A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ DRO-VFN64165
Ministry of Health of the Czech Republic
PROGRES Q25/LF1/2
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34822432
PubMed Central
PMC8618803
DOI
10.3390/metabo11110774
PII: metabo11110774
Knihovny.cz E-zdroje
- Klíčová slova
- chronic kidney disease, fatty acids, hemodialysis, hypolipidemic treatment, non-cholesterol sterols,
- Publikační typ
- časopisecké články MeSH
Dyslipidemia is common among patients on hemodialysis, but its etiology is not fully understood. Although changes in cholesterol homeostasis and fatty acid metabolism play an important role during dialysis, the interaction of these metabolic pathways has yet to be studied in sufficient detail. In this study, we enrolled 26 patients on maintenance hemodialysis treatment (high-volume hemodiafiltration, HV HDF) without statin therapy (17 men/9 women) and an age/gender-matched group of 26 individuals without signs of nephropathy. The HV-HDF group exhibited more frequent signs of cardiovascular disease, disturbed saccharide metabolism, and altered lipoprotein profiles, manifesting in lower HDL-C, and raised concentrations of IDL-C and apoB-48 (all p < 0.01). HV-HDF patients had higher levels of campesterol (p < 0.01) and β-sitosterol (p = 0.06), both surrogate markers of cholesterol absorption and unchanged lathosterol concentrations. Fatty acid (FA) profiles were changed mostly in cholesteryl esters, with a higher content of saturated and n-3 polyunsaturated fatty acids (PUFA) in the HV-HDF group. However, n-6 PUFA in cholesteryl esters were less abundant (p < 0.001) in the HV-HDF group. Hemodialysis during end-stage kidney disease induces changes associated with higher absorption of cholesterol and disturbed lipoprotein metabolism. Changes in fatty acid metabolism reflect the combined effect of renal insufficiency and its comorbidities, mostly insulin resistance.
Zobrazit více v PubMed
Shoji T. Current focuses in serum lipid abnormalities in dialysis patients. Blood Purif. 2015;40:326–331. doi: 10.1159/000441581. PubMed DOI
Fukushima M., Miura S., Mitsutake R., Fukushima T., Fukushima K., Saku K. Cholesterol metabolism in patients with hemodialysis in the presence or absence of coronary artery disease. Circ. J. 2012;76:1980–1986. doi: 10.1253/circj.CJ-11-1302. PubMed DOI
Rogacev K.S., Pinsdorf T., Weingärtner O., Gerhart M.K., Welzel E., van Bentum K., Popp J., Menzner A., Lütjohann D., Heine G.H. Cholesterol synthesis, cholesterol absorption, and mortality in hemodialysis patients. Clin. J. Am. Soc. Nephrol. 2012;7:943–948. doi: 10.2215/CJN.05170511. PubMed DOI
Igel-Korcagova A., Raab P., Brensing K.A., Poge U., Klehr H.-U., Igel M., von Bergmann K., Sudhop T. Cholesterol metabolism in patients with chronic renal failure on hemodialysis. J. Nephrol. 2003;16:850–854. PubMed
Fellström B.C., Jardine A.G., Schmieder R.E., Holdaas H., Bannister K., Beutler J., Chae D.-W., Chevaile A., Cobbe S.M., Grönhagen-Riska C., et al. Rosuvastatin and cardiovascular events in patients undergoing hemodialysis. N. Engl. J. Med. 2009;360:1395–1407. doi: 10.1056/NEJMoa0810177. PubMed DOI
Wanner C., Krane V., März W., Olschewski M., Mann J.F.E., Ruf G., Ritz E., German Diabetes and Dialysis Study Investigators Atorvastatin in patients with type 2 diabetes mellitus undergoing hemodialysis. N. Engl. J. Med. 2005;353:238–248. doi: 10.1056/NEJMoa043545. PubMed DOI
