FADS Polymorphisms Affect the Clinical and Biochemical Phenotypes of Metabolic Syndrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ DRO-VFN64165
the Ministry of Health of the Czech Republic
"Cooperatio - Gastroenterology"
the Charles University Research program
PubMed
35736500
PubMed Central
PMC9228863
DOI
10.3390/metabo12060568
PII: metabo12060568
Knihovny.cz E-zdroje
- Klíčová slova
- FADS1, FADS2, cluster analysis, fatty acid pattern, haplotypes, metabolic syndrome, single-nucleotide polymorphism,
- Publikační typ
- časopisecké články MeSH
Long-chain polyunsaturated fatty acids (LC-PUFAs) play important roles in human health, from controlling inflammation to lipid and glucose homeostasis. In our previous study, which employed a cluster analysis of a plasma fatty acid (FA) pattern, we identified two clusters of metabolic syndrome (MetS) independent of clinical and biochemical parameters within the whole study group (controls together with metabolic syndrome (MetS) patients). FA desaturase (FADS) genes are the key regulators of LC-PUFA metabolism. The aim of this study was to analyze associations between FADS polymorphisms and clusters of MetS. The study group consisted of 188 controls and 166 patients with MetS. The first cluster contained 71 controls (CON1) and 109 MetS patients (MetS1). The second cluster consisted of 117 controls (CON2) and 57 MetS patients (MetS2). In comparison with MetS2, cluster MetS1 displayed a more adverse risk profile. Cluster CON1 had, in comparison with CON2, higher body weight and increased triacylglycerol levels (p < 0.05). We found that the FADS rs174537 (p < 0.001), rs174570 (p < 0.01), and rs174602 (p < 0.05) polymorphisms along with two inferred haplotypes had statistically significant genotype associations with the splitting of MetS into MetS1 and MetS2. Conversely, we observed no significant differences in the distribution of FADS polymorphisms between MetS and CON subjects, or between CON1 and CON2. These associations between FADS polymorphisms and two clusters of MetS (differing in waist circumference, HOMA-IR, lipolysis, and oxidative stress) implicate the important influence of genetic factors on the phenotypic manifestation of MetS.
Zobrazit více v PubMed
Dizaji B.F. The investigations of genetic determinants of the metabolic syndrome. Diabetes Metab. Syndr. 2018;12:783–789. doi: 10.1016/j.dsx.2018.04.009. PubMed DOI
Zafar U., Khaliq S., Ahmad H.U., Manzoor S., Lone K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones. 2018;17:299–313. doi: 10.1007/s42000-018-0051-3. PubMed DOI
Fahed G., Aoun L., Bou Zerdan M., Allam S., Bou Zerdan M., Bouferraa Y., Assi H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022;23:786. doi: 10.3390/ijms23020786. PubMed DOI PMC
Stančáková A., Laakso M. Genetics of metabolic syndrome. Rev. Endocr. Metab. Disord. 2014;15:243–252. doi: 10.1007/s11154-014-9293-9. PubMed DOI
Brown A.E., Walker M. Genetics of Insulin Resistance and the Metabolic Syndrome. Curr. Cardiol. Rep. 2016;18:75. doi: 10.1007/s11886-016-0755-4. PubMed DOI PMC
Panda C., Varadharaj S., Voruganti V.S. PUFA, genotypes and risk for cardiovascular disease. Prostaglandins Leukot. Essent. Fat. Acids. 2022;176:102377. doi: 10.1016/j.plefa.2021.102377. PubMed DOI
Das U.N. Metabolic Syndrome Pathophysiology: The Role of Essential Fatty Acids. 1st ed. Wiley-Blackwell; Ames, IA, USA: 2010. 268p
Vávrová L., Kodydková J., Zeman M., Dušejovská M., Macášek J., Staňková B., Tvrzická E., Žák A. Altered Activities of Antioxidant Enzymes in Patients with Metabolic Syndrome. Obes. Facts. 2013;6:39–47. doi: 10.1159/000348569. PubMed DOI PMC
