilsonova choroba. Vnitř Lék 59(7):578–583 PubMed

Aggarwal A, Bhatt M (2018) Advances in treatment of wilson disease. Tremor Other Hyperkinet Mov (N Y) 8:525. 10.7916/d841881d PubMed PMC

Kalia K, Flora SJ (2005) Strategies for safe and effective therapeutic measures for chronic arsenic and lead poisoning. J Occup Health 47(1):1–21. 10.1539/joh.47.1 PubMed

Kim JJ, Kim YS, Kumar V (2019) Heavy metal toxicity: An update of chelating therapeutic strategies. J Trace Elem Med Biol 54:226–231. 10.1016/j.jtemb.2019.05.003 PubMed

Aaseth J et al (2015) Chelation in metal intoxication—principles and paradigms. J Trace Elem Med Biol 31:260–266. 10.1016/j.jtemb.2014.10.001 PubMed

Crisponi G et al (2015) A speciation study on the perturbing effects of iron chelators on the homeostasis of essential metal ions. PLoS ONE 10(7):e0133050. 10.1371/journal.pone.0133050 PubMed PMC

Jing Z et al (2018) Many-body effect determines the selectivity for Ca(2+) and Mg(2+) in proteins. Proc Natl Acad Sci USA 115(32):E7495-e7501. 10.1073/pnas.1805049115 PubMed PMC

Walter ERH et al (2021) Designing magnesium-selective ligands using coordination chemistry principles. Coord Chem Rev 428:213622. 10.1016/j.ccr.2020.213622

Bellotti D, Remelli M (2021) Deferoxamine B: a natural, excellent and versatile metal chelator. Molecules 26(11):3255 PubMed PMC

Huang ZX et al (1982) Metal binding by pharmaceuticals. Part 2. Interactions of Ca(II), Cu(II), Fe(II), Mg(II), Mn(II) and Zn(II) with the intracellular hydrolysis products of the antitumour agent ICRF 159 and its inactive homologue ICRF 192. Agents Act 12(4):536–542. 10.1007/bf01965940 PubMed

Lenz GR, Martell AE (1964) Metal chelates of some sulfur-containing amino acids. Biochemistry 3:745–750. 10.1021/bi00894a001 PubMed

Prachayasittikul V et al (2013) 8-Hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des Devel Ther 7:1157–1178. 10.2147/dddt.S49763 PubMed PMC

Repac Antić D et al (2022) Chelation in antibacterial drugs: from nitroxoline to cefiderocol and beyond. Antibiotics 11(8):1105 PubMed PMC

Gupta R, Luxami V, Paul K (2021) Insights of 8-hydroxyquinolines: a novel target in medicinal chemistry. Bioorg Chem 108:104633. 10.1016/j.bioorg.2021.104633 PubMed

Agrawal YK, Patel DR (1986) Thermodynamic proton-ligand and metal-ligand stability constants of some drugs. J Pharm Sci 75(2):190–192. 10.1002/jps.2600750219 PubMed

Hata T, Uno T (2006) Studies on new derivatives of 8-quinolinol as chelating agents. II. Chelate formation of some aminomethyl derivatives derived from 8-hydroxyquinoline-2-carbaldehyde with metal ions. Bull Chem Soc Jpn 45(8):2497–2503. 10.1246/bcsj.45.2497

Waters RS et al (2001) EDTA chelation effects on urinary losses of cadmium, calcium, chromium, cobalt, copper, lead, magnesium, and zinc. Biol Trace Elem Res 83(3):207–221. 10.1385/BTER:83:3:207 PubMed

Heindorff K et al (1983) Genetic toxicology of ethylenediaminetetraacetic acid (EDTA). Mutat Res 115(2):149–173. 10.1016/0165-1110(83)90001-5 PubMed

Vermylen J, Verstraete M, Fuster V (1986) Role of platelet activation and fibrin formation in thrombogenesis. J Am Coll Cardiol 8(6 Suppl B):2b–9b. 10.1016/s0735-1097(86)80002-x PubMed

Hafer E et al (2020) Qualitative and quantitative (1) H NMR spectroscopy for determination of divalent metal cation concentration in model salt solutions, food supplements, and pharmaceutical products by using EDTA as chelating agent. Magn Reson Chem 58(7):653–665. 10.1002/mrc.5009 PubMed

Ghosh N et al (2015) Synthesis, characterization and study of antioxidant activity of quercetin-magnesium complex. Spectrochim Acta A Mol Biomol Spectrosc 151:807–813. 10.1016/j.saa.2015.07.050 PubMed

Liao W et al (2019) The purification, identification and bioactivity study of a novel calcium-binding peptide from casein hydrolysate. Food Funct 10(12):7724–7732. 10.1039/c9fo01383k PubMed

Sun N et al (2017) An exploration of the calcium-binding mode of egg white peptide, asp-his-thr-lys-glu, and in vitro calcium absorption studies of peptide-calcium complex. J Agric Food Chem 65(44):9782–9789. 10.1021/acs.jafc.7b03705 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...