The role of Nrf2 and PPARgamma in the improvement of oxidative stress in hypertension and cardiovascular diseases
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
33656904
PubMed Central
PMC8603703
DOI
10.33549/physiolres.934612
PII: 934612
Knihovny.cz E-zdroje
- MeSH
- antioxidační responzivní elementy MeSH
- faktor 2 související s NF-E2 metabolismus MeSH
- hypertenze metabolismus patofyziologie MeSH
- kardiovaskulární nemoci metabolismus patofyziologie MeSH
- KEAP-1 metabolismus MeSH
- krevní tlak * MeSH
- lidé MeSH
- oxidační stres * MeSH
- PPAR gama metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- faktor 2 související s NF-E2 MeSH
- KEAP-1 MeSH
- PPAR gama MeSH
- reaktivní formy kyslíku MeSH
Reactive oxygen species are an important element of redox regulation in cells and tissues. During physiological processes, molecules undergo chemical changes caused by reduction and oxidation reactions. Free radicals are involved in interactions with other molecules, leading to oxidative stress. Oxidative stress works two ways depending on the levels of oxidizing agents and products. Excessive action of oxidizing agents damages biomolecules, while a moderate physiological level of oxidative stress (oxidative eustress) is necessary to control life processes through redox signaling required for normal cellular operation. High levels of reactive oxygen species (ROS) mediate pathological changes. Oxidative stress helps to regulate cellular phenotypes in physiological and pathological conditions. Nrf2 (nuclear factor erythroid 2-related factor 2, NFE2L2) transcription factor functions as a target nuclear receptor against oxidative stress and is a key factor in redox regulation in hypertension and cardiovascular disease. Nrf2 mediates transcriptional regulation of a variety of target genes. The Keap1-Nrf2-ARE system regulates many detoxification and antioxidant enzymes in cells after the exposure to reactive oxygen species and electrophiles. Activation of Nrf2/ARE signaling is differentially regulated during acute and chronic stress. Keap1 normally maintains Nrf2 in the cytosol and stimulates its degradation through ubiquitination. During acute oxidative stress, oxidized molecules modify the interaction of Nrf2 and Keap1, when Nrf2 is released from the cytoplasm into the nucleus where it binds to the antioxidant response element (ARE). This triggers the expression of antioxidant and detoxification genes. The consequence of long-term chronic oxidative stress is activation of glycogen synthase kinase 3beta (GSK-3beta) inhibiting Nrf2 activity and function. PPARgamma (peroxisome proliferator-activated receptor gamma) is a nuclear receptor playing an important role in the management of cardiovascular diseases, hypertension and metabolic syndrome. PPARgamma targeting of genes with peroxisome proliferator response element (PPRE) has led to the identification of several genes involved in lipid metabolism or oxidative stress. PPARgamma stimulation is triggered by endogenous and exogenous ligands - agonists and it is involved in the activation of several cellular signaling pathways involved in oxidative stress response, such as the PI3K/Akt/NOS pathway. Nrf2 and PPARgamma are linked together with their several activators and Nrf2/ARE and PPARgamma/PPRE pathways can control several types of diseases.
Zobrazit více v PubMed
ANDREADOU I, SCHULZ R, PAPAPETROPOULOS A, TURAN B, YTREHUS K, FERDINANDY P, DAIBER A, Di LISA F. The role of mitochondrial reactive oxygen species, NO and H2S in ischemia/reperfusion injury and cardioprotection. J Cell Mol Med. 2020;24:6510–6522. doi: 10.1111/jcmm.15279. PubMed DOI PMC
ARMAGAN G, SEVGILI E, GÜRKAN FT, KÖSE FA, BILGIÇ T, DAGCI T, SASO L. Regulation of the Nrf2 pathway by glycogen synthase kinase-3β in MPP+-induced cell damage. Molecules. 2019;24:1377. doi: 10.3390/molecules24071377. PubMed DOI PMC
AXELSSON AS, TUBBS E, MECHAM B, CHACKO S, NENONEN HA, TANG Y, FAHEY JW, DERRY JMJ, WOLLHEIM CB, WIERUP N, HAYMOND MW, FRIEND SH, MULDER H, ROSENGREN AH. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Sci Transl Med. 2017;9:eaah4477. doi: 10.1126/scitranslmed.aah4477. PubMed DOI
BALAKUMAR P, JAGADEESH G. Multifarious molecular signaling cascades of cardiac hypertrophy: can the muddy waters be cleared. Pharmacol Res. 2010;62:65–383. doi: 10.1016/j.phrs.2010.07.003. PubMed DOI
BARANČÍK M, GREŠOVÁ L, BARTEKOVÁ M, DOVINOVÁ I. Nrf2 as a key player of redox regulation in cardiovascular diseases. Physiol Res. 2016;65(Suppl 1):S1–S10. doi: 10.33549/physiolres.933403. PubMed DOI
BARTEKOVÁ M, ŠIMONČÍKOVA P, FOGARASSYOVÁ M, IVANOVÁ M, OKRUHLICOVÁ L, TRIBULOVÁ N, DOVINOVÁ I, BARANČÍK M. Quercetin improves postischemic recovery of heart function in doxorubicin-treated rats and prevents doxorubicin-induced matrix metalloproteinase-2 activation and apoptosis induction. Int J Mol Sci. 2015;16:8168–8185. doi: 10.3390/ijms16048168. PubMed DOI PMC
BIAN T, AUTRY JM, CASEMORE D, LI J, THOMAS DD, HE G, XING C. Direct detection of SERCA calcium transport and small-molecule inhibition in giant unilamellar vesicles. Biochem Biophys Res Commun. 2016;481:206–211. doi: 10.1016/j.bbrc.2016.10.096. PubMed DOI PMC
BRTKO J, DVORAK Z. Natural and synthetic retinoid X receptor ligands and their role in selected nuclear receptor action. Biochimie. 2020;179:157–168. doi: 10.1016/j.biochi.2020.09.027. PubMed DOI
CALABRESE V, CORNELIUS C, DINKOVA-KOSTOVA AT, IAVICOLI I, DI PAOLA R, KOVERECH A, CUZZOCREA S, RIZZARELLI E, CALABRESE EJ. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta. 2012;1822:753–783. doi: 10.1016/j.bbadis.2011.11.002. PubMed DOI
CHAN SH, WU KL, KUNG PS, CHAN JY. Oral intake of rosiglitazone promotes a central antihypertensive effect via upregulation of peroxisome proliferator-activated receptor-gamma and alleviation of oxidative stress in rostral ventrolateral medulla of spontaneously hypertensive rats. Hypertension. 2010;55:1444–1453. doi: 10.1161/HYPERTENSIONAHA.109.149146. PubMed DOI
CHAN SH, CHAN JY. Brain stem NOS and ROS in neural mechanisms of hypertension. Antioxid Redox Signal. 2014;20:146–163. doi: 10.1089/ars.2013.5230. PubMed DOI
CRABTREE MJ, CHANNON KM. Synthesis and recycling of tetrahydrobiopterin in endothelial function and vascular disease. Nitric Oxide. 2011;25:81–88. doi: 10.1016/j.niox.2011.04.004. PubMed DOI PMC
CUADRADO A, MANDA G, HASSAN A, ALCARAZ MJ, BARBAS C, DAIBER A, GHEZZI P, LEÓN R, LÓPEZ MG, OLIVA B, PAJARES M, ROJO AI, ROBLEDINOS-ANTÓN N, VALVERDE AM, GUNEY E, SCHMIDT HHHW. Transcription factor NRF2 as a therapeutic target for chronic diseases: a systems medicine approach. Pharmacol Rev. 2018;70:48–383. doi: 10.1124/pr.117.014753. PubMed DOI
DOVINOVA I, GARDLIK R, PALFFY R, KRISTEK F, CACANYIOVA S, VANTOVA Z, PAULIKOVA H. Modulation of antioxidative response in the therapy of hypertension and other cardiovascular diseases. Neuro Endocrinol Lett. 2009;30(Suppl 1):32–35. PubMed
DOVINOVA I, BARANCIK M, MAJZUNOVA M, ZORAD S, GAJDOSECHOVA L, GRESOVÁ L, CACANYIOVA S, KRISTEK F, BALIS P, CHAN JY. Effects of PPAR γ agonist pioglitazone on redox-sensitive cellular signaling in young spontaneously hypertensive rats. PPAR Res. 2013;2013:541871. doi: 10.1155/2013/541871. PubMed DOI PMC
DOVINOVÁ I, MAJZÚNOVÁ M. Regulation mechanisms in hypertension pathophysiology: Aberrant redox regulation in hypertension. Regulation Mechanisms in the Pathophysiology of Hypertension. (In Slovak) In: KRISTEK F, CACANYIOVA S, TOROK J, editors. Institute of normal and pathological physiology. Slovak Academy of sciences; Bratislava: 2015a. pp. 103–116.
DOVINOVA I, BARANCIK M, KRATKA D, FOGARASSYOVA M, KVANDOVA M, BARTEKOVA M. Pathological changes in cardiovascular system in long-term doxorubicin-treated rats and effect of quercetin. Cardiol Lett. 2015b;24:243–246.