Žák A., Burda M., Vecka M., Zeman M., Tvrzická E., Staňková B. Fatty Acid Composition Indicates Two Types of Metabolic Syndrome Independent of Clinical and Laboratory Parameters. Phys. Res. 2014;63:S375–S385. doi: 10.33549/physiolres.932868. PubMed DOI
Mayneris-Perxachs J., Guerendiain M., Castellote A.I., Estruch R., Covas M.I., Fitó M., Salas-Salvadó J., Martínez-González M.A., Aros F., Lamuela-Raventós R.M., et al. Plasma fatty acid composition, estimated desaturase activities, and their relation with the metabolic syndrome in a population at high risk of cardiovascular disease. Clin. Nutr. 2014;33:90–97. doi: 10.1016/j.clnu.2013.03.001. PubMed DOI
Zeman M., Vecka M., Burda M., Tvrzická E., Staňková B., Macášek J., Žák A. Phosphatidylcholine Determines Body Fat Parameters in Subjects with Metabolic Syndrome-Related Traits. Metabol. Syndrome Rel. Disord. 2017;15:371–378. doi: 10.1089/met.2017.0040. PubMed DOI
Muzsik A., Jeleń H.H., Chmurzynska A. Metabolic syndrome in postmenopausal women is associated with lower erythrocyte PUFA/MUFA and n-3/n-6 ratio: A case-control study. Prostaglandins Leukot. Essent. Fatty Acids. 2020;159:102155. doi: 10.1016/j.plefa.2020.102155. PubMed DOI
Lattka E., Illig T., Koletzko B., Heinrich J. Genetic variants of the FADS1 FADS2 gene cluster as related to essential fatty acid metabolism. Curr. Opin. Lipidol. 2010;21:64–69. doi: 10.1097/MOL.0b013e3283327ca8. PubMed DOI
Merino D.M., Johnston H., Clarke S., Roke K., Nielsen D., Badawi A., El-Sohemy A., Ma D.W., Mutch D.M. Polymorphisms in FADS1 and FADS2 alter desaturase activity in young Caucasian and Asian adults. Mol. Genet. Metab. 2011;103:171–178. doi: 10.1016/j.ymgme.2011.02.012. PubMed DOI
Lattka E., Illig T., Heinrich J., Koletzko B. FADS Gene Cluster Polymorphisms: Important Modulators of Fatty Acid Levels and Their Impact on Atopic Diseases. J. Nutrigenet. Nutr. 2009;2:119–128. doi: 10.1159/000235559. PubMed DOI
Glaser C., Heinrich J., Koletzko B. Role of FADS1 and FADS2 polymorphisms in polyunsaturated fatty acid metabolism. Metabolism. 2010;59:993–999. doi: 10.1016/j.metabol.2009.10.022. PubMed DOI
Reynolds L.M., Dutta R., Seeds M.C., Kirsten N., Lake K.N., Hallmark B., Mathias R.A., Timothy D., Howard T.D., Chilton F.C. FADS genetic and metabolomic analyses identify the Δ5 desaturase (FADS1) step as a critical control point in the formation of biologically important lipids. Sci. Rep. 2020;10:15873. doi: 10.1038/s41598-020-71948-1. PubMed DOI PMC
Lankinen M., Uusitupa M., Schwab U. Genes and Dietary Fatty Acids in Regulation of Fatty Acid Composition of Plasma and Erythrocyte Membranes. Nutrients. 2018;10:1785. doi: 10.3390/nu10111785. PubMed DOI PMC
Nakamura M.T., Nara T.Y. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 2004;24:345–376. doi: 10.1146/annurev.nutr.24.121803.063211. PubMed DOI
Lee J.M., Lee H., Kang S., Park W.J. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances. Nutrients. 2016;8:23. doi: 10.3390/nu8010023. PubMed DOI PMC
Lankinen M.A., Fauland A., Shimizu B.-I., Agren J., Wheelock C.E., Laakso M., Schwab U., Pihlajamaki J. Inflammatory response to dietary linoleic acid depends on FADS1 genotype. Am. J. Clin. Nutr. 2019;109:165–175. doi: 10.1093/ajcn/nqy287. PubMed DOI
Bokor S., Dumont J., Spinneker A., Gonzalez-Gross M., Nova E., Widhalm W., Moschonis G., Stehle P., Amouyel P., De Henauw S., et al. Single nucleotide polymorphisms in the FADS gene cluster are associated with delta-5 and delta-6 desaturase activities estimated by serum fatty acid ratios. J. Lipid Res. 2010;51:2325–2333. doi: 10.1194/jlr.M006205. PubMed DOI PMC
Ameur A., Enroth S., Johansson A., Zaboli G., Igl W., Johansson A.C., Rivas M.A., Daly M.J., Schmitz G., Hicks A.A., et al. Genetic adaptation of fatty-acid metabolism: A human-specific haplotype increasing the biosynthesis of long-chain omega-3 and omega-6 fatty acids. Am. J. Hum. Genet. 2012;90:809–820. doi: 10.1016/j.ajhg.2012.03.014. PubMed DOI PMC
Malerba G., Schaeffer L., Xumerle L., Klopp N., Trabetti E., Biscuola M., Cavallari U., Galavotti R., Martinelli N., Guarini P., et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids. 2008;43:289–299. doi: 10.1007/s11745-008-3158-5. PubMed DOI
Schaeffer L., Gohlke H., Müller M., Heid I.M., Palmer L.J., Kompauer I., Demmelmair H., Illig T., Koletzko B., Heinrich J. Common genetic variants of the FADS1 FADS2 gene cluster and their reconstructed haplotypes are associated with the fatty acid composition in phospholipids. Hum. Mol. Genet. 2006;15:1745–1756. doi: 10.1093/hmg/ddl117. PubMed DOI
Czumaj A., Sledzinski T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients. 2020;12:356. doi: 10.3390/nu12020356. PubMed DOI PMC
Brayner B., Kaur G., Keske M.A., Livingstone K.M. FADS Polymorphism, Omega-3 Fatty Acids and Diabetes Risk: A Systematic Review. Nutrients. 2018;10:758. doi: 10.3390/nu10060758. PubMed DOI PMC
Yang Q., Yin R.X., Cao X.L., Wu D.F., Chen W.X., Zhou Y.J. Association of two polymorphisms in the FADS1/FADS2 gene cluster and the risk of coronary artery disease and ischemic stroke. Int. J. Clin. Exp. Pathol. 2015;8:7318–7331. PubMed PMC
Kathiresan S., Willer C.J., Peloso G.M., Demissie S., Musunuru K., Schadt E.E., Kaplan L., Bennett D., Li Y., Tanaka T., et al. Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 2009;41:56–65. doi: 10.1038/ng.291. PubMed DOI PMC
Nakayama K., Bayasgalan T., Tazoe F., Yanagisawa Y., Gotoh T., Yamanaka K., Ogawa A., Munkhtulga L., Chimedregze U., Kagawa Y., et al. A single nucleotide polymorphism in the FADS1/FADS2 gene is associated with plasma lipid profiles in two genetically similar Asian ethnic groups with distinctive differences in lifestyle. Hum. Genet. 2010;127:685–690. doi: 10.1007/s00439-010-0815-6. PubMed DOI
Standl M., Lattka E., Stach B., Koletzko S., Bauer C.-P., von Berg A., Berdel D., Krämer U., Schaaf B., Röder S., et al. FADS1 FADS2 Gene Cluster, PUFA Intake and Blood Lipids in Children: Results from the GINIplus and LISAplus Studies. PLoS ONE. 2012;7:e37780. doi: 10.1371/journal.pone.0037780. PubMed DOI PMC
Park S., Kim D.S., Kang S. Carrying minor allele of FADS1 and haplotype of FADS1 and FADS2 increased the risk of metabolic syndrome and moderate but not low fat diets lowered the risk in two Korean cohorts. Eur. J. Nutr. 2019;58:831–842. doi: 10.1007/s00394-018-1719-9. PubMed DOI
Marklund M., Morris A.P., Mahajan A., Ingelsson E., Lindgren C.M., Lind L., Risérus U. Genome-Wide Association Studies of Estimated Fatty Acid Desaturase Activity in Serum and Adipose Tissue in Elderly Individuals: Associations with Insulin Sensitivity. Nutrients. 2018;10:1791. doi: 10.3390/nu10111791. PubMed DOI PMC
Ching Y.K., Chin Y.S., Appukutty M., Ramanchadran V., Yu C.Y., Ang G.Y., Gan W.Y., Chan Y.M., Teh L.K., Salleh M.Z. Interaction of Dietary Linoleic Acid and α-Linolenic Acids with rs174547 in FADS1 Gene on Metabolic Syndrome Components among Vegetarians. Nutrients. 2019;11:1686. doi: 10.3390/nu11071686. PubMed DOI PMC
Shetty S.S., Kumari N.S. Fatty acid desaturase 2 (FADS 2) rs174575 (C/G) polymorphism, circulating lipid levels and susceptibility to type-2 diabetes mellitus. Sci. Rep. 2021;11:13151. doi: 10.1038/s41598-021-92572-7. PubMed DOI PMC
Stančáková A., Paananen J., Soininen P., Kangas A.J., Bonnycastle L.L., Morken M.A., Collins F.S., Jackson A.U., Boehnke M.L., Kuusisto J., et al. Effects of 34 risk loci for type 2 diabetes or hyperglycemia on lipoprotein subclasses and their composition in 6,580 nondiabetic Finish men. Diabetes. 2011;60:1608–1616. doi: 10.2337/db10-1655. PubMed DOI PMC
Kwak J.H., Paik J.K., Kim O.Y., Jang Y., Lee S.H., Ordovas J.M., Lee J.H. FADS gene polymorphisms in Koreans: Association with ω6 polyunsaturated fatty acids in serum phospholipids, lipid peroxides, and coronary artery disease. Atherosclerosis. 2011;214:94–100. doi: 10.1016/j.atherosclerosis.2010.10.004. PubMed DOI
Roke K., Ralston J.C., Abdelmagid S., Nielsen D.E., Badawi A., El-Sohemy A., Ma D.W., Mutch D.M. Variation in the FADS1/2 gene cluster alters plasma n−6 PUFA and is weakly associated with hsCRP levels in healthy young adults. Prostaglandins Leukot. Essent. Fatty Acids. 2013;89:257–263. doi: 10.1016/j.plefa.2013.06.003. PubMed DOI
Vaittinen M., Walle P., Kuosmanen E., Männistö V., Käkelä P., Ågren J., Schwab U., Pihlajamäki J. FADS2 genotype regulates delta-6 desaturase aktivity and inflammation in human adipose tissue. J. Lipid Res. 2016;57:56–65. doi: 10.1194/jlr.M059113. PubMed DOI PMC
Rifkin S.B., Shrubsole M.J., Cai Q., Smalley W.E., Ness R.M., Swift L.L., Milne G., Zheng W., Murff H.J. Differences in erythrocyte phospholipid membrane long-chain polyunsaturated fatty acids and the prevalence of fatty acid desaturase genotype among African Americans and European Americans. Prostaglandins Leukot. Essent. Fatty Acids. 2021;164:102216. doi: 10.1016/j.plefa.2020.102216. PubMed DOI
Meuronen T., Lankinen M.A., Kärkkäinen O., Laakso M., Pihlajamäki J., Hanhineva K., Schwab U. FADS1 rs174550 genotype and high linoleic acid diet modify plasma PUFA phospholipids in a dietary intervention study. Eur. J. Nutr. 2022;61:1109–1120. doi: 10.1007/s00394-021-02722-w. PubMed DOI PMC
Hong S.H., Kwak J.H., Paik J.K., Chae J.S., Lee J.H. Association of polymorphisms in FADS gene with age-related changes in serum phospholipid polyunsaturated fatty acids and oxidative stress markers in middle-aged nonobese men. Clin. Interv. Aging. 2013;8:585–596. doi: 10.2147/CIA.S42096. PubMed DOI PMC
Kröger J., Schulze M.B. Recent insights into the relation of 5 desaturase and 6 desaturase activity to the development of type 2 diabetes. Curr. Opin. Lipidol. 2012;23:4–10. doi: 10.1097/MOL.0b013e32834d2dc5. PubMed DOI
Mansouri V., Javanmard S.H., Mahdavi M., Tajedini M.H. Association of Polymorphism in Fatty Acid Desaturase Gene with the Risk of Type 2 Diabetes in Iranian Population. Adv. Biomed. Res. 2018;7:98. doi: 10.4103/abr.abr_131_17. PubMed DOI PMC
Chen Y., Estampador A.C., Keller M., Poveda A., Dalla-Riva J., Johansson I., Renström F., Kurbasic A., Franks P.W., Varga T.V. The combined effects of FADS gene variation and dietary fats in obesity-related traits in a population from the far north of Sweden: The GLACIER Study. Int. J. Obes. 2019;43:808–820. doi: 10.1038/s41366-018-0112-3. PubMed DOI PMC
Dumont J., Goumidi L., Grenier-Boley B., Cottel D., Marecaux N., Montaye M., Wagner A., Arveiler D., Simon C., Ferrieres J., et al. Dietary linoleic acid interacts with FADS1 genetic variability to modulate HDL-Cholesterol and obesity-related traits. Clin. Nutr. 2018;37:1683–1689. doi: 10.1016/j.clnu.2017.07.012. PubMed DOI
Khamlaoui W., Mehri S., Hammami S., Hammouda S., Chraeif I., Elosua R., Hammami M. Association Between Genetic Variants in FADS1-FADS2 and ELOVL2 and Obesity, Lipid Traits, and Fatty Acids in Tunisian Population. Clin. Appl. Thromb. Hemost. 2020;26:1–9. doi: 10.1177/1076029620915286. PubMed DOI PMC
Maguolo A., Zusi C., Giontella A., Miraglia Del Giudice E., Tagetti A., Fava C., Morandi A., Maffeis C. Influence of genetic variants in FADS2 and ELOVL2 genes on BMI and PUFAs homeostasis in children and adolescents with obesity. Int. J. Obes. 2021;45:56–65. doi: 10.1038/s41366-020-00662-9. PubMed DOI
Metelcová T., Vaňková M., Zamrazilová H., Hovhannisyan M., Staňková B., Tvrzická E., Hill M., Hainer V., Včelák J., Kunešová M. FADS1 gene polymorphism(s) and fatty acid composition of serum lipids in adolescents. Lipids. 2021;56:499–508. doi: 10.1002/lipd.12317. PubMed DOI
de la Garza Puentes A., Montes Goyanes R., Chisaguano Tonato A.M., Torres-Espínola F.J., Arias García M., de Almeida L., Bonilla Aguirre M., Guerendiain M., Castellote Bargalló A.I., Segura Moreno M., et al. Association of maternal weight with FADS and ELOVL genetic variants and fatty acid levels- The PREOBE follow-up. PLoS ONE. 2017;12:e0179135. doi: 10.1371/journal.pone.0179135. PubMed DOI PMC
Song Z., Cao H., Qin L., Jiang Y. A Case-Control Study between Gene Polymorphisms of Polyunsaturated Fatty Acid Metabolic Rate-Limiting Enzymes and Acute Coronary Syndrome in Chinese Han Population. Biomed. Res. Int. 2013;2013:928178. doi: 10.1155/2013/928178. PubMed DOI PMC
Li S.-W., Wang J., Yang Y., Liu Z.-J., Cheng L., Liu H.-Y., Ma P., Wan Luo W., Liu S.-M. Polymorphisms in FADS1 and FADS2 alterplasma fatty acids and desaturase levels in type 2 diabetic patients with coronary artery disease. J. Transl. Med. 2016;14:79. doi: 10.1186/s12967-016-0834-8. PubMed DOI PMC
Yuan S., Bäck M., Bruzelius M., Mason A.M., Burgess S., Larsson S. Plasma Phospholipid Fatty Acids, FADS1 and Risk of 15 Cardiovascular Diseases: A Mendelian Randomisation Study. Nutrients. 2019;11:3001. doi: 10.3390/nu11123001. PubMed DOI PMC
Sergeant S., Hugenschmidt C.E., Rudock M.E., Ziegler J.T., Ivester P., Ainsworth H.C., Vaidya D., Case L.D., Langefeld C.D., Freedman B.I., et al. Differences in Arachidonic Acid Levels and Fatty Acid Desaturase (FADS) Gene Variants in African Americans and European Americans with Diabetes/Metabolic Syndrome. Br. J. Nutr. 2012;107:547–555. doi: 10.1017/S0007114511003230. PubMed DOI PMC
Truong H., DiBello J.R., Ruiz-Narvaez E., Kraft P., Campos H., Baylin A. Does genetic variation in the D6-desaturase promoter modify the association between a-linolenic acid and the prevalence of metabolic syndrome? Am. J. Clin. Nutr. 2009;89:920–925. doi: 10.3945/ajcn.2008.27107. PubMed DOI PMC
Martinelli N., Girelli D., Malerba G., Guarini P., Illig T., Trabetti E., Sandri M., Friso S., Pizzolo F., Schaeffer L., et al. FADS genotypes and desaturase activity estimated by the ratio of arachidonic acid to linoleic acid are associated with inflammation and coronary artery disease. Am. J. Clin. Nutr. 2008;88:941–949. doi: 10.1093/ajcn/88.4.941. PubMed DOI
Jump D.B. Fatty acid regulation of hepatic lipid metabolism. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14:115–120. doi: 10.1097/MCO.0b013e328342991c. PubMed DOI PMC
Tosi F., Sartori F., Guarini P., Olivieri O., Martinelli N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014;824:61–81. doi: 10.1007/978-3-319-07320-0_7. PubMed DOI
Kremmyda L.S., Tvrzická E., Staňková B., Žák A. Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011;155:195–218. doi: 10.5507/bp.2011.052. PubMed DOI
Tintle N.L., Pottala J.V., Lacey S., Ramachandran V., Westra J., Rogers A., Clark J., Olthoff B., Larson M., Harris W., et al. A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham heart offspring study. Prostaglandins Leukot. Essent. Fatty Acids. 2015;94:65–72. doi: 10.1016/j.plefa.2014.11.007. PubMed DOI PMC