Baigent C., Landray M.J., Reith C., Emberson J., Wheeler D.C., Tomson C., Wanner C., Krane V., Cass A., Craig J., et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): A randomised placebo-controlled trial. Lancet. 2011;377:2181–2192. doi: 10.1016/S0140-6736(11)60739-3. PubMed DOI PMC
Zanoni P., Velagapudi S., Yalcinkaya M., Rohrer L., von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis. 2018;275:273–295. doi: 10.1016/j.atherosclerosis.2018.06.881. PubMed DOI
Mitsche M.A., McDonald J.G., Hobbs H.H., Cohen J.C. Flux analysis of cholesterol biosynthesis in vivo reveals multiple tissue and cell type specific pathways. Elife. 2015;4:e07999. doi: 10.7554/eLife.07999. PubMed DOI PMC
Honzumi S., Takeuchi M., Kurihara M., Fujiyoshi M., Uchida M., Watanabe K., Suzuki T., Ishii I. The effect of cholesterol overload on mouse kidney and kidney-derived cells. Ren. Fail. 2018;40:43–50. doi: 10.1080/0886022X.2017.1419974. PubMed DOI PMC
Kang H.M., Ahn S.H., Choi P., Ko A.-I., Han S.H., Chinga F., Park A.S.D., Tao J., Sharma K., Pullman J., et al. Defective fatty acid oxidation in renal tubular epithelial cells has a key role in kidney fibrosis development. Nat. Med. 2015;21:37–43. doi: 10.1038/nm.3762. PubMed DOI PMC
Ruan X.Z., Varghese Z., Moorhead J.F. An update on the lipid nephrotoxicity hypothesis. Nat. Rev. Nephrol. 2009;5:713–721. doi: 10.1038/nrneph.2009.184. PubMed DOI
Price N.L., Miguel V., Ding W., Singh A.K., Malik S., Rotlan N., Moshnikova A., Zeiss C., Sadeghi M.M., Arias N., et al. Genetic deficiency or pharmacological inhibition of miR-33 protects from kidney fibrosis. JCI Insight. 2019;4:e131102. doi: 10.1172/jci.insight.131102. PubMed DOI PMC
Daumerie C.M., Woollett L.A., Dietschy J.M. Fatty acids regulate hepatic low density lipoprotein receptor activity through redistribution of intracellular cholesterol pools. Proc. Natl. Acad. Sci. USA. 1992;89:10797–10801. doi: 10.1073/pnas.89.22.10797. PubMed DOI PMC
Vaziri N.D. Dyslipidemia of chronic renal failure: The nature, mechanisms, and potential consequences. Am. J. Physiol. Renal. Physiol. 2006;290:F262–F272. doi: 10.1152/ajprenal.00099.2005. PubMed DOI
Chakrabarti R.S., Ingham S.A., Kozlitina J., Gay A., Cohen J.C., Radhakrishnan A., Hobbs H.H. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin. eLife. 2017;6:e23355. doi: 10.7554/eLife.23355. PubMed DOI PMC
Fukasawa H., Ischibuchi K., Kaneko M., Niwa H., Yasuda H., Kumagai H., Furuya R. Red blood cell distribution width is associated with all-cause and cardiovascular mortality in hemodialysis patients. Ther. Apher. Dial. 2017;21:565–571. doi: 10.1111/1744-9987.12579. PubMed DOI
Buoli M., Caldiroli L., Guenzani D., Carnevali G.S., Cesari M., Turolo S., Barkin J.L., Messa P., Agostoni C., Vettoretti S. DREAM Project Group. Associations between cholesterol and fatty acid profile on the severity of depression in older persons with nondialysis chronic kidney disease. J. Ren. Nutr. 2021;31:537–540. doi: 10.1053/j.jrn.2020.08.017. PubMed DOI
Dušejovská M., Staňková B., Vecka M., Rychlíková J., Mokrejsova M., Rychlík I., Zak A. Lipid metabolism in patients with end-stage renal disease: A five-year follow-up study. Curr. Vasc. Pharmacol. 2017;16:298–305. doi: 10.2174/1570161115666170530104143. PubMed DOI
Dattilo A.M., Kris-Etherton P.M. Effects of weight reduction on blood lipids and lipoproteins: A meta-analysis. Am. J. Clin. Nutr. 1992;56:320–328. doi: 10.1093/ajcn/56.2.320. PubMed DOI
Liu Y., Coresh J., Eustace J.A., Longenecker J.C., Jaar B., Fink N.E., Tracy R.P., Powe N.R., Klag M.J. Association between cholesterol level and mortality in dialysis patients: Role of inflammation and malnutrition. JAMA. 2004;291:451–459. doi: 10.1001/jama.291.4.451. PubMed DOI
Phannajit J., Wonghakaeo N., Takkavatakarn K., Asawavichienjinda T., Praditpornsilpa K., Eiam-Ong S., Susantitaphong P. The impact of phosphate lowering agents on clinical and laboratory outcomes in chronic kidney disease patients: A systematic review and meta-analysis of randomized controlled trials. J. Nephrol. 2021 doi: 10.1007/s40620-021-01065-3. article ahead of print. PubMed DOI
Simic-Ogrizovic S., Dopsaj V., Bogavac-Stanojevic N., Obradovic I., Stosovic M., Radovic M. Serum amyloid A rather than C-reactive protein is a better predictor of mortality in hemodialysis patients. Tohoku J. Exp. Med. 2009;219:121–127. doi: 10.1620/tjem.219.121. PubMed DOI
Kilpatrick R.D., McAllister C.J., Kovesdy C.P., Derose S.F., Kopple J.D., Kalantar-Zadeh K. Association between Serum Lipids and Survival in Hemodialysis Patients and Impact of Race. J. Am. Soc. Nephrol. 2007;18:293–303. doi: 10.1681/ASN.2006070795. PubMed DOI
Van Himbergen T.M., Matthan N.R., Resteghini N.A., Otokozawa S., Ai M., Stein E.A., Jones P.H., Schaefer E.J. Comparison of the effects of maximal dose atorvastatin and rosuvastatin therapy on cholesterol synthesis and absorption markers. J. Lipid Res. 2009;50:730–739. doi: 10.1194/jlr.P800042-JLR200. PubMed DOI PMC
Schroor M.M., Sennels H.P., Fahrenkrug J., Jørgensen H.L., Plat J., Mensink R.P. Diurnal variations of markers for cholesterol synthesis, cholesterol absorption, and bile acid synthesis: A systematic review and the Bispebjerg Study of Diurnal Variations. Nutrients. 2019;11:1439. doi: 10.3390/nu11071439. PubMed DOI PMC
Gälman C., Angelin B., Rudling M. Bile acid synthesis in humans has a rapid diurnal variation that is asynchronous with cholesterol synthesis. Gastroenterology. 2005;129:1445–1453. doi: 10.1053/j.gastro.2005.09.009. PubMed DOI
Chmielewski M., Nieweglowski T., Swierczynski J., Rutkowski B., Boguslawski W. Diurnal rhythm of cholesterol biosynthesis in experimental chronic renal failure. Mol. Cell Biochem. 2001;228:33–37. doi: 10.1023/A:1013395921241. PubMed DOI
Tilvis R., Miettinen T.A. Effects of weight reduction on squalene, methyl sterols and cholesterol and on their synthesis in human adipose tissue. Pt 1Eur. J. Clin. Investig. 1979;9:155–160. doi: 10.1111/j.1365-2362.1979.tb01683.x. PubMed DOI
Simonen P.P., Gylling H.K., Miettinen T.A. Diabetes contributes to cholesterol metabolism regardless of obesity. Diabetes Care. 2002;25:1511–1515. doi: 10.2337/diacare.25.9.1511. PubMed DOI
Gertow J., Ng C.Z., Mamede Branca R.M., Werngren O., Du L., Kjellqvist S., Hemmingsson P., Bruchfeld A., MacLaughlin H., Eriksson P., et al. Altered protein composition of subcutaneous adipose tissue in chronic kidney disease. Kidney Int. Rep. 2017;2:1208–1218. doi: 10.1016/j.ekir.2017.07.007. PubMed DOI PMC
Scoppola A., de Paolis P., Menzinger G., Lala A., Di Giulio S. Plasma mevalonate concentrations in uremic patients. Kidney Int. 1997;51:908–912. doi: 10.1038/ki.1997.128. PubMed DOI
Sutherland W.H., Walker R.J., Ball M.J., Stapley S.A., Corboy J., Robertson M.C. Cholesterol precursor concentration in plasma from patients with chronic renal failure or kidney grafts. Clin. Nephrol. 1995;43:392–398. PubMed
