Age-dependent redox status in the brain stem of NO-deficient hypertensive rats
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
28893245
PubMed Central
PMC5594586
DOI
10.1186/s12929-017-0366-4
PII: 10.1186/s12929-017-0366-4
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidant response, Brain stem, NOS inhibition, Radical signaling,
- MeSH
- antioxidancia metabolismus MeSH
- indazoly farmakologie MeSH
- inhibitory enzymů farmakologie MeSH
- krysa rodu Rattus MeSH
- metabolická inaktivace * MeSH
- mozkový kmen účinky léků metabolismus MeSH
- NG-nitroargininmethylester farmakologie MeSH
- oxid dusnatý nedostatek MeSH
- potkani Wistar MeSH
- synthasa oxidu dusnatého antagonisté a inhibitory MeSH
- věkové faktory MeSH
- volné radikály metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 7-nitroindazole MeSH Prohlížeč
- antioxidancia MeSH
- indazoly MeSH
- inhibitory enzymů MeSH
- NG-nitroargininmethylester MeSH
- oxid dusnatý MeSH
- synthasa oxidu dusnatého MeSH
- volné radikály MeSH
BACKGROUND: The brain stem contains important nuclei that control cardiovascular function via the sympathetic nervous system (SNS), which is strongly influenced by nitric oxide. Its biological activity is also largely determined by oxygen free radicals. Despite many experimental studies, the role of AT1R-NAD(P)H oxidase-superoxide pathway in NO-deficiency is not yet sufficiently clarified. We determined changes in free radical signaling and antioxidant and detoxification response in the brain stem of young and adult Wistar rats during chronic administration of exogenous NO inhibitors. METHODS: Young (4 weeks) and adult (10 weeks) Wistar rats were treated with 7-nitroindazole (7-NI group, 10 mg/kg/day), a specific nNOS inhibitor, with NG-nitro-L-arginine-methyl ester (L-NAME group, 50 mg/kg/day), a nonspecific NOS inhibitor, and with drinking water (Control group) during 6 weeks. Systolic blood pressure was measured by non-invasive plethysmography. Expression of genes (AT1R, AT2R, p22phox, SOD and NOS isoforms, HO-1, MDR1a, housekeeper GAPDH) was identified by real-time PCR. NOS activity was detected by conversion of [3H]-L-arginine to [3H]-L-citrulline and SOD activity was measured using UV VIS spectroscopy. RESULTS: We observed a blood pressure elevation and decrease in NOS activity only after L-NAME application in both age groups. Gene expression of nNOS (youngs) and eNOS (adults) in the brain stem decreased after both inhibitors. The radical signaling pathway triggered by AT1R and p22phox was elevated in L-NAME adults, but not in young rats. Moreover, L-NAME-induced NOS inhibition increased antioxidant response, as indicated by the observed elevation of mRNA SOD3, HO-1, AT2R and MDR1a in adult rats. 7-NI did not have a significant effect on AT1R-NADPH oxidase-superoxide pathway, yet it affected antioxidant response of mRNA expression of SOD1 and stimulated total activity of SOD in young rats and mRNA expression of AT2R in adult rats. CONCLUSION: Our results show that chronic NOS inhibition by two different NOS inhibitors has age-dependent effect on radical signaling and antioxidant/detoxificant response in Wistar rats. While 7-NI had neuroprotective effect in the brain stem of young Wistar rats, L-NAME- induced NOS inhibition evoked activation of AT1R-NAD(P)H oxidase pathway in adult Wistar rats. Triggering of the radical pathway was followed by activation of protective compensation mechanism at the gene expression level.
Zobrazit více v PubMed
Pinterova M, Kunes J, Zicha J. Altered neural and vascular mechanisms in hypertension. Physiol Res. 2011;60(3):381–402. PubMed
Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006;7(5):335–346. doi: 10.1038/nrn1902. PubMed DOI
Osborn JW. Hypothesis: set-points and long-term control of arterial pressure. A theoretical argument for a long-term arterial pressure control system in the brain rather than the kidney. Clin Exp Pharmacol Physiol. 2005;32(5–6):384–393. doi: 10.1111/j.1440-1681.2005.04200.x. PubMed DOI
Forstermann U, Gath I, Schwarz P, Closs EI, Kleinert H. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol. 1995;50(9):1321–1332. doi: 10.1016/0006-2952(95)00181-6. PubMed DOI
Moncada S, Palmer RM. Biosynthesis and actions of nitric oxide. Semin Perinatol. 1991;15(1):16–19. PubMed
Bredt DS, Snyder SH. Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem. 1994;63:175–195. doi: 10.1146/annurev.bi.63.070194.001135. PubMed DOI
Chan SH, Wang LL, Wang SH, Chan JY. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br J Pharmacol. 2001;133(4):606–614. doi: 10.1038/sj.bjp.0704105. PubMed DOI PMC
Chang AY, Chan JY, Chan SH. Differential distribution of nitric oxide synthase isoforms in the rostral ventrolateral medulla of the rat. J Biomed Sci. 2003;10(3):285–291. doi: 10.1007/BF02256447. PubMed DOI
Seidel B, Stanarius A, Wolf G. Differential expression of neuronal and endothelial nitric oxide synthase in blood vessels of the rat brain. Neurosci Lett. 1997;239(2–3):109–112. doi: 10.1016/S0304-3940(97)00912-9. PubMed DOI
Kristek F. Some peculiar effects of NO-synthase inhibition on the structure and function of cardiovascular system. Curr Pharm Biotechnol. 2011;12(9):1305–1315. doi: 10.2174/138920111798281072. PubMed DOI
Baylis C, Mitruka B, Deng A. Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest. 1992;90(1):278–281. doi: 10.1172/JCI115849. PubMed DOI PMC
Patel KP, Li YF, Hirooka Y. Role of nitric oxide in central sympathetic outflow. Exp Biol Med. 2001;226(9):814–824. doi: 10.1177/153537020122600902. PubMed DOI
Sedlakova B, Cacanyiova S, Ondrias K, Kristek F, Krizanova O. Effect of 7-nitroindazole on the expression of intracellular calcium channels in the kidney of spontaneously hypertensive rats. Gen Physiol Biophys. 2009;28(3):225–232. doi: 10.4149/gpb_2009_03_225. PubMed DOI
Wang Q, Pelligrino DA, Baughman VL, Koenig HM, Albrecht RF. The role of neuronal nitric oxide synthase in regulation of cerebral blood flow in normocapnia and hypercapnia in rats. J Cereb Blood Flow Metab. 1995;15(5):774–778. doi: 10.1038/jcbfm.1995.97. PubMed DOI
Beierwaltes WH. Macula densa stimulation of renin is reversed by selective inhibition of neuronal nitric oxide synthase. Am J Phys. 1997;272(5 Pt 2):R1359–R1364. PubMed
Wangensteen R, Rodriguez-Gomez I, Moreno JM, Alvarez-Guerra M, Osuna A, Vargas F. Effects of chronic treatment with 7-nitroindazole in hyperthyroid rats. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1376–R1382. doi: 10.1152/ajpregu.00722.2005. PubMed DOI
Cacanyiova S, Kristek F, Gerova M, Krenek P, Klimas J. Effect of chronic nNOS inhibition on blood pressure, vasoactivity, and arterial wall structure in Wistar rats. Nitric Oxide. 2009;20(4):304–310. doi: 10.1016/j.niox.2009.03.002. PubMed DOI
Kristek F, Cacanyiova S, Gerova M. Hypotrophic effect of long-term neuronal NO-synthase inhibition on heart and conduit arteries of the Wistar rats. J Physiol Pharmacol. 2009;60(2):21–27. PubMed
Cacanyiova S, Kristek F, Malekova M, Ondrias K. Effects of chronic neuronal nitric oxide-synthase inhibition on arterial function and structure in spontaneously hypertensive rats. J Physiol Pharmacol. 2012;63(1):23–28. PubMed
Kristek F, Malekova M, Ondrias K, Cacanyiova S. Blood pressure-independent hypotrophy of the heart, kidneys and conduit arteries after 7-nitroindazole administration to Wistar rats from the prenatal period to adulthood. J Physiol Pharmacol. 2013;64(1):35–39. PubMed
Kantzides A, Badoer E. nNOS-containing neurons in the hypothalamus and medulla project to the RVLM. Brain Res. 2005;1037(1–2):25–34. doi: 10.1016/j.brainres.2004.11.032. PubMed DOI
Wu G, Meininger CJ. Arginine nutrition and cardiovascular function. J Nutr. 2000;130(11):2626–2629. PubMed
Wu KL, Chao YM, Tsay SJ, Chen CH, Chan SH, Dovinova I, Chan JY. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome. Hypertension. 2014;64(4):815–824. doi: 10.1161/HYPERTENSIONAHA.114.03777. PubMed DOI
Infanger DW, Sharma RV, Davisson RL. NADPH oxidases of the brain: distribution, regulation, and function. Antioxid Redox Signal. 2006;8(9–10):1583–1596. doi: 10.1089/ars.2006.8.1583. PubMed DOI
Hirooka Y. Oxidative stress in the cardiovascular center has a pivotal role in the sympathetic activation in hypertension. Hypertens Res. 2011;34(4):407–412. doi: 10.1038/hr.2011.14. PubMed DOI
Chan SH, Wu KL, Chang AY, Tai MH, Chan JY. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension. 2009;53(2):217–227. doi: 10.1161/HYPERTENSIONAHA.108.116905. PubMed DOI
Kishi T, Hirooka Y, Kimura Y, Ito K, Shimokawa H, Takeshita A. Increased reactive oxygen species in rostral ventrolateral medulla contribute to neural mechanisms of hypertension in stroke-prone spontaneously hypertensive rats. Circulation. 2004;109(19):2357–2362. doi: 10.1161/01.CIR.0000128695.49900.12. PubMed DOI
Tai MH, Wang LL, Wu KL, Chan JY. Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Radic Biol Med. 2005;38(4):450–462. doi: 10.1016/j.freeradbiomed.2004.11.015. PubMed DOI
Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Phys. 1996;271(5 Pt 1):C1424–C1437. PubMed
Munzel T, Daiber A, Ullrich V, Mulsch A. Vascular consequences of endothelial nitric oxide synthase uncoupling for the activity and expression of the soluble guanylyl cyclase and the cGMP-dependent protein kinase. Arterioscler Thromb Vasc Biol. 2005;25(8):1551–1557. doi: 10.1161/01.ATV.0000168896.64927.bb. PubMed DOI
Nayernia Z, Jaquet V, Krause KH. New insights on NOX enzymes in the central nervous system. Antioxid Redox Signal. 2014;20(17):2815–2837. doi: 10.1089/ars.2013.5703. PubMed DOI PMC
Majzunova M, Dovinova I, Barancik M, Chan JY. Redox signaling in pathophysiology of hypertension. J Biomed Sci. 2013;20:69. doi: 10.1186/1423-0127-20-69. PubMed DOI PMC
Peterson JR, Burmeister MA, Tian X, Zhou Y, Guruju MR, Stupinski JA, Sharma RV, Davisson RL. Genetic silencing of Nox2 and Nox4 reveals differential roles of these NADPH oxidase homologues in the vasopressor and dipsogenic effects of brain angiotensin II. Hypertension. 2009;54(5):1106–1114. doi: 10.1161/HYPERTENSIONAHA.109.140087. PubMed DOI PMC
Lob HE, Schultz D, Marvar PJ, Davisson RL, Harrison DG. Role of the NADPH oxidases in the subfornical organ in angiotensin II-induced hypertension. Hypertension. 2013;61(2):382–387. doi: 10.1161/HYPERTENSIONAHA.111.00546. PubMed DOI PMC
Wang G, Coleman CG, Chan J, Faraco G, Marques-Lopes J, Milner TA, Guruju MR, Anrather J, Davisson RL, Iadecola C, et al. Angiotensin II slow-pressor hypertension enhances NMDA currents and NOX2-dependent superoxide production in hypothalamic paraventricular neurons. Am J Physiol Regul Integr Comp Physiol. 2013;304(12):R1096–R1106. doi: 10.1152/ajpregu.00367.2012. PubMed DOI PMC