Tvrzická E., Kremmyda L.S., Staňková B., Žák A. Fatty acids as biocompounds: Their role in human metabolism, health and disease--a review. Part 1: Classification, dietary sources and biological functions. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011;155:117–130. doi: 10.5507/bp.2011.038. PubMed DOI
Solinas G., Borén J., Dulloo A.G. De novo lipogenesis in metabolic homeostasis: More friend than foe? Mol. Metab. 2015;4:367–377. doi: 10.1016/j.molmet.2015.03.004. PubMed DOI PMC
Saponaro C., Gaggini M., Carli F., Gastaldelli A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients. 2015;7:9453–9474. doi: 10.3390/nu7115475. PubMed DOI PMC
AlJohani A.M., Syed D.N., Ntambi J.M. Insights into Stearoyl-CoA Desaturase-1 Regulation of Systemic Metabolism. Trends Endocrinol. Metab. 2017;28:831–842. doi: 10.1016/j.tem.2017.10.003. PubMed DOI PMC
Dron J.S., Hegele R.A. Genetics of Hypertriglyceridemia. Front. Endocrinol. 2020;11:455. doi: 10.3389/fendo.2020.00455. PubMed DOI PMC
Bauer R.C., Khetarpal S.A., Hand N.J., Rader D.J. Therapeutic targets of triglyceride metabolism as informed by human genetics. Trends Mol. Med. 2016;22:328–340. doi: 10.1016/j.molmed.2016.02.005. PubMed DOI
Žák A., Tvrzická E., Vecka M., Jáchymová M., Duffková L., Staňková B., Vávrová L., Kodydková J., Zeman M. Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J. Exp. Med. 2007;212:359–371. doi: 10.1620/tjem.212.359. PubMed DOI
Ahotupa M., Ruutu M., Mantyla E. Simple methods of quantifying oxidation products and antioxidant potential of low density lipoproteins. Clin. Biochem. 1996;29:139–144. doi: 10.1016/0009-9120(95)02043-8. PubMed DOI
Esterbauer H., Gebicki J., Puhl H., Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic. Biol. Med. 1992;13:341–390. doi: 10.1016/0891-5849(92)90181-F. PubMed DOI
Gromovsky A.D., Schugar R.C., Brown A.L., Helsley R.N., Burrows A.C., Ferguson D., Zhang R., Sansbury B.E., Lee R.G., Morton R.E., et al. The Δ-5 Fatty Acid Desaturase FADS1 Impacts Metabolic Disease by Balancing Pro-Inflammatory and Pro-Resolving Lipid Mediators. Arterioscler. Thromb. Vasc. Biol. 2018;38:218–231. doi: 10.1161/ATVBAHA.117.309660. PubMed DOI PMC
Mazoochian L., Sadeghi H.M., Pourfarzam M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. J. Res. Med. Sci. 2018;23:47. doi: 10.4103/jrms.JRMS_961_17. PubMed DOI PMC
Zec M.M., Krga I., Stojković L., Živković M., Pokimica B., Stanković A., Glibetic M. Is There a FADS2-Modulated Link between Long-Chain Polyunsaturated Fatty Acids in Plasma Phospholipids and Polyphenol Intake in Adult Subjects Who Are Overweight? Nutrients. 2021;13:296. doi: 10.3390/nu13020296. PubMed DOI PMC
Dumont J., Huybrechts I., Spinneker A., Gottrand F., Grammatikaki E., Bevilacqua N., Vyncke K., Widhalm K., Kafatos A., Molnar D., et al. FADS1 genetic variability interacts with dietary alpha-linolenic acid intake to affect serum Non-HDL-Cholesterol concentrations in European adolescents. J. Nutr. 2011;141:1247–1253. doi: 10.3945/jn.111.140392. PubMed DOI
Kawashima A., Sugawara S., Okita M., Akahane T., Fukui K., Hashiuchi M., Kataoka C., Tsukamoto I. Plasma fatty acid composition, estimated desaturase activities, and intakes of energy and nutrient in Japanese Men with Abdominal Obesity or Metabolic syndrome. J. Nutr. Sci. Vitaminol. 2009;55:400–406. doi: 10.3177/jnsv.55.400. PubMed DOI
GWAS Catalog. [(accessed on 8 May 2022)]. Available online: https://www.ebi.ac.uk/gwas/variants/rs174537.