Vaziri N.D. Causes of dysregulation of lipid metabolism in chronic renal failure. Semin Dial. 2009;22:644–651. doi: 10.1111/j.1525-139X.2009.00661.x. PubMed DOI PMC
Nasu K., Terashima M., Habara M., Ko E., Ito T., Yokota D., Ishizuka S., Kurita T., Kimura M., Kinoshita Y., et al. Impact of cholesterol metabolism on coronary plaque vulnerability of target vessels: A combined analysis of virtual histology intravascular ultrasound and optical coherence tomography. JACC Cardiovasc. Interv. 2013;6:746–755. doi: 10.1016/j.jcin.2013.02.018. PubMed DOI
Miettinen T.A., Gylling H., Strandberg T., Sarna S. Baseline serum cholestanol as predictor of recurrent coronary events in subgroup of Scandinavian simvastatin survival study. Finnish 4S Investigators. BMJ. 1998;316:1127–1130. doi: 10.1136/bmj.316.7138.1127. PubMed DOI PMC
Mori Y., Hirano T., Nagashima M., Shiraishi Y., Fukui T., Adachi M. Decreased peroxisome proliferator-activated receptor alpha gene expression is associated with dyslipidemia in a rat model of chronic renal failure. Metabolism. 2007;56:1714–1718. doi: 10.1016/j.metabol.2007.07.016. PubMed DOI
De Vogel-van den Bosch H.M., Bunger M., de Groot P.J., Bosch-Vermeulen H., Hooiveld G.J.E.J., Müller M. PPARalpha-mediated effects of dietary lipids on intestinal barrier gene expression. BMC Genom. 2008;9:231. doi: 10.1186/1471-2164-9-231. PubMed DOI PMC
Arca M. Alterations of intestinal lipoprotein metabolism in diabetes mellitus and metabolic syndrome. Atheroscler. Suppl. 2015;17:12–16. doi: 10.1016/S1567-5688(15)50004-4. PubMed DOI
Kim H.J., Moradi H., Yuan J., Norris K., Vaziri N.D. Renal mass reduction results in accumulation of lipids and dysregulation of lipid regulatory proteins in the remnant kidney. Am. J. Physiol. Renal. Physiol. 2009;296:F1297–F1306. doi: 10.1152/ajprenal.90761.2008. PubMed DOI PMC
Shoji T., Kakiya R., Hayashi T., Tsujimoto Y., Sonoda M., Shima H., Mori K., Fukumoto S., Tahara H., Shioi A., et al. Serum n-3 and n-6 polyunsaturated fatty acid profile as an independent predictor of cardiovascular events in hemodialysis patients. Am. J. Kidney Dis. 2013;62:568–576. doi: 10.1053/j.ajkd.2013.02.362. PubMed DOI
Imamura S., Morioka T., Yamazaki Y., Numaguchi R., Urata H., Motoyama K., Mori K., Fukumoto S., Shoji T., Emoto M., et al. Plasma polyunsaturated fatty acid profile and delta-5 desaturase activity are altered in patients with type 2 diabetes. Metabolism. 2014;63:1432–1438. doi: 10.1016/j.metabol.2014.08.003. PubMed DOI
Baggio B., Musacchio E., Priante G. Polyunsaturated fatty acids and renal fibrosis: Pathophysiologic link and potential clinical implications. J. Nephrol. 2005;18:362–367. PubMed
Lauretani F., Semba R.D., Bandinelli S., Miller E.R., 3rd, Ruggiero C., Cherunini A., Guralnik J.M., Ferrucci L. Plasma polyunsaturated fatty acids and the decline of renal function. Clin. Chem. 2008;54:475–481. doi: 10.1373/clinchem.2007.095521. PubMed DOI PMC
Sertoglu E., Kurt I., Tapan S., Uyanik M., Serdar M.A., Kayadibi H., El-Fawaeir S. Comparison of plasma and erythrocyte membrane fatty acid compositions in patients with end-stage renal disease and type 2 diabetes mellitus. Chem. Phys. Lipids. 2014;178:11–17. doi: 10.1016/j.chemphyslip.2013.12.011. PubMed DOI
Afshinnia F., Rajendiran T.M., Karnovsky A., Soni T., Wang X., Xie D., Yang W., Shafi T., Weir M.R., He J., et al. Lipidomic signature of progression of chronic kidney disease in the chronic renal insufficiency cohort. Kidney Int. Rep. 2016;1:256–268. doi: 10.1016/j.ekir.2016.08.007. PubMed DOI PMC