Kishi T. Regulation of the sympathetic nervous system by nitric oxide and oxidative stress in the rostral ventrolateral medulla: 2012 academic conference award from the Japanese Society of Hypertension. Hypertens Res. 2013;36(10):845–851. doi: 10.1038/hr.2013.73. PubMed DOI
Chan SH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JY. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res. 2005;97(8):772–780. doi: 10.1161/01.RES.0000185804.79157.C0. PubMed DOI
Erdos B, Broxson CS, King MA, Scarpace PJ, Tumer N. Acute pressor effect of central angiotensin II is mediated by NAD(P)H-oxidase-dependent production of superoxide in the hypothalamic cardiovascular regulatory nuclei. J Hypertens. 2006;24(1):109–116. doi: 10.1097/01.hjh.0000198026.99600.59. PubMed DOI
Sumners C, de Kloet AD, Krause EG, Unger T, Steckelings UM. Angiotensin type 2 receptors: blood pressure regulation and end organ damage. Curr Opin Pharmacol. 2015;21:115–121. doi: 10.1016/j.coph.2015.01.004. PubMed DOI PMC
Gao LE, Zucker IH. AT2 Receptor signaling and sympathetic regulation. Curr Opin Pharmacol. 2011;11(2):124–130. doi: 10.1016/j.coph.2010.11.004. PubMed DOI PMC
Rehman A, Leibowitz A, Yamamoto N, Rautureau Y, Paradis P, Schiffrin EL. Angiotensin type 2 receptor agonist compound 21 reduces vascular injury and myocardial fibrosis in stroke-prone spontaneously hypertensive rats. Hypertension. 2012;59(2):291-+. doi: 10.1161/HYPERTENSIONAHA.111.180158. PubMed DOI
Paulis L, Becker STR, Lucht K, Schwengel K, Slavic S, Kaschina E, Thone-Reineke C, Dahlof B, Baulmann J, Unger T, et al. Direct Angiotensin II type 2 receptor stimulation in N-omega-nitro-L-Arginine-methyl Ester-induced hypertension the effect on pulse wave velocity and aortic remodeling. Hypertension. 2012;59(2):485–492. doi: 10.1161/HYPERTENSIONAHA.111.185496. PubMed DOI
Faraci FM, Didion SP. Vascular protection: superoxide dismutase isoforms in the vessel wall. Arterioscler Thromb Vasc Biol. 2004;24(8):1367–1373. doi: 10.1161/01.ATV.0000133604.20182.cf. PubMed DOI
Chan SH, Tai MH, Li CY, Chan JY. Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic Biol Med. 2006;40(11):2028–2039. doi: 10.1016/j.freeradbiomed.2006.01.032. PubMed DOI
Zimmerman MC, Lazartigues E, Sharma RV, Davisson RL. Hypertension caused by angiotensin II infusion involves increased superoxide production in the central nervous system. Circ Res. 2004;95(2):210–216. doi: 10.1161/01.RES.0000135483.12297.e4. PubMed DOI
Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, Dikalov SI. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res. 2010;107(1):106–116. doi: 10.1161/CIRCRESAHA.109.214601. PubMed DOI PMC
Oury TD, Card JP, Klann E. Localization of extracellular superoxide dismutase in adult mouse brain. Brain Res. 1999;850(1–2):96–103. doi: 10.1016/S0006-8993(99)02103-4. PubMed DOI
Chen B, Lu YR, Chen YN, Cheng JQ. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol. 2015;225(3):R83–R99. doi: 10.1530/JOE-14-0662. PubMed DOI
Chen TM, Li J, Liu L, Fan L, Li XY, Wang YT, Abraham NG, Cao J. Effects of Heme Oxygenase-1 Upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int J Mol Sci. 2013;14(2):2684–2706. doi: 10.3390/ijms14022684. PubMed DOI PMC
Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98. doi: 10.1602/neurorx.2.1.86. PubMed DOI PMC
Fromm MF. Importance of P-glycoprotein for drug disposition in humans. Eur J Clin Investig. 2003;33(Suppl 2):6–9. doi: 10.1046/j.1365-2362.33.s2.4.x. PubMed DOI
Sun H, Dai H, Shaik N, Elmquist WF. Drug efflux transporters in the CNS. Adv Drug Deliv Rev. 2003;55(1):83–105. doi: 10.1016/S0169-409X(02)00172-2. PubMed DOI
Wessler JD, Grip LT, Mendell J, Giugliano RP. The P-glycoprotein transport system and cardiovascular drugs. J Am Coll Cardiol. 2013;61(25):2495–2502. doi: 10.1016/j.jacc.2013.02.058. PubMed DOI
Wagner BP, Stingele R, Williams MA, Wilson DA, Traystman RJ, Hanley DF. NO contributes to neurohypophysial but not other regional cerebral fluorocarbon-induced hyperemia in cats. Am J Phys. 1997;273(4 Pt 2):H1994–H2000. PubMed
Kaufmann PA, Rimoldi O, Gnecchi-Ruscone T, Bonser RS, Luscher TF, Camici PG. Systemic inhibition of nitric oxide synthase unmasks neural constraint of maximal myocardial blood flow in humans. Circulation. 2004;110(11):1431–1436. doi: 10.1161/01.CIR.0000141294.25130.54. PubMed DOI
Vitecek J, Lojek A, Valacchi G, Kubala L. Arginine-based inhibitors of nitric oxide synthase: therapeutic potential and challenges. Mediat Inflamm. 2012;2012:318087. doi: 10.1155/2012/318087. PubMed DOI PMC
Schreiber S, Bueche CZ, Garz C, Braun H. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? - New insights from a rat model. Exp Transl Stroke Med. 2013;5(1):4. doi: 10.1186/2040-7378-5-4. PubMed DOI PMC
Biancardi VC, Bergamaschi CT, Lopes OU, Campos RR. Sympathetic activation in rats with L-NAME-induced hypertension. Braz J Med Biol Res. 2007;40(3):401–408. doi: 10.1590/S0100-879X2006005000077. PubMed DOI
Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990;87(2):682–685. doi: 10.1073/pnas.87.2.682. PubMed DOI PMC
Bernatova I, Pechanova O, Babal P, Kysela S, Stvrtina S, Andriantsitohaina R. Wine polyphenols improve cardiovascular remodeling and vascular function in NO-deficient hypertension. Am J Phys Heart Circ Phys. 2002;282(3):H942–H948. PubMed
Dovinova I, Barancik M, Majzunova M, Zorad S, Gajdosechova L, Gresova L, Cacanyiova S, Kristek F, Balis P, Chan JYH. Effects of PPAR gamma agonist Pioglitazone on Redox-sensitive cellular signaling in young spontaneously hypertensive rats. PPAR Res. 2013;2013:541871. doi: 10.1155/2013/541871. PubMed DOI PMC
R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.Rproject.org
extremevalues, an R package for outlier detection in univariate data, R package version 2.3. http://www.github.com/markvanderloo/extremevalues.
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Bio J. 2008;50(3):346–363. doi: 10.1002/bimj.200810425. PubMed DOI
Westfall PH, Young SS. Resampling-based multiple testing: examples and methods for p-value adjustment. 1993.
Moore PK, Babbedge RC, Wallace P, Gaffen ZA, Hart SL. 7-Nitro indazole, an inhibitor of nitric oxide synthase, exhibits anti-nociceptive activity in the mouse without increasing blood pressure. Br J Pharmacol. 1993;108(2):296–297. doi: 10.1111/j.1476-5381.1993.tb12798.x. PubMed DOI PMC
Kristek F, Drobna M, Cacanyiova S. Different effects of 7-nitroindazole and L-NAME administered both individually and together on the cardiovascular system of the rat. Physiol Res. 2015;64(1):1–10. PubMed
Kristek F, Gerova M, Devat L, Varga I. Remodelling of septal branch of coronary artery and carotid artery in L-NAME treated rats. Physiol Res. 1996;45(4):329–333. PubMed
Bernatova I, Pechanova O, Kristek F. Mechanism of structural remodelling of the rat aorta during long-term NG-nitro-L-arginine methyl ester treatment. Jpn J Pharmacol. 1999;81(1):99–106. doi: 10.1254/jjp.81.99. PubMed DOI
Nguelefack TB, Mekhfi H, Dongmo AB, Dimo T, Watcho P, Zoheir J, Legssyer A, Kamanyi A, Ziyyat A. Hypertensive effects of oral administration of the aqueous extract of Solanum Torvum fruits in L-NAME treated rats: evidence from in vivo and in vitro studies. J Ethnopharmacol. 2009;124(3):592–599. doi: 10.1016/j.jep.2009.04.057. PubMed DOI
Reiner A, Zagvazdin Y. On the selectivity of 7-nitroindazole as an inhibitor of neuronal nitric oxide synthase. Trends Pharmacol Sci. 1998;19(9):348–350. doi: 10.1016/S0165-6147(98)01194-8. PubMed DOI
Salter M, Duffy C, Garthwaite J, Strijbos PJ. Substantial regional and hemispheric differences in brain nitric oxide synthase (NOS) inhibition following intracerebroventricular administration of N omega-nitro-L-arginine (L-NA) and its methyl ester (L-NAME) Neuropharmacology. 1995;34(6):639–649. doi: 10.1016/0028-3908(95)00036-6. PubMed DOI
Jendekova L, Kojsova S, Andriantsitohaina R, Pechanova O. The time-dependent effect of Provinols on brain NO synthase activity in L-NAME-induced hypertension. Physiol Res. 2006;55(Suppl 1):S31–S37. PubMed
Iadecola C, Xu X, Zhang F, Hu J, el-Fakahany EE. Prolonged inhibition of brain nitric oxide synthase by short-term systemic administration of nitro-L-arginine methyl ester. Neurochem Res. 1994;19(4):501–505. doi: 10.1007/BF00967330. PubMed DOI
Pechanova O, Kojsova-Vrankova S, Jendekova L. Ambivalent effect of chronic L-NAME treatment in the heart and brain. J Mol Cell Cardiol. 2008;44(4):798–799. doi: 10.1016/j.yjmcc.2008.02.209. DOI
Chen Q, Xiao DS. Long-term aerobic exercise increases redox-active iron through nitric oxide in rat hippocampus. Nitric Oxide. 2014;36:1–10. doi: 10.1016/j.niox.2013.10.009. PubMed DOI
Usui M, Egashira K, Kitamoto S, Koyanagi M, Katoh M, Kataoka C, Shimokawa H, Takeshita A. Pathogenic role of oxidative stress in vascular angiotensin-converting enzyme activation in long-term blockade of nitric oxide synthesis in rats. Hypertension. 1999;34(4 Pt 1):546–551. doi: 10.1161/01.HYP.34.4.546. PubMed DOI
Kitamoto S, Egashira K, Kataoka C, Usui M, Koyanagi M, Takemoto M, Takeshita A. Chronic inhibition of nitric oxide synthesis in rats increases aortic superoxide anion production via the action of angiotensin II. J Hypertens. 2000;18(12):1795–1800. doi: 10.1097/00004872-200018120-00013. PubMed DOI
Paulis L, Pechanova O, Zicha J, Barta A, Gardlik R, Celec P, Kunes J, Simko F. Melatonin interactions with blood pressure and vascular function during L-NAME-induced hypertension. J Pineal Res. 2010;48(2):102–108. doi: 10.1111/j.1600-079X.2009.00732.x. PubMed DOI
Vrankova S, Parohova J, Barta A, Janega P, Simko F, Pechanova O. Effect of nuclear factor kappa B inhibition on L-NAME-induced hypertension and cardiovascular remodelling. J Hypertens. 2010;28(Suppl 1):S45–S49. doi: 10.1097/01.hjh.0000388494.58707.0f. PubMed DOI
Yargicoglu P, Yaras N, Agar A, Gumuslu S, Abidin I, Bilmen S. Effects of N-nitro l-arginine methyl ester (l-NAME), a potent nitric oxide synthase inhibitor, on visual evoked potentials of rats exposed to different experimental stress models. Acta Physiol Scand. 2004;180(3):307–316. doi: 10.1111/j.0001-6772.2003.01254.x. PubMed DOI
Sutcu R, Kirbas A, Kirbas S, Kutluhan S, Delibas N. Effects of lisinopril on NMDA receptor subunits 2A and 2B levels in the hippocampus of rats with L-NAME-induced hypertension. J Recept Signal Transduct Res. 2012;32(5):279–284. doi: 10.3109/10799893.2012.714788. PubMed DOI
Priviero FB, Teixeira CE, Claudino MA, De Nucci G, Zanesco A, Antunes E. Vascular effects of long-term propranolol administration after chronic nitric oxide blockade. Eur J Pharmacol. 2007;571(2–3):189–196. doi: 10.1016/j.ejphar.2007.05.060. PubMed DOI