He Z., Zhang R., Jiang F., Zhang H., Zhao A., Xu B., Jin L., Wang T., Jia W., Jia W., et al. FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression. Clin. Epigenetics. 2018;10:113. doi: 10.1186/s13148-018-0545-5. PubMed DOI PMC
Lottenberg A.M., da Silva Alfonso M., Lavrador M.S., Machado R.M., Nakandakare E.R. The role of dietary fatty acids in the pathology of metabolic syndrome. J. Nutr. Biochem. 2012;23:1027–1040. doi: 10.1016/j.jnutbio.2012.03.004. PubMed DOI
Alberti K.G., Zimmet P., Shaw J. Metabolic syndrome—A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabet. Med. 2006;23:469–480. doi: 10.1111/j.1464-5491.2006.01858.x. PubMed DOI
Vecka M., Dušejovská M., Staňková B., Rychlík I., Žák A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites. 2021;11:774. doi: 10.3390/metabo11110774. PubMed DOI PMC
Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. PubMed DOI
Ward J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Amer. Statist. Assoc. 1963;58:236–244. doi: 10.1080/01621459.1963.10500845. DOI
Phan L., Jin Y., Zhang H., Qiang W., Shekhtman E., Shao D., Revoe D., Villamarin R., Ivanchenko E., Kimura M., et al. ALFA: Allele Frequency Aggregator. National Center for Biotechnology Information. U.S. National Library of Medicine. [(accessed on 8 May 2022)];2020 Available online: www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa.
Mathias R.A., Pani V., Chilton F.H. Genetic Variants in the FADS Gene: Implications for Dietary Recommendations for Fatty Acid Intake. Curr. Nutr. Rep. 2014;3:139–148. doi: 10.1007/s13668-014-0079-1. PubMed DOI PMC
Cormier H., Rudkowska I., Paradis A.M., Thifault E., Garneau V., Lemieux S., Couture P., Vohl M.C. Association between polymorphisms in the fatty acid desaturase gene cluster and the plasma triacylglycerol response to an n-3 PUFA supplementation. Nutrients. 2012;4:1026–1041. doi: 10.3390/nu4081026. PubMed DOI PMC
Miller S.A., Dykes D.D., Polesky H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16:1215. doi: 10.1093/nar/16.3.1215. PubMed DOI PMC
Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. PubMed DOI PMC
Kimmel G., Shamir R. Maximum Likelihood Resolution of Multi-block Genotypes; Proceedings of the Eighth Annual International Conference on Research in Computational Molecular Biology—RECOMB 04: San Diego, CA USA; New York, NY, USA. 27–31 March 2004; pp. 2–9. DOI
Kimmel G., Shamir R. GERBIL: Genotype resolution and block identification using likelihood. Proc. Natl. Acad. Sci. USA. 2005;102:158–162. doi: 10.1073/pnas.0404730102. PubMed DOI PMC
Barrett J.C., Fry B., Maller J., Daly M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. doi: 10.1093/bioinformatics/bth457. PubMed DOI
The R Core Team: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. 2022. [(accessed on 16 April 2022)]. Available online: https://www.R-project.org/