Miyashita K. Paradox of omega-3 PUFA oxidation. Eur. J. Lipid Sci. Technol. 2014;116:1268–1279. doi: 10.1002/ejlt.201400114. DOI
Lapointe A., Couillard C., Lemieux S. Effects of dietary factors on oxidation of low-density lipoprotein particles. J. Nutr. Biochem. 2006;17:645–658. doi: 10.1016/j.jnutbio.2006.01.001. PubMed DOI
Vessby B., Gustafsson I.B., Tengblad S., Boberg M., Andersson A. Desaturation and elongation of fatty acids and insulin action. Ann. N. Y. Acad. Sci. 2002;967:183–195. doi: 10.1111/j.1749-6632.2002.tb04275.x. PubMed DOI
Lennon R., Pons D., Sabin M.A., Wei C., Shield J.P., Coward R.J., Tavaré J.M., Mathieson P.W., Saleem M.A., Welsh G.I. Saturated fatty acids induce insulin resistance in human podocytes: Implications for diabetic nephropathy. Nephrol. Dial. Transplant. 2009;24:3288–3296. doi: 10.1093/ndt/gfp302. PubMed DOI PMC
Koorts A.M., Viljoen M., Kruger M.C. Red blood cell fatty acid profile of chronic renal failure patients receiving maintenance hemodialysis treatment. Prostaglandins Leukot. Essent. Fat. Acids. 2002;67:13–18. doi: 10.1054/plef.2002.0375. PubMed DOI
Kröger J., Schulze M.B. Recent insights into the relation of Δ5 desaturase and Δ6 desaturase activity to the development of type 2 diabetes. Curr. Opin. Lipidol. 2012;23:4–10. doi: 10.1097/MOL.0b013e32834d2dc5. PubMed DOI
Žák A., Burda M., Vecka M., Zeman M., Tvrzická E., Staňková B. Fatty acid composition indicates two types of metabolic syndrome independent of clinical and laboratory parameters. Physiol. Res. 2014;63((Suppl. 3)):S375–S385. doi: 10.33549/physiolres.932868. PubMed DOI
Zeman M., Macášek J., Burda M., Tvrzická E., Vecka M., Krechler T., Staňková B., Hrabák P., Jr., Žák A. Chronic pancreatitis and the composition of plasma phosphatidylcholine fatty acids. Prostaglandins Leukot. Essent. Fat. Acids. 2016;108:38–44. doi: 10.1016/j.plefa.2016.03.012. PubMed DOI
Macášek J., Vecka M., Žák A., Urbánek M., Krechler T., Petruželka L., Staňková B., Zeman M. Plasma fatty acid composition in patients with pancreatic cancer: Correlations to clinical parameters. Nutr. Cancer. 2012;64:946–955. doi: 10.1080/01635581.2012.716138. PubMed DOI
Miettinen T.A., Gylling H. Effect of statins on noncholesterol sterol levels: Implications for use of plant stanols and sterols. Am. J. Cardiol. 2005;96:40D–46D. doi: 10.1016/j.amjcard.2005.03.019. PubMed DOI
Levey A.S., Stevens L.A., Schmid C.H., Zhang Y.L., Castro A.F., 3rd, Feldman H.I., Kusek J.W., Eggers P., Van Lente F., Greene T., et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006. PubMed DOI PMC
Vecka M., Staňková B., Kutová S., Tomášová P., Tvrzická E., Žák A. Comprehensive sterol and fatty acid analysis in nineteen nuts, seeds, and kernel. SN Appl. Sci. 2019;1:1531. doi: 10.1007/s42452-019-1576-z. DOI
Vecka M., Tvrzická E., Staňková B., Žák A. Effect of column and software on gas chromatographic determination of fatty acids. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2002;770:91–99. doi: 10.1016/S1570-0232(01)00630-4. PubMed DOI
Leníček M., Vecka M., Žížalová K., Vítek L. Comparison of simple extraction procedures in liquid chromatography-mass spectrometry based determination of serum 7α-hydroxy-4-cholesten-3-one, a surrogate marker of bile acid synthesis. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016;1033–1034:317–320. doi: 10.1016/j.jchromb.2016.08.046. PubMed DOI