Honeybees control the gas permeability of brood and honey cappings

. 2022 Nov 18 ; 25 (11) : 105445. [epub] 20221027

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36388978
Odkazy

PubMed 36388978
PubMed Central PMC9650039
DOI 10.1016/j.isci.2022.105445
PII: S2589-0042(22)01717-5
Knihovny.cz E-zdroje

Some bee species use wax to build their nests. They store honey and raise their brood in cells made entirely from wax. How can the bee brood breathe and develop properly when sealed in wax cells? We compared the chemical composition and structural properties of the honey cappings and worker brood cappings of the honeybee Apis mellifera carnica, measured the worker brood respiration, and calculated the CO2 gradients across the two types of cappings. We identified microscopic pores present in the brood cappings that allow efficient gas exchange of the developing brood. In contrary, honey cappings are nearly gas impermeable to protect honey from fermenting. Similar principles apply in bumble bees. Our data suggest the control of gas exchange of cappings as a selective pressure in the evolution of wax-building bees that drives their adaptation for using wax in two highly contrasting biological contexts.

Zobrazit více v PubMed

Ellis M.B., Nicolson S.W., Crewe R.M., Dietemann V. Brood comb as a humidity buffer in honeybee nests. Naturwissenschaften. 2010;97:429–433. doi: 10.1007/s00114-010-0655-1. PubMed DOI

Buchwald R., Breed M.D., Greenberg A.R. The thermal properties of beeswaxes: unexpected findings. J. Exp. Biol. 2008;211:121–127. doi: 10.1242/jeb.007583. PubMed DOI

Kadmon J., Ishay J.S., Bergman D.J. Properties of ultrasonic acoustic resonances for exploitation in comb construction by social hornets and honeybees. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2009;79 doi: 10.1103/PhysRevE.79.061909. ARTN.061909. PubMed DOI

Breed M.D., Williams K.R., Fewell J.H. Comb wax mediates the acquisition of nest-mate recognition cues in honey bees. Proc. Natl. Acad. Sci. USA. 1988;85:8766–8769. doi: 10.1073/pnas.85.22.8766. PubMed DOI PMC

Hepburn H.R., Pirk C.W.W., Duangphakdee O. Springer; 2014. Honeybee Nests: Composition, Structure, Function.

Cridge A.G., Lovegrove M.R., Skelly J.G., Taylor S.E., Petersen G.E.L., Cameron R.C., Dearden P.K. The honeybee as a model insect for developmental genetics. Genesis. 2017;55:e23019. doi: 10.1002/dvg.23019. ARTN e23019. PubMed DOI

Mao W., Schuler M.A., Berenbaum M.R. A dietary phytochemical alters caste-associated gene expression in honey bees. Sci. Adv. 2015;1:e1500795. doi: 10.1126/sciadv.1500795. ARTN e1500795. PubMed DOI PMC

Siefert P., Buling N., Grünewald B. Honey bee behaviours within the hive: insights from long-term video analysis. PLoS One. 2021;16:e0247323. doi: 10.1371/journal.pone.0247323. ARTN e0247323. PubMed DOI PMC

Jay S.C. The cocoon of the honey bee, Apis mellifera L. Can. Entomol. 2012;96:784–792.

Eyer M., Neumann P., Dietemann V. A look into the cell: honey storage in honey bees, Apis mellifera. PLoS One. 2016;11:e0161059. doi: 10.1371/journal.pone.0161059. ARTN e0161059. PubMed DOI PMC

Tulloch A.P. Beeswax - composition and analysis. Bee World. 1980;61:47–62. doi: 10.1080/0005772x.1980.11097776. DOI

Svecnjak L., Chesson L.A., Gallina A., Maia M., Martinello M., Mutinelli F., Muz M.N., Nunes F.M., Saucy F., Tipple B.J., et al. Standard methods for Apis mellifera beeswax research (vol 58, pg 1, 2019) J. Apicult. Res. 2019;58:478. doi: 10.1080/00218839.2019.1600925. DOI

Kerstiens G. Cuticular water permeability and its physiological significance. J. Exp. Bot. 1996;47:1813–1832. doi: 10.1093/jxb/47.12.1813. DOI

Mccleskey C.S., Oertel E. The fermentation of honey in the hive. J. Econ. Entomol. 1950;43:538–541. doi: 10.1093/jee/43.4.538. DOI

Timbers G.E., Gochnauer T.A. Note on the thermal-conductivity of beeswax. J. Apic. Res. 1982;21:232–235. doi: 10.1080/00218839.1982.11100548. DOI

Crailsheim K., Brodschneider R., Aupinel P., Behrens D., Genersch E., Vollmann J., Riessberger-Gallé U. Standard methods for artificial rearing of Apis mellifera larvae. J. Apic. Res. 2013;52:1–16. doi: 10.3896/Ibra.1.52.1.05. Artn 52.1.05. DOI

Jay S.C. Longitudinal orientation of larval honey bees (Apis mellifera) in their cells. Can. J. Zool. 1963;41:717–723. doi: 10.1139/z63-043. DOI

Oddie M.A.Y., Burke A., Dahle B., Le Conte Y., Mondet F., Locke B. Reproductive success of the parasitic mite (Varroa destructor) is lower in honeybee colonies that target infested cells with recapping. Sci. Rep. 2021;11:9133. doi: 10.1038/s41598-021-88592-y. ARTN 9133. PubMed DOI PMC

Harris J.W., Danka R.G., Villa J.D. Changes in infestation, cell cap condition, and reproductive status of varroa destructor (mesostigmata: varroidae) in brood exposed to honey bees with varroa sensitive hygiene. Ann. Entomol. Soc. Am. 2012;105:512–518. doi: 10.1603/An11188. DOI

Mondet F., Blanchard S., Barthes N., Beslay D., Bordier C., Costagliola G., Hervé M.R., Lapeyre B., Kim S.H., Basso B., et al. Chemical detection triggers honey bee defense against a destructive parasitic threat. Nat. Chem. Biol. 2021;17:524–530. doi: 10.1038/s41589-020-00720-3. PubMed DOI

Aichholz R., Lorbeer E. Investigation of combwax of honeybees with high-temperature gas chromatography and high-temperature gas chromatography - chemical ionization mass spectrometry I. High-temperature gas chromatography. J. Chromatogr. A. 1999;855:601–615. doi: 10.1016/S0021-9673(99)00725-6. PubMed DOI

Bogdanov S. Bee Product Science; 2009. Beeswax: Production, Properties Composition and Control. Beeswax book Chapter 2.

Jiménez J.J., Bernal J.L., del Nozal M.A.J., Martín M.A.T., Bernal J. Sample preparation methods for beeswax characterization by gas chromatography with flame ionization detection. J. Chromatogr. A. 2006;1129:262–272. doi: 10.1016/j.chroma.2006.06.098. PubMed DOI

Maia M., Nunes F.M. Authentication of beeswax (Apis mellifera) by high-temperature gas chromatography and chemometric analysis. Food Chem. 2013;136:961–968. doi: 10.1016/j.foodchem.2012.09.003. PubMed DOI

Hauke V., Schreiber L. Ontogenetic and seasonal development of wax composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves. Planta. 1998;207:67–75. doi: 10.1007/s004250050456. DOI

Rasband W.S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. 2009. https://imagej.nih.gov/ij/ 1997-2018.

Boecking O., Rosenkranz P., Sasaki M. The pore in the hard conical Apis cerana drone capping results from a spinning process. Apidologie. 1999;30:513–519. doi: 10.1051/apido:19990606. DOI

Otis G.W., Smith D.R. Drone cell cappings of Asian cavity-nesting honey bees (Apis spp.) Apidologie. 2021;52:782–791. doi: 10.1007/s13592-021-00864-8. DOI

Rath W. The key to varroa - the drones of apis-cerana and their cell cap. Am. Bee J. 1992;132:329–331.

Boecking O. Sealing up and non-removal of diseased and Varroa jacobsoni infested drone brood cells is part of the hygienic behaviour in Apis cerana. J. Apic. Res. 1999;38:159–168. doi: 10.1080/00218839.1999.11101006. DOI

Woodward D.R. Predators and parasitoids of megachile-rotundata (F) (Hymenoptera, megachilidae), in south-Australia. Aust. J. Entomol. 1994;33:13–15.

Melampy R.M., Willis E.R. Respiratory metabolism during larval and pupal development of the female honeybee (Apis mellifica L.) Physiol. Zool. 1939;12:302–311.

