Honeybees control the gas permeability of brood and honey cappings
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36388978
PubMed Central
PMC9650039
DOI
10.1016/j.isci.2022.105445
PII: S2589-0042(22)01717-5
Knihovny.cz E-zdroje
- Klíčová slova
- Biochemistry, Biological sciences, Biophysics,
- Publikační typ
- časopisecké články MeSH
Some bee species use wax to build their nests. They store honey and raise their brood in cells made entirely from wax. How can the bee brood breathe and develop properly when sealed in wax cells? We compared the chemical composition and structural properties of the honey cappings and worker brood cappings of the honeybee Apis mellifera carnica, measured the worker brood respiration, and calculated the CO2 gradients across the two types of cappings. We identified microscopic pores present in the brood cappings that allow efficient gas exchange of the developing brood. In contrary, honey cappings are nearly gas impermeable to protect honey from fermenting. Similar principles apply in bumble bees. Our data suggest the control of gas exchange of cappings as a selective pressure in the evolution of wax-building bees that drives their adaptation for using wax in two highly contrasting biological contexts.
Czech Academy of Sciences Biology Centre Institute of Entomology Ceske Budejovice Czech Republic
Department of Cell Biology Faculty of Science Charles University Prague Czech Republic
University of South Bohemia Faculty of Science Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Ellis M.B., Nicolson S.W., Crewe R.M., Dietemann V. Brood comb as a humidity buffer in honeybee nests. Naturwissenschaften. 2010;97:429–433. doi: 10.1007/s00114-010-0655-1. PubMed DOI
Buchwald R., Breed M.D., Greenberg A.R. The thermal properties of beeswaxes: unexpected findings. J. Exp. Biol. 2008;211:121–127. doi: 10.1242/jeb.007583. PubMed DOI
Kadmon J., Ishay J.S., Bergman D.J. Properties of ultrasonic acoustic resonances for exploitation in comb construction by social hornets and honeybees. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009;79 doi: 10.1103/PhysRevE.79.061909. ARTN.061909. PubMed DOI
Breed M.D., Williams K.R., Fewell J.H. Comb wax mediates the acquisition of nest-mate recognition cues in honey bees. Proc. Natl. Acad. Sci. USA. 1988;85:8766–8769. doi: 10.1073/pnas.85.22.8766. PubMed DOI PMC
Hepburn H.R., Pirk C.W.W., Duangphakdee O. Springer; 2014. Honeybee Nests: Composition, Structure, Function.
Cridge A.G., Lovegrove M.R., Skelly J.G., Taylor S.E., Petersen G.E.L., Cameron R.C., Dearden P.K. The honeybee as a model insect for developmental genetics. Genesis. 2017;55:e23019. doi: 10.1002/dvg.23019. ARTN e23019. PubMed DOI
Mao W., Schuler M.A., Berenbaum M.R. A dietary phytochemical alters caste-associated gene expression in honey bees. Sci. Adv. 2015;1:e1500795. doi: 10.1126/sciadv.1500795. ARTN e1500795. PubMed DOI PMC
Siefert P., Buling N., Grünewald B. Honey bee behaviours within the hive: insights from long-term video analysis. PLoS One. 2021;16:e0247323. doi: 10.1371/journal.pone.0247323. ARTN e0247323. PubMed DOI PMC
Jay S.C. The cocoon of the honey bee, Apis mellifera L. Can. Entomol. 2012;96:784–792.
