Disparate Roles of Oxidative Stress in Rostral Ventrolateral Medulla in Age-Dependent Susceptibility to Hypertension Induced by Systemic l-NAME Treatment in Rats

. 2022 Sep 08 ; 10 (9) : . [epub] 20220908

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36140333

Grantová podpora
OMRPG80011 Chang Gung Medical Foundation, Taiwan
MOST108-2923-B-182A-001-MY3 Ministry of Science and Technology, Taiwan

Odkazy

PubMed 36140333
PubMed Central PMC9496567
DOI 10.3390/biomedicines10092232
PII: biomedicines10092232
Knihovny.cz E-zdroje

This study aims to investigate whether tissue oxidative stress in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons reside, plays an active role in age-dependent susceptibility to hypertension in response to nitric oxide (NO) deficiency induced by systemic l-NAME treatment, and to decipher the underlying molecular mechanisms. Systolic blood pressure (SBP) and heart rate (HR) in conscious rats were recorded, along with measurements of plasma and RVLM level of NO and reactive oxygen species (ROS), and expression of mRNA and protein involved in ROS production and clearance, in both young and adult rats subjected to intraperitoneal (i.p.) infusion of l-NAME. Pharmacological treatments were administered by oral gavage or intracisternal infusion. Gene silencing of target mRNA was made by bilateral microinjection into RVLM of lentivirus that encodes a short hairpin RNA (shRNA) to knock down gene expression of NADPH oxidase activator 1 (Noxa1). We found that i.p. infusion of l-NAME resulted in increases in SBP, sympathetic neurogenic vasomotor activity, and plasma norepinephrine levels in an age-dependent manner. Systemic l-NAME also evoked oxidative stress in RVLM of adult, but not young rats, accompanied by augmented enzyme activity of NADPH oxidase and reduced mitochondrial electron transport enzyme activities. Treatment with L-arginine via oral gavage or infusion into the cistern magna (i.c.), but not i.c. tempol or mitoQ10, significantly offset the l-NAME-induced hypertension in young rats. On the other hand, all treatments appreciably reduced l-NAME-induced hypertension in adult rats. The mRNA microarray analysis revealed that four genes involved in ROS production and clearance were differentially expressed in RVLM in an age-related manner. Of them, Noxa1, and GPx2 were upregulated and Duox2 and Ucp3 were downregulated. Systemic l-NAME treatment caused greater upregulation of Noxa1, but not Ucp3, mRNA expression in RVLM of adult rats. Gene silencing of Noxa1 in RVLM effectively alleviated oxidative stress and protected adult rats against l-NAME-induced hypertension. These data together suggest that hypertension induced by systemic l-NAME treatment in young rats is mediated primarily by NO deficiency that occurs both in vascular smooth muscle cells and RVLM. On the other hand, enhanced augmentation of oxidative stress in RVLM may contribute to the heightened susceptibility of adult rats to hypertension induced by systemic l-NAME treatment.

Zobrazit více v PubMed

Bays H.E., Kulkarni A., German C., Satish P., Iluyomade A., Dudum R., Thakkar A., Rifai M.I., Mehta A., Thobani A., et al. Ten things to know about ten cardiovascular disease risk factors—2022. Am. J. Prev. Cardiol. 2022;10:100342. doi: 10.1016/j.ajpc.2022.100342. PubMed DOI PMC

Wong N.D., Budoff M.J., Ferdinand K., Graham I.M., Michos E.D., Reddy T., Shapiro M.D., Toth P.P. Atherosclerotic cardiovascular disease risk assessment: An American Society for Preventive Cardiology clinical practice statement. Am. J. Prev. Cardiol. 2022;10:100335. doi: 10.1016/j.ajpc.2022.100335. PubMed DOI PMC

Cipolla M.J., Liebeskind D.S., Chan S.L. The importance of comorbidities in ischemic stroke: Impact of hypertension on the cerebral circulation. J. Cereb. Blood. Flow. Metab. 2018;38:2129–2149. doi: 10.1177/0271678X18800589. PubMed DOI PMC

Fu X., Ren H., Xie J., Wang Y., Li Y., Gao P., Chen N. Association of nighttime masked uncontrolled hypertension with left ventricular hypertrophy and kidney function among patients with chronic kidney disease not receiving dialysis. JAMA Netw. Open. 2022;5:e2214460. doi: 10.1001/jamanetworkopen.2022.14460. PubMed DOI PMC

Wu Y., Ding Y., Ramprasath T., Zou M.H. Oxidative stress, GTPCH1, and endothelial nitric oxide synthase uncoupling in hypertension. Antioxid. Redox. Signal. 2021;34:750–764. doi: 10.1089/ars.2020.8112. PubMed DOI PMC

Griendling K.K., Camargo L.L., Rios F., Alves-Lopes R., Montezano A.C., Touyz R.M. Oxidative stress and hypertension. Circ. Res. 2021;128:993–1020. doi: 10.1161/CIRCRESAHA.121.318063. PubMed DOI PMC

Bernatova I. Endothelial dysfunction in experimental models of arterial hypertension: Cause or consequence? Biomed. Res. Int. 2014;2014:598271. doi: 10.1155/2014/598271. PubMed DOI PMC

Palmer R.M.J., Ferrige A.G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327:524–526. doi: 10.1038/327524a0. PubMed DOI

Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–376. doi: 10.1038/288373a0. PubMed DOI

Francis S.H., Busch J.L., Corbin J.D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol. Rev. 2010;62:525–563. doi: 10.1124/pr.110.002907. PubMed DOI PMC

Iwata M., Inoue T., Asai Y., Hori K., Fujiwara M., Matsuo S., Tsuchida W., Suzuki S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem. Biophys. Rep. 2020;23:100790. doi: 10.1016/j.bbrep.2020.100790. PubMed DOI PMC

Knowles R.B., Warner T.D. Anti-platelet drugs and their necessary interaction with endothelial mediators and platelet cyclic nucleotides for therapeutic efficacy. Pharmacol. Ther. 2019;193:83–90. doi: 10.1016/j.pharmthera.2018.08.004. PubMed DOI PMC

Nunokawa Y., Takana S. Interefon-γ inhibits proliferation of vascular smooth muscle cells by nitric oxide generation. Biochem. Biophys. Res. Comm. 1992;188:409–415. doi: 10.1016/0006-291X(92)92400-R. PubMed DOI

Daiber A., Kröller-Schön S., Oelze M., Hahad O., Li H., Schulz R., Steven S., Münzel T. Oxidative stress and inflammation contribute to traffic noise-induced vascular and cerebral dysfunction via uncoupling of nitric oxide synthases. Redox. Biol. 2020;34:101506. doi: 10.1016/j.redox.2020.101506. PubMed DOI PMC

Zhang Y., Murugesan P., Huang K., Cai H. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets. Nat. Rev. Cardiol. 2020;17:170–194. doi: 10.1038/s41569-019-0260-8. PubMed DOI PMC

Ribeiro M.O., Antunes E., de Nucci G., Lovisolo S.M., Zatz R. Chronic inhibition of nitric oxide synthesis. A new model of arterial hypertension. Hypertension. 1992;20:298–303. doi: 10.1161/01.HYP.20.3.298. PubMed DOI

Kopincová J., Púzserová A., Bernátová I. l-NAME in the cardiovascular system-nitric oxide synthase activator? Pharmacol. Rep. 2012;64:511–520. doi: 10.1016/S1734-1140(12)70846-0. PubMed DOI

Berkban T., Boonprom P., Bunbupha S., Welbat J.U., Kukongviriyapan U., Kukongviriyapan V., Pakdeechote P., Prachaney P. Ellagic acid prevents l-NAME-induced hypertension via restoration of eNOS and p47phox expression in rats. Nutrients. 2015;7:5265–5280. doi: 10.3390/nu7075222. PubMed DOI PMC

Zambrano L.I., Pontes R.B., Garcia M.L., Nishi E.E., Nogueira F.N., Higa E.M.S., Cespedes J.G., Bergamaschi C.T., Campos R.R. Pattern of sympathetic vasomotor activity in a model of hypertension induced by nitric oxide synthase blockade. Physiol. Rep. 2019;7:e14183. doi: 10.14814/phy2.14183. PubMed DOI PMC

Shu W., Li H., Gong H., Zhang M., Niu X., Ma Y., Zhang X., Cai W., Yang G., Wei M., et al. Evaluation of blood vessel injury, oxidative stress and circulating inflammatory factors in an l-NAME-induced preeclampsia-like rat model. Exp. Ther. Med. 2018;16:585–594. doi: 10.3892/etm.2018.6217. PubMed DOI PMC

Poasakate A., Maneesai P., Rattanakanokchai S., Bunbupha S., Tong-Un T., Pakdeechote P. Genistein prevents nitric oxide deficiency-induced cardiac dysfunction and remodeling in rats. Antioxidants. 2021;10:237. doi: 10.3390/antiox10020237. PubMed DOI PMC

Ayers N.A., Kapas L., Krueger J.M. The inhibitory effects of Nω-nitro-L-arginine methyl ester on nitric oxide synthase activity vary among brain regions in vivo but not in vitro. Neurochem. Res. 1997;22:81–86. doi: 10.1023/A:1027385522859. PubMed DOI

Jendekova L., Kojsova S., Andriantsitohaina R., Pechanova O. The time-dependent effect of provinols on brain NO synthase activity in l-NAME-induced hypertension. Physiol. Res. 2006;55((Suppl. S1)):S31–S37. doi: 10.33549/physiolres.930000.55.S1.31. PubMed DOI

Majzúnová M., Pakanová Z., Kvasnička P., Bališ P., Čačányiová S., Dovinová I. Age-dependent redox status in the brain stem of NO-deficient hypertensive rats. J. Biomed. Sci. 2017;24:72. doi: 10.1186/s12929-017-0366-4. PubMed DOI PMC

Ross C.A., Ruggiero D.A., Joh T.H., Park D.H., Reis D.J. Rostral ventrolateral medulla: Selective projections to the thoracic autonomic cell column from the region containing C1 adrenaline neurons. J. Comp. Neurol. 1984;228:168–185. doi: 10.1002/cne.902280204. PubMed DOI

Chan S.H.H., Chan J.Y.H. Brain stem NOS and ROS in neural mechanisms of hypertension. Antioxid. Redox. Signal. 2014;20:146–163. doi: 10.1089/ars.2013.5230. PubMed DOI

Guo Z.L., Tjen-A-Looi S.C., Fu L.W., Longhurst J.C. Nitric oxide in rostral ventrolateral medulla regulates cardiac-sympathetic reflexes: Role of synthase isoforms. Am. J. Physiol. Heart Circ. Physiol. 2009;297:H1478–H1486. doi: 10.1152/ajpheart.00209.2009. PubMed DOI PMC

Hirooka Y., Kishi T., Sakai K., Takeshita A., Sunagawa K. Imbalance of central nitric oxide and reactive oxygen species in the regulation of sympathetic activity and neural mechanisms of hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011;300:R818–R826. doi: 10.1152/ajpregu.00426.2010. PubMed DOI

Ally A., Powell I., Ally M.M., Chaitoff K., Nauli S. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide. 2020;102:52–73. doi: 10.1016/j.niox.2020.06.004. PubMed DOI PMC

Sharma N.M., Zheng H., Mehta P.P., Li Y.F., Patel K.P. Decreased nNOS in the PVN leads to increased sympathoexcitation in chronic heart failure: Role for CAPON and Ang II. Cardiovasc. Res. 2011;92:342–357. doi: 10.1093/cvr/cvr217. PubMed DOI PMC

Zheng H., Mayhan W.G., Bidasee K.R., Patel K.P. Blunted nitric oxide-mediated inhibition of sympathetic nerve activity within the paraventricular nucleus in diabetic rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006;290:R992–R1002. doi: 10.1152/ajpregu.00363.2005. PubMed DOI

Wu K.L.H., Chao Y.M., Tsay S.J., Chen C.H., Chan S.H.H., Dovinova I., Chan J.Y.H. Role of nitric oxide synthase uncoupling at rostral ventrolateral medulla in redox-sensitive hypertension associated with metabolic syndrome. Hypertension. 2014;64:815–824. doi: 10.1161/HYPERTENSIONAHA.114.03777. PubMed DOI

Tejero J., Shiva S., Gladwin M.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev. 2019;99:311–379. doi: 10.1152/physrev.00036.2017. PubMed DOI PMC

Zweier J.L., Chen C.A., Druhan L.J., Zweier J.L. S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid. Redox. Signal. 2011;14:1769–1775. doi: 10.1089/ars.2011.3904. PubMed DOI PMC

Xu X., Wang B., Ren C., Hu J., Greenberg D.A., Chen T., Xie L., Jin K. Age-related impairment of vascular structure and functions. Aging Dis. 2017;8:590–610. doi: 10.14336/AD.2017.0430. PubMed DOI PMC

Liu W.L., Lin Y.Y., Mündel T., Chou C.C., Liao Y.H. Effects of acute interval exercise on arterial stiffness and cardiovascular autonomic regulatory responses: A narrative review of potential impacts of aging. Front. Cardiovasc. Med. 2022;9:864173. doi: 10.3389/fcvm.2022.864173. PubMed DOI PMC

Poznyak A.V., Sadykhov N.K., Kartuesov A.G., Borisov E.E., Sukhorukov V.N., Orekhov A.N. Aging of vascular system is a complex process: The cornerstone mechanisms. Int. J. Mol. Sci. 2022;23:6926. doi: 10.3390/ijms23136926. PubMed DOI PMC

Ungvari Z., Tarantini S., Donato a.J., Galvan V., Csiszar A. Mechanisms of vascular aging. Circ. Res. 2018;123:849–867. doi: 10.1161/CIRCRESAHA.118.311378. PubMed DOI PMC

Tsai P.C., Chao Y.M., Chan J.Y.H. Sympathetic activation of splenic T-lymphocytes in hypertension of adult offspring programmed by maternal high fructose exposure. Chin. J. Physiol. 2020;63:263–275. doi: 10.4103/CJP.CJP_85_20. PubMed DOI

Paxinos G., Watson C. The Rat Brain in Stereotaxic Coordinates. 7th ed. American Press; New York, NY, USA: 2014. pp. 133–137.

Gao L., Zimmerman M.C., Biswal S., Zucker I.H. Selective Nrf2 Gene Deletion in the Rostral Ventrolateral Medulla Evokes Hypertension and Sympathoexcitation in Mice. Hypertension. 2017;69:1198–1206. doi: 10.1161/HYPERTENSIONAHA.117.09123. PubMed DOI PMC

Chan S.H.H., Wu K.L.H., Chang A.Y.W., Tai M.H., Chan J.Y.H. Oxidative impairment of mitochondrial electron transport chain complexes in rostral ventrolateral medulla contributes to neurogenic hypertension. Hypertension. 2009;53:217–227. doi: 10.1161/HYPERTENSIONAHA.108.116905. PubMed DOI

Chan S.H.H., Hsu K.S., Huang C.C., Wang L.L., Ou C.C., Chan J.Y.H. NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Cir. Res. 2005;97:772–780. doi: 10.1161/01.RES.0000185804.79157.C0. PubMed DOI

Chao Y.M., Wu K.L.N., Tsai P.C., Tain Y.L., Leu S., Lee W.C., Chan J.Y.H. Anomalous AMPK-regulated angiotensin AT1R expression and SIRT1-mediated mitochondrial biogenesis at RVLM in hypertension programming of offspring to maternal high fructose exposure. J. Biomed. Sci. 2020;27:68. doi: 10.1186/s12929-020-00660-z. PubMed DOI PMC

Hirasaka K., Lago C.U., Kenoston M.A., Fathe K., Nowinski S.M., Nikawa T., Mills E.M. Identification of a redox-modulatory interaction between uncoupling protein 3 and thioredoxin 2 in the mitochondrial intermembrane space. Antioxid. Redox Signal. 2011;15:2465–2661. doi: 10.1089/ars.2011.3888. PubMed DOI PMC

Chan S.H.H., Tai M.H., Li C.Y., Chan J.Y.H. Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic. Biol. Med. 2006;40:2028–2039. doi: 10.1016/j.freeradbiomed.2006.01.032. PubMed DOI

Idris-Khodja N., Ouerd S., Trindade M., Gornitsky J., Rehman A., Barhoumi T., Offermanns S., Gonzalez F.J., Neves M.F., Paradis P., et al. Vascular smooth muscle cell peroxisome proliferator-activated receptor γ protects against endothelin-1-induced oxidative stress and inflammation. J. Hypertens. 2017;35:1390–1401. doi: 10.1097/HJH.0000000000001324. PubMed DOI PMC

Rincón J., Correia D., Arcaya J.L., Finol E., Fernández A., Pérez M., Yaguas K., Talavera E., Chávez M., Summer R., et al. Role of Angiotensin II type 1 receptor on renal NAD(P)H oxidase, oxidative stress and inflammation in nitric oxide inhibition induced-hypertension. Life Sci. 2015;124:81–90. doi: 10.1016/j.lfs.2015.01.005. PubMed DOI PMC

Sorriento D., De Luca N., Trimarco B., Iaccarino G. The antioxidant therapy: New insights in the treatment of hypertension. Front. Physiol. 2018;9:258. doi: 10.3389/fphys.2018.00258. PubMed DOI PMC

Chia T.Y., Murugaiyah V., Khan N.A.K., Sattar M.A., Abdulia M.H., Johns E.J., Ahmad A., Hassan Z., Kaur G., Mei H.Y., et al. Inhibition of l-NAME-induced hypertension by combined treatment with apocynin and catalase: The role of Nox 4 expression. Physiol. Res. 2021;70:13–26. doi: 10.33549/physiolres.934497. PubMed DOI PMC

Chan S.H.H., Wang L.L., Wang S.H., Chan J.Y.H. Differential cardiovascular responses to blockade of nNOS or iNOS in rostral ventrolateral medulla of the rat. Br. J. Pharmacol. 2001;133:606–614. doi: 10.1038/sj.bjp.0704105. PubMed DOI PMC

Kishi T., Hirooka Y., Sakai K., Shigematsu H., Shimokawa H., Takeshita A. Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension. 2001;38:896–901. doi: 10.1161/hyp.38.4.896. PubMed DOI

Young C.N., Fisher J.P., Gallagher K.M., Whaley-Connell A., Chaudhary K., Victor R.G., Thomas G.D., Fadel P.J. Inhibition of nitric oxide synthase evokes central sympatho-excitation in healthy humans. J. Physiol. 2009;587:977–4986. doi: 10.1113/jphysiol.2009.177204. PubMed DOI PMC

Biancardi V.C., Bergamaschi C.T., Lopes O.U., Campos R.R. Sympathetic activation in rats with l-NAME-induced hypertension. Braz. J. Med. Biol. Res. 2007;40:401–408. doi: 10.1590/S0100-879X2006005000077. PubMed DOI

Rubattu S., Pagliaro B., Pierelli G., Santolamazza C., Castro S.D., Mennuni S., Volpe M. Pathogenesis of target organ damage in hypertension: Role of mitochondrial oxidative stress. Int. J. Mol. Sci. 2014;16:823–839. doi: 10.3390/ijms16010823. PubMed DOI PMC

Mason M.G., Nicholls P., Wilson M.T., Cooper C.E. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl. Acad. Sci. USA. 2006;103:708–713. doi: 10.1073/pnas.0506562103. PubMed DOI PMC

Clementi E., Brown G.C., Feelisch M., Moncada S. Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Natl. Acad. Sci. USA. 1998;95:7631–7636. doi: 10.1073/pnas.95.13.7631. PubMed DOI PMC

Rizvi F., Preston C.C., Emelyanova L., Yousufuddin M., Viqar M., Dakwar O., Ross G.R., Faustino R.S., Holmuhamedov E.L., Jahangir A. Effects of aging on cardiac oxidative stress and transcriptional changes in pathways of reactive oxygen species generation and clearance. J. Am. Heart Assoc. 2021;10:e019948. doi: 10.1161/JAHA.120.019948. PubMed DOI PMC

Daiber A., Xia N., Steven S., Oelze M., Hanf A., Kröller-Schön S., Münzel T., Li H. New therapeutic implications of endothelial nitric oxide synthase (eNOS) function/dysfunction in cardiovascular disease. Int. J. Mol. Sci. 2019;20:187. doi: 10.3390/ijms20010187. PubMed DOI PMC

Fukai T., Ushio-Fukai M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox. Signal. 2011;15:1583–1606. doi: 10.1089/ars.2011.3999. PubMed DOI PMC

Chan S.H.H., Wu C.A., Wu K.L.H., Ho Y.H., Chang A.Y.W., Chan J.Y.H. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Circ. Res. 2009;105:886–896. doi: 10.1161/CIRCRESAHA.109.199018. PubMed DOI

Dikalova A., Mayorov V., Xiao L., Panov A., Amarnath V., Zagol-Ikapitte I., Vergeade A., Ao M., Yermalitsky V., Nazarewicz R.R., et al. Mitochondrial isolevuglandins contribute to vascular oxidative stress and mitochondria-targeted cavenger of isolevuglandins reduces mitochondrial dysfunction and hypertension. Hypertension. 2020;76:1980–1991. doi: 10.1161/HYPERTENSIONAHA.120.15236. PubMed DOI PMC

Moschinger M., Hilse K.E., Rupprecht A., Zeitz U., Erben R.G., Rülicke T., Pohl E.E. Age-related sex differences in the expression of important disease-linked mitochondrial proteins in mice. Biol. Sex Differ. 2019;10:56. doi: 10.1186/s13293-019-0267-1. PubMed DOI PMC

Niu X.L., Madamanchi N.R., Vendrov A.E., Tchivilev I., Rojas M., Madamanchi C., Brandes R.P., Krause K.H., Humphries J., Smith A., et al. Nox activator 1: A potential target for modulation of vascular reactive oxygen species in atherosclerotic arteries. Circulation. 2010;121:549–559. doi: 10.1161/CIRCULATIONAHA.109.908319. PubMed DOI PMC

Takeya R., Ueno N., Kami K., Taura M., Kohjima M., Izaki T., Nunoi H., Sumimoto H. Novel human homologues of p47phox and p67phox participate in activation of superoxide-producing NADPH oxidases. J. Biol. Chem. 2003;278:25234–25246. doi: 10.1074/jbc.M212856200. PubMed DOI

Vendrov A.E., Sumida A., Canugovi C., Lozhkin A., Hayami T., Madamanchi N.R., Runge M.S. NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis. Redox. Biol. 2018;21:101063. doi: 10.1016/j.redox.2018.11.021. PubMed DOI PMC

Guyenet P.G., Stornetta R.L., Souza G.M.P.R., Abbott S.B.G., Brooks V.L. Neuronal networks in hypertension: Recent advances. Hypertension. 2020;76:300–311. doi: 10.1161/HYPERTENSIONAHA.120.14521. PubMed DOI PMC

Crowley S.D. The cooperative roles of inflammation and oxidative stress in the pathogenesis of hypertension. Antioxid. Redox. Signal. 2014;20:102–120. doi: 10.1089/ars.2013.5258. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...