Arias-Hidalgo M., Al-Samir S., Weber N., Geers-Knörr C., Gros G., Endeward V. CO2 permeability and carbonic anhydrase activity of rat cardiomyocytes. Acta Physiol. 2017;221:115–128. doi: 10.1111/apha.12887. PubMed DOI

Endeward V., Musa-Aziz R., Cooper G.J., Chen L.M., Pelletier M.F., Virkki L.V., Supuran C.T., King L.S., Boron W.F., Gros G. Evidence that aquaporin 1 is a major pathway for CO2 transport across the human erythrocyte membrane. Faseb. J. 2006;20:1974–1981. doi: 10.1096/fj.04-3300com. PubMed DOI

Endeward V., Gros G. Low carbon dioxide permeability of the apical epithelial membrane of Guinea-pig colon. J. Physiol. 2005;567:253–265. doi: 10.1113/jphysiol.2005.085761. PubMed DOI PMC

Schuster A.C., Burghardt M., Riederer M. The ecophysiology of leaf cuticular transpiration: are cuticular water permeabilities adapted to ecological conditions? J. Exp. Bot. 2017;68:5271–5279. doi: 10.1093/jxb/erx321. PubMed DOI

Willmer C., Fricker M. In: Stomata. Second edition. Charlwood B., Black M., editors. Vol. 2. Chapman and Hall; 1983. pp. 18–19. Topics in plant Functional biology.

Jarvis A., Davies W.J. The coupled response of stomatal conductance to photosynthesis and transpiration. J. Exp. Bot. 1998;49:399–406. doi: 10.1093/jexbot/49.suppl_1.399. DOI

York D.W., Collins S., Rantape M. Measuring the permeability of thin solid layers of natural waxes. J. Colloid Interface Sci. 2019;551:270–282. doi: 10.1016/j.jcis.2019.03.104. PubMed DOI

Šantrůček J., Šimáňová E., Karbulková J., Šimková M., Schreiber L. A new technique for measurement of water permeability of stomatous cuticular membranes isolated from Hedera helix leaves. J. Exp. Bot. 2004;55:1411–1422. doi: 10.1093/jxb/erh150. PubMed DOI

Baur P. Lognormal distribution of water permeability and organic solute mobility in plant cuticles. Plant Cell Environ. 1997;20:167–177. doi: 10.1046/j.1365-3040.1997.d01-66.x. DOI

Cecchi S., Spinsante S., Terenzi A., Orcioni S. A smart sensor-based measurement system for advanced bee hive monitoring. Sensors. 2020;20:E2726. doi: 10.3390/s20092726. ARTN 2726. PubMed DOI PMC

Meikle W.G., Adamczyk J.J., Weiss M., Ross J., Werle C., Beren E. Sublethal concentrations of clothianidin affect honey bee colony growth and hive CO2 concentration. Sci. Rep. 2021;11:4364. doi: 10.1038/s41598-021-83958-8. ARTN 4364. PubMed DOI PMC

Seeley T.D. Atmospheric carbon-dioxide regulation in honeybee (Apis-Mellifera) colonies. J. Insect Physiol. 1974;20:2301–2305. doi: 10.1016/0022-1910(74)90052-3. PubMed DOI

Southwick E.E., Moritz R.F. Social-control of air ventilation in colonies of honey-bees, apis-mellifera. J. Insect Physiol. 1987;33:623–626. doi: 10.1016/0022-1910(87)90130-2. DOI

Czekońska K. The effect of different concentrations of carbon dioxide (CO2) in a mixture with air or nitrogen upon the survival of the honey bee (Apis mellifera) J. Apic. Res. 2009;48:67–71. doi: 10.3896/Ibra.1.48.1.13. DOI

Nicolas G., Sillans D. Immediate and latent effects of carbon-dioxide on insects. Annu. Rev. Entomol. 1989;34:97–116. doi: 10.1146/annurev.en.34.010189.000525. DOI

Kasbekar D.K. Effect of carbon dioxide-bicarbonate mixtures on rat liver mitochondrial oxidative phosphorylation. Biochim.Biophys. Acta. 1966;128:205–208. doi: 10.1016/0926-6593(66)90163-9. PubMed DOI

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...