Eyer M., Neumann P., Dietemann V. A look into the cell: honey storage in honey bees, Apis mellifera. PLoS One. 2016;11:e0161059. doi: 10.1371/journal.pone.0161059. ARTN e0161059. PubMed DOI PMC
Tulloch A.P. Beeswax - composition and analysis. Bee World. 1980;61:47–62. doi: 10.1080/0005772x.1980.11097776. DOI
Svecnjak L., Chesson L.A., Gallina A., Maia M., Martinello M., Mutinelli F., Muz M.N., Nunes F.M., Saucy F., Tipple B.J., et al. Standard methods for Apis mellifera beeswax research (vol 58, pg 1, 2019) J. Apicult. Res. 2019;58:478. doi: 10.1080/00218839.2019.1600925. DOI
Kerstiens G. Cuticular water permeability and its physiological significance. J. Exp. Bot. 1996;47:1813–1832. doi: 10.1093/jxb/47.12.1813. DOI
Mccleskey C.S., Oertel E. The fermentation of honey in the hive. J. Econ. Entomol. 1950;43:538–541. doi: 10.1093/jee/43.4.538. DOI
Timbers G.E., Gochnauer T.A. Note on the thermal-conductivity of beeswax. J. Apic. Res. 1982;21:232–235. doi: 10.1080/00218839.1982.11100548. DOI
Crailsheim K., Brodschneider R., Aupinel P., Behrens D., Genersch E., Vollmann J., Riessberger-Gallé U. Standard methods for artificial rearing of Apis mellifera larvae. J. Apic. Res. 2013;52:1–16. doi: 10.3896/Ibra.1.52.1.05. Artn 52.1.05. DOI
Jay S.C. Longitudinal orientation of larval honey bees (Apis mellifera) in their cells. Can. J. Zool. 1963;41:717–723. doi: 10.1139/z63-043. DOI
Oddie M.A.Y., Burke A., Dahle B., Le Conte Y., Mondet F., Locke B. Reproductive success of the parasitic mite (Varroa destructor) is lower in honeybee colonies that target infested cells with recapping. Sci. Rep. 2021;11:9133. doi: 10.1038/s41598-021-88592-y. ARTN 9133. PubMed DOI PMC
Harris J.W., Danka R.G., Villa J.D. Changes in infestation, cell cap condition, and reproductive status of varroa destructor (mesostigmata: varroidae) in brood exposed to honey bees with varroa sensitive hygiene. Ann. Entomol. Soc. Am. 2012;105:512–518. doi: 10.1603/An11188. DOI
Mondet F., Blanchard S., Barthes N., Beslay D., Bordier C., Costagliola G., Hervé M.R., Lapeyre B., Kim S.H., Basso B., et al. Chemical detection triggers honey bee defense against a destructive parasitic threat. Nat. Chem. Biol. 2021;17:524–530. doi: 10.1038/s41589-020-00720-3. PubMed DOI
Aichholz R., Lorbeer E. Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography - chemical ionization mass spectrometry I. High-temperature gas chromatography. J. Chromatogr. A. 1999;855:601–615. doi: 10.1016/S0021-9673(99)00725-6. PubMed DOI
Bogdanov S. Bee Product Science; 2009. Beeswax: Production, Properties Composition and Control. Beeswax book Chapter 2.
Jiménez J.J., Bernal J.L., del Nozal M.A.J., Martín M.A.T., Bernal J. Sample preparation methods for beeswax characterization by gas chromatography with flame ionization detection. J. Chromatogr. A. 2006;1129:262–272. doi: 10.1016/j.chroma.2006.06.098. PubMed DOI
Maia M., Nunes F.M. Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis. Food Chem. 2013;136:961–968. doi: 10.1016/j.foodchem.2012.09.003. PubMed DOI
Hauke V., Schreiber L. Ontogenetic and seasonal development of wax composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves. Planta. 1998;207:67–75. doi: 10.1007/s004250050456. DOI
Rasband W.S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. 2009. https://imagej.nih.gov/ij/ 1997-2018.
Boecking O., Rosenkranz P., Sasaki M. The pore in the hard conical Apis cerana drone capping results from a spinning process. Apidologie. 1999;30:513–519. doi: 10.1051/apido:19990606. DOI
Otis G.W., Smith D.R. Drone cell cappings of Asian cavity-nesting honey bees (Apis spp.) Apidologie. 2021;52:782–791. doi: 10.1007/s13592-021-00864-8. DOI
Rath W. The key to varroa - the drones of apis-cerana and their cell cap. Am. Bee J. 1992;132:329–331.
Boecking O. Sealing up and non-removal of diseased and Varroa jacobsoni infested drone brood cells is part of the hygienic behaviour in Apis cerana. J. Apic. Res. 1999;38:159–168. doi: 10.1080/00218839.1999.11101006. DOI
Woodward D.R. Predators and parasitoids of megachile-rotundata (F) (Hymenoptera, megachilidae), in south-Australia. Aust. J. Entomol. 1994;33:13–15.