Nakmareong S, Kukongviriyapan U, Pakdeechote P, Donpunha W, Kukongviriyapan V, Kongyingyoes B, Sompamit K, Phisalaphong C. Antioxidant and vascular protective effects of curcumin and tetrahydrocurcumin in rats with L-NAME-induced hypertension. Naunyn Schmiedeberg's Arch Pharmacol. 2011;383(5):519–529. doi: 10.1007/s00210-011-0624-z. PubMed DOI
Zanchi A, Schaad NC, Osterheld MC, Grouzmann E, Nussberger J, Brunner HR, Waeber B. Effects of chronic NO synthase inhibition in rats on renin-angiotensin system and sympathetic nervous system. Am J Phys. 1995;268(6 Pt 2):H2267–H2273. PubMed
Guzman-Hernandez EA, Villalobos-Molina R, Sanchez-Mendoza MA, Del Valle-Mondragon L, Pastelin-Hernandez G, Ibarra-Barajas M. Early co-expression of cyclooxygenase-2 and renin in the rat kidney cortex contributes to the development of N(G)-nitro-L-arginine methyl ester induced hypertension. Can J Physiol Pharmacol. 2015;93(4):299–308. doi: 10.1139/cjpp-2014-0347. PubMed DOI
Maneesai P, Prasarttong P, Bunbupha S, Kukongviriyapan U, Kukongviriyapan V, Tangsucharit P, Prachaney P, Pakdeechote P. Synergistic antihypertensive effect of Carthamus Tinctorius L. extract and Captopril in L-NAME-induced hypertensive rats via restoration of eNOS and AT(1)R expression. Nutrients. 2016;8(3):122. doi: 10.3390/nu8030122. PubMed DOI PMC
Ambasta RK, Kumar P, Griendling KK, Schmidt HH, Busse R, Brandes RP. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase. J Biol Chem. 2004;279(44):45935–45941. doi: 10.1074/jbc.M406486200. PubMed DOI
Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120(4):713–735. doi: 10.1161/CIRCRESAHA.116.309326. PubMed DOI
Fukui T, Ishizaka N, Rajagopalan S, Laursen JB, Capers Q, Taylor WR, Harrison DG, de Leon H, Wilcox JN, Griendling KK. p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res. 1997;80(1):45–51. doi: 10.1161/01.RES.80.1.45. PubMed DOI
Krizanova O, Kiss A, Zacikova L, Jezova D. Nitric oxide synthase mRNA levels correlate with gene expression of angiotensin II type-1 but not type-2 receptors, renin or angiotensin converting enzyme in selected brain areas. Physiol Res. 2001;50(5):473–480. PubMed
Kiss A, Jurkovicova D, Jezova D, Krizanova O. Changes in angiotensin AT1 receptor mRNA levels in the rat brain after immobilization stress and inhibition of central nitric oxide synthase. Endocr Regul. 2001;35(2):65–70. PubMed
Paliege A, Mizel D, Medina C, Pasumarthy A, Huang YG, Bachmann S, Briggs JP, Schnermann JB, Yang T. Inhibition of nNOS expression in the macula densa by COX-2-derived prostaglandin E(2) Am J Physiol Renal Physiol. 2004;287(1):F152–F159. doi: 10.1152/ajprenal.00287.2003. PubMed DOI
Cacanyiova S. The vasoactive role of nitric oxide: physiological and morphological aspects. Curr Pharm Biotechnol. 2011;12(9):1294–1304. doi: 10.2174/138920111798280992. PubMed DOI
Tanir HM, Sener T, Inal M, Akyuz F, Uzuner K, Sivri E. Effect of quercetine and glutathione on the level of superoxide dismutase, catalase, malonyldialdehyde, blood pressure and neonatal outcome in a rat model of pre-eclampsia induced by NG-nitro-L-arginine-methyl ester. Eur J Obstet Gynecol Reprod Biol. 2005;118(2):190–195. doi: 10.1016/j.ejogrb.2004.04.033. PubMed DOI
Oktem F, Kirbas A, Armagan A, Kuybulu AE, Yilmaz HR, Ozguner F, Uz E. Lisinopril attenuates renal oxidative injury in l-NAME-induced hypertensive rats. Mol Cell Biochem. 2011;352(1–2):247–253. doi: 10.1007/s11010-011-0760-2. PubMed DOI
Cardoso AM, Martins CC, Fiorin FD, Schmatz R, Abdalla FH, Gutierres J, Zanini D, Fiorenza AM, Stefanello N, Serres JDD, et al. Physical training prevents oxidative stress in L-NAME-induced hypertension rats. Cell Biochem Funct. 2013;31(2):136–151. doi: 10.1002/cbf.2868. PubMed DOI
Oktar S, Ilhan S, Meydan S, Aydin M, Yonden Z, Gokce A. Salt and nitric oxide Synthase inhibition-induced hypertension: kidney dysfunction and brain anti-oxidant capacity. Clin Exp Hypertens. 2010;32(6):352–357. doi: 10.3109/10641961003628486. PubMed DOI
Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem. 1995;64(2):936–939. doi: 10.1046/j.1471-4159.1995.64020936.x. PubMed DOI
Itzhak Y, Ali SF. The neuronal nitric oxide synthase inhibitor, 7-nitroindazole, protects against methamphetamine-induced neurotoxicity in vivo. J Neurochem. 1996;67(4):1770–1773. doi: 10.1046/j.1471-4159.1996.67041770.x. PubMed DOI
Nanri K, Montecot C, Springhetti V, Seylaz J, Pinard E. The selective inhibitor of neuronal nitric oxide synthase, 7-nitroindazole, reduces the delayed neuronal damage due to forebrain ischemia in rats. Stroke. 1998;29(6):1248–1253. doi: 10.1161/01.STR.29.6.1248. PubMed DOI
Yoshida T, Limmroth V, Irikura K, Moskowitz MA. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab. 1994;14(6):924–929. doi: 10.1038/jcbfm.1994.123. PubMed DOI
Imam SZ, el-Yazal J, Newport GD, Itzhak Y, Cadet JL, Slikker W, Jr, Ali SF. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci. 2001;939:366–380. doi: 10.1111/j.1749-6632.2001.tb03646.x. PubMed DOI
Klivenyi P, St Clair D, Wermer M, Yen HC, Oberley T, Yang L, Flint Beal M. Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol Dis. 1998;5(4):253–258. doi: 10.1006/nbdi.1998.0191. PubMed DOI
Thomas B, Saravanan KS, Mohanakumar KP. In vitro and in vivo evidences that antioxidant action contributes to the neuroprotective effects of the neuronal nitric oxide synthase and monoamine oxidase-B inhibitor, 7-nitroindazole. Neurochem Int. 2008;52(6):990–1001. doi: 10.1016/j.neuint.2007.10.012. PubMed DOI
Nozik-Grayck E, Suliman HB, Piantadosi CA. Extracellular superoxide dismutase. Int J Biochem Cell Biol. 2005;37(12):2466–2471. doi: 10.1016/j.biocel.2005.06.012. PubMed DOI
Demchenko IT, Gutsaeva DR, Moskvin AN, Zhilyaev SY. Involvement of extracellular superoxide dismutase in regulating brain blood flow. Neurosci Behav Physiol. 2010;40(2):173–178. doi: 10.1007/s11055-009-9240-5. PubMed DOI
Ndisang JF, Zhao W, Wang R. Selective regulation of blood pressure by heme oxygenase-1 in hypertension. Hypertension. 2002;40(3):315–321. doi: 10.1161/01.HYP.0000028488.71068.16. PubMed DOI
Wang X, Campos CR, Peart JC, Smith LK, Boni JL, Cannon RE, Miller DS. Nrf2 Upregulates ATP binding cassette transporter expression and activity at the blood-brain and blood-spinal cord barriers. J Neurosci. 2014;34(25):8585–8593. doi: 10.1523/JNEUROSCI.2935-13.2014. PubMed DOI PMC
Cheng F, Li W, Zhou Y, Shen J, Wu Z, Liu G, Lee PW, Tang Y. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52(11):3099–3105. doi: 10.1021/ci300367a. PubMed DOI
Barar J, Rafi MA, Pourseif MM, Omidi Y. Blood-brain barrier transport machineries and targeted therapy of brain diseases. Bioimpacts. 2016;6(4):225–248. doi: 10.15171/bi.2016.30. PubMed DOI PMC
Haorah J, Knipe B, Gorantla S, Zheng J, Persidsky Y. Alcohol-induced blood-brain barrier dysfunction is mediated via inositol n4,5-triphosphate receptor (IP3R)-gated intracellular calcium release. J Neurochem. 2007;100(2):324–336. doi: 10.1111/j.1471-4159.2006.04245.x. PubMed DOI
Dalzell AM, Mistry P, Wright J, Williams FM, Brown CD. Characterization of multidrug transporter-mediated efflux of avermectins in human and mouse neuroblastoma cell lines. Toxicol Lett. 2015;235(3):189–198. doi: 10.1016/j.toxlet.2015.04.005. PubMed DOI