FARKHONDEHA T, FOLGADOB SL, POURBAGHER-SHAHRIC AM, ASHRAFIZADEHD M, SAMARGHANDIANE S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed Pharmacother. 2020;127:110234. doi: 10.1016/j.biopha.2020.110234. PubMed DOI
FINKEL T. Signal transduction by reactive oxygen species. J Cell Biol. 2011;194:7–15. doi: 10.1083/jcb.201102095. PubMed DOI PMC
GRESOVA L, KVANDOVA M, KVASNICKA P, DOVINOVA I. Age-dependent effect of PPARγ agonist pioglitazone on kidney signaling in borderline hypertensive rats. Gen Physiol Biophys. 2019;38:259–264. doi: 10.4149/gpb_2019005. PubMed DOI
HARRISON DG, GONGORA MC. Oxidative stress and hypertension. Med Clin North Am. 2009;93:621–635. doi: 10.1016/j.mcna.2009.02.015. PubMed DOI
IVANOVA M, DOVINOVA I, OKRUHLICOVA L, TRIBULOVA N, SIMONCIKOVA P, BARTEKOVA M, VLKOVICOVA J, BARANCIK M. Chronic cardiotoxicity of doxorubicin involves activation of myocardial and circulating matrix metalloproteinases in rats. Acta Pharmacol Sin. 2012;33:459–469. doi: 10.1038/aps.2011.194. PubMed DOI PMC
KANNINEN K, WHITE AR, KOISTINAHO J, MALM T. Targeting glycogen synthase kinase-3β for therapeutic benefit against oxidative stress in Alzheimer's disease: involvement of the Nrf2-ARE pathway. Int J Alzheimers Dis. 2011;2011:985085. doi: 10.4061/2011/985085. PubMed DOI PMC
KVANDOVA M, MAJZUNOVA M, DOVINOVA I. The role of PPARgamma in cardiovascular diseases. Physiol Res. 2016;65(Suppl 3):S343–S363. doi: 10.33549/physiolres.933439. PubMed DOI
KVANDOVA M, BARANCIK M, BALIS P, PUZSEROVA A, MAJZUNOVA M, DOVINOVA I. The peroxisome proliferator-activated receptor gamma agonist pioglitazone improves nitric oxide availability, renin-angiotensin system and aberrant redox regulation in the kidney of pre-hypertensive rats. J Physiol Pharmacol. 2018;69:231–243. doi: 10.26402/jpp.2018.2.09. PubMed DOI
LEE CH. Collaborative power of Nrf2 and PPARγ activators against metabolic and drug-induced oxidative injury. Oxid Med Cell Longev. 2017;2017:1378175. doi: 10.1155/2017/1378175. PubMed DOI PMC
LIU X, LIN X, ZHANG S, GUO CH, LI J, MI Y, ZHANG C. Lycopene ameliorates oxidative stress in the aging chicken ovary via activation of Nrf2/HO-1 pathway. Aging. 2018;10:2016–2036. doi: 10.18632/aging.101526. PubMed DOI PMC
MAJZUNOVA M, DOVINOVA I, BARANCIK M, CHAN JYH. Redox signaling in pathophysiology of hypertension. J Biomed Sci. 2013;20:69–78. doi: 10.1186/1423-0127-20-69. PubMed DOI PMC
MAJZUNOVA M, PAKANOVA Z, KVASNICKA P, BALIS P, CACANYIOVA S, DOVINOVA I. Age-dependent redox status in the brain stem of NO-deficient hypertensive rats. J Biomed Sci. 2017;24:72. doi: 10.1186/s12929-017-0366-4. PubMed DOI PMC
NAKAGAWA T, TANABE K, CROKER BP, JOHNSON RJ, GRANT MB, KOSUGI T, LI Q. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat Rev Nephrol. 2011;7:6–44. doi: 10.1038/nrneph.2010.152. PubMed DOI PMC
NGUYEN T, NIOI P, PICKETT CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–13295. doi: 10.1074/jbc.R900010200. PubMed DOI PMC
PALL ML, LEVINE S. Nrf2, a master regulator of detoxification and also antioxidant, anti-inflammatory and other cytoprotective mechanisms, is raised by health promoting factors. Acta Physiol Sin. 2015;67:1–18. PubMed
POLVANI S, TAROCCHI M, GALLI A. PPARγ and oxidative stress: Con (β) catenating NRF2 and FOXO. PPAR Res. 2012;2012:641087. doi: 10.1155/2012/641087. PubMed DOI PMC
ROBLEDINOS-ANTÓN M, FERNÁNDEZ-GINÉS R, MANDA G, CUADRADO A. Activators and inhibitors of NRF2: a review of their potential for clinical development. Oxid Med Cell Long. 2019;2019:9372182. doi: 10.1155/2019/9372182. PubMed DOI PMC
ROH JH, HUANG Y, BERO AW, KASTEN T, STEWART FR, BATEMAN RJ, HOLTZMAN DM. Disruption of sleep wake cycle and diurnal fluctuation of β amyloid in mice with Alzheimer's disease pathology. Sci Transl Med. 2012;4:150ra122. doi: 10.1126/scitranslmed.3004291. PubMed DOI PMC
SALAZAR M, ROJO AI, VELASCO D, De SAGARRA RM, CUADRADO A. Glycogen synthase kinase-3beta inhibits the xenobiotic and antioxidant cell response by direct phosphorylation and nuclear exclusion of the transcription factor Nrf2. J Biol Chem. 2006;281:14841–14851. doi: 10.1074/jbc.M513737200. PubMed DOI
SCHIEBER M, CHANDEL NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24:R453–R462. doi: 10.1016/j.cub.2014.03.034. PubMed DOI PMC
SHARMA A, PARIKH M, SHAH H, GANDHI T. Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon. 2020;6:e03803. doi: 10.1016/j.heliyon.2020.e03803. PubMed DOI PMC
SIES H, JONES DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020;21:63–383. doi: 10.1038/s41580-020-0230-3. PubMed DOI
SIES H, BERNDT C, JONES DP. Oxidative stress. Annu Rev Biochem. 2017;86:715–748. doi: 10.1146/annurev-biochem-061516-045037. PubMed DOI
TAIN YL, HSU CHN, CHAN JY. PPARs link early life nutritional insults to later programmed hypertension and metabolic syndrome. Int J Mol Sci. 2015;17:20. doi: 10.3390/ijms17010020. PubMed DOI PMC
TIAN Y, WANG W, XU L, LI H, WEI Y, WU Q, JIA J. Activation of Nrf2/ARE pathway alleviates the cognitive deficits in PS1V97L-Tg mouse model of Alzheimer's disease through modulation of oxidative stress. J Neurosci Res. 2018;97:492–505. doi: 10.1002/jnr.24357. PubMed DOI
TOUYZ RM. Molecular and cellular mechanisms in vascular injury in hypertension: role of angiotensin II. Curr Opin Nephrol Hypertens. 2005;14:125–131. doi: 10.1097/00041552-200503000-00007. PubMed DOI
TSAI CY, SU CH, BAUDRIE V, LAUDE D, WENG JCH, CHANG AY, CHAN JY, ELGHOZI JL, CHAN SH. Visualizing oxidative stress-induced depression of cardiac vagal baroreflex by MRI/DTI in a mouse neurogenic hypertension model. Neuroimage. 2013;82:190–199. doi: 10.1016/j.neuroimage.2013.05.124. PubMed DOI
USHIO-FUKAI M. Vascular signaling through G protein-coupled receptors: new concepts. Curr Opin Nephrol Hypertens. 2009;18:153–159. doi: 10.1097/MNH.0b013e3283252efe. PubMed DOI PMC
WANG L, CHEN Y, STERNBERG P, CAI J. Essential roles of the PI3 kinase/Akt pathway in regulating Nrf2-dependent antioxidant functions in the RPE. Invest Ophthalmol Vis Sci. 2008;49:1671–1678. doi: 10.1167/iovs.07-1099. PubMed DOI PMC
WANG SY, JIAO H. Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. J Agric Food Chem. 2000;48:5677–5684. doi: 10.1021/jf000766i. PubMed DOI
WANG Y, BRANICKY R, NOË A, HEKIMI S. Superoxide dismutases: Dual roles in controlling ROS damage and regulating ROS signaling. J Cell Biol. 2018;217:1915–1928. doi: 10.1083/jcb.201708007. PubMed DOI PMC
WU KL, WU CA, WU CW, CHAN SH, CHAMG AY, CHAN JY. Redox-sensitive oxidation and phosphorylation of PTEN contribute to enhanced activation of PI3K/Akt signaling in rostral ventrolateral medulla and neurogenic hypertension in spontaneously hypertensive rats. Antioxid Redox Signal. 2013;18:6–50. doi: 10.1089/ars.2011.4457. PubMed DOI PMC
WU KL, CHAO YM, TSAY SJ, CHEN CH, CHAN SH, DOVINOVA I, CHAN JY. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome. Hypertension. 2014;64:815–824. doi: 10.1161/HYPERTENSIONAHA.114.03777. PubMed DOI
XIE Y, GU ZJ, WU MX, HUANTC OUJS, NI HS, LIN MH, YUAN WL, WANG JF. Disruption of calcium homeostasis by cardiac-specific over-expression of PPAR-γ in mice: A role in ventricular arrhythmia. Life Sci. 2016;167:12–21. doi: 10.1016/j.lfs.2016.10.014. PubMed DOI