Melampy R.M., Willis E.R. Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.) Physiol. Zool. 1939;12:302–311.
Arias-Hidalgo M., Al-Samir S., Weber N., Geers-Knörr C., Gros G., Endeward V. CO2 permeability and carbonic anhydrase activity of rat cardiomyocytes. Acta Physiol. 2017;221:115–128. doi: 10.1111/apha.12887. PubMed DOI
Endeward V., Musa-Aziz R., Cooper G.J., Chen L.M., Pelletier M.F., Virkki L.V., Supuran C.T., King L.S., Boron W.F., Gros G. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. Faseb. J. 2006;20:1974–1981. doi: 10.1096/fj.04-3300com. PubMed DOI
Endeward V., Gros G. Low carbon dioxide permeability of the apical epithelial membrane of Guinea-pig colon. J. Physiol. 2005;567:253–265. doi: 10.1113/jphysiol.2005.085761. PubMed DOI PMC
Schuster A.C., Burghardt M., Riederer M. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? J. Exp. Bot. 2017;68:5271–5279. doi: 10.1093/jxb/erx321. PubMed DOI
Willmer C., Fricker M. In: Stomata. Second edition. Charlwood B., Black M., editors. Vol. 2. Chapman and Hall; 1983. pp. 18–19. Topics in plant Functional biology.
Jarvis A., Davies W.J. The coupled response of stomatal conductance to photosynthesis and transpiration. J. Exp. Bot. 1998;49:399–406. doi: 10.1093/jexbot/49.suppl_1.399. DOI
York D.W., Collins S., Rantape M. Measuring the permeability of thin solid layers of natural waxes. J. Colloid Interface Sci. 2019;551:270–282. doi: 10.1016/j.jcis.2019.03.104. PubMed DOI
Šantrůček J., Šimáňová E., Karbulková J., Šimková M., Schreiber L. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. J. Exp. Bot. 2004;55:1411–1422. doi: 10.1093/jxb/erh150. PubMed DOI
Baur P. Lognormal distribution of water permeability and organic solute mobility in plant cuticles. Plant Cell Environ. 1997;20:167–177. doi: 10.1046/j.1365-3040.1997.d01-66.x. DOI
Cecchi S., Spinsante S., Terenzi A., Orcioni S. A smart sensor-based measurement system for advanced bee hive monitoring. Sensors. 2020;20:E2726. doi: 10.3390/s20092726. ARTN 2726. PubMed DOI PMC
Meikle W.G., Adamczyk J.J., Weiss M., Ross J., Werle C., Beren E. Sublethal concentrations of clothianidin affect honey bee colony growth and hive CO2 concentration. Sci. Rep. 2021;11:4364. doi: 10.1038/s41598-021-83958-8. ARTN 4364. PubMed DOI PMC
Seeley T.D. Atmospheric carbon-dioxide regulation in honeybee (Apis-Mellifera) colonies. J. Insect Physiol. 1974;20:2301–2305. doi: 10.1016/0022-1910(74)90052-3. PubMed DOI
Southwick E.E., Moritz R.F. Social-control of air ventilation in colonies of honey-bees, apis-mellifera. J. Insect Physiol. 1987;33:623–626. doi: 10.1016/0022-1910(87)90130-2. DOI
Czekońska K. The effect of different concentrations of carbon dioxide (CO2) in a mixture with air or nitrogen upon the survival of the honey bee (Apis mellifera) J. Apic. Res. 2009;48:67–71. doi: 10.3896/Ibra.1.48.1.13. DOI
Nicolas G., Sillans D. Immediate and latent effects of carbon-dioxide on insects. Annu. Rev. Entomol. 1989;34:97–116. doi: 10.1146/annurev.en.34.010189.000525. DOI
Kasbekar D.K. Effect of carbon dioxide-bicarbonate mixtures on rat liver mitochondrial oxidative phosphorylation. Biochim.Biophys. Acta. 1966;128:205–208. doi: 10.1016/0926-6593(66)90163-9. PubMed DOI
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC