Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern

. 2025 Jul 17 ; 17 (14) : . [epub] 20250717

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40732972

Grantová podpora
MH CZ-DRO-VFN64165 Czech Ministry of Health
Cooperatio-Gastroenterology Ministry of Education, Youth and Sports of the Czech Republic
Research of Excellence on Digital Technologies and Wellbeing CZ.02.01.01/00/22_008/0004583 the European Union

BACKGROUND: Dyslipidemia and distorted fatty acid (FA) metabolism are frequent biochemical abnormalities associated with anorexia nervosa (AN). Gut microbiota is supposed to play an important role in the etiopathogenesis of AN. Apart from the digestive function of bile acids (BAs), these compounds have multiple metabolic functions due to the activation of specific receptors. OBJECTIVE/AIMS: The aims of the study were to investigate biochemical measures, including plasma lipids (lipoproteins, respectively), fatty acid (FA) patterns, and the profile of plasma Bas, in AN patients and healthy controls (CON). METHODS: Plasma phospholipid FA and BAs profiles were analyzed in 39 women with a restrictive type of AN (AN-R; median age 17 years) and in 35 CON women (median age 20 years). RESULTS: Compared to CON, AN had an increased concentration of HDL-C, increased content of palmitic acid, and decreased proportion of linoleic acid. Moreover, AN had a drop in the level of the sum of PUFAn-6 and increased delta 9 desaturase activity for stearic acid. In AN, we found decreased levels of plasma tauroursodeoxycholic acid (TUDCA). In AN, concentrations of 22:5n-6, 16:0, 20:3n-6 and fat mass index were predic-tors of HDL-C levels (R2 = 0.43). CONCLUSIONS: Patients with AN-R had an increased concentration of HDL-C, decreased levels of total PUFA n-6, and increased activity of D9D for stearic acid. Furthermore, AN exerted decreased levels of TUDCA. Therefore, a decreased level of TUDCA could potentially serve as a marker of AN.

Zobrazit více v PubMed

DSM-5 . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Association; Arlington, VA, USA: 2013. DOI

Katzman D.K. Medical complications in adolescents with anorexia nervosa: A review of the literature. Int. J. Eat. Disord. 2005;37:S52–S59. discussion S87–S89. doi: 10.1002/eat.20118. PubMed DOI

Katzman D.K., Kearney S.A., Becker A.E. Feeding and Eating Disorders. In: Feldman M., Friedman L.S., Brandt L.J., editors. Slesinger and Fordtran’s Gastrointestinal and Liver Disease. 10th ed. Volume 1. Saunders Elsevier; Philadelphia, PA, USA: 2016. pp. 130–147.

Watson H.J., Yilmaz Z., Thornton L.M., Hübel C., Coleman J.R.I., Gaspar H.A., Bryois J., Hinney A., Leppä V.M., Mattheisen M., et al. Genome-Wide Association Study Identifies Eight Risk Loci and Implicates Metabo-Psychiatric Origins for Anorexia Nervosa. Nat. Genet. 2019;51:1207–1214. doi: 10.1038/s41588-019-0439-2. PubMed DOI PMC

Mayo-Martínez L., Rupérez F.J., Martos-Moreno G.Á., Graell M., Barbas C., Argente J., García A. Unveiling Metabolic Phenotype Alterations in Anorexia Nervosa through Metabolomics. Nutrients. 2021;13:4249. doi: 10.3390/nu13124249. PubMed DOI PMC

Mack T., Sanchez-Roige S., Davis L.K. Genetic investigation of the contribution of body composition to anorexia nervosa in an electronic health record setting. Transl. Psychiatry. 2022;12:486. doi: 10.1038/s41398-022-02251-y. PubMed DOI PMC

Frostad S. Are the Effects of Malnutrition on the Gut Microbiota-Brain Axis the Core Pathologies of Anorexia Nervosa? Microorganisms. 2022;10:1486. doi: 10.3390/microorganisms10081486. PubMed DOI PMC

Winston A.P. The clinical biochemistry of anorexia nervosa. Ann. Clin. Biochem. 2012;49:132–143. doi: 10.1258/acb.2011.011185. PubMed DOI

Klinefelter H.F. Hypercholesterolemia in anorexia nervosa. J. Clin. Endocrinol. Metab. 1965;25:1520–1521. doi: 10.1210/jcem-25-11-1520. PubMed DOI

Crisp A.H., Blendis L.M., Pawan G.L. Aspects of fat metabolism in anorexia nervosa. Metabolism. 1968;17:1109–1118. doi: 10.1016/0026-0495(68)90090-5. PubMed DOI

Mordasini R., Klose G., Greten H. Secondary type II hyperlipoproteinemia in patients with anorexia nervosa. Metabolism. 1978;27:71–79. doi: 10.1016/0026-0495(78)90125-7. PubMed DOI

Mira M., Stewart P.M., Vizzard J., Abraham S. Biochemical abnormalities in anorexia nervosa and bulimia. Ann. Clin. Biochem. 1987;24:29–35. doi: 10.1177/000456328702400104. PubMed DOI

Gotto A.M., Jr., Pownall H.J. Manual of Lipid Disorders. Williams & Wilkins; Baltimore, MD, USA: 1999.

Arden M.R., Weiselberg E.C., Nussbaum M.P., Shenker I.R., Jacobson M.S. Effect of weight restoration on the dyslipoproteinemia of anorexia nervosa. J. Adolesc. Health Care. 1990;11:199–202. doi: 10.1016/0197-0070(90)90348-6. PubMed DOI

Stadler J.T., Lackner S., Mörkl S., Meier-Allard N., Scharnagl H., Rani A., Mangge H., Zelzer S., Holasek S.J., Marsche G. Anorexia Nervosa Is Associated with a Shift to Pro-Atherogenic Low-Density Lipoprotein Subclasses. Biomedicines. 2022;10:895. doi: 10.3390/biomedicines10040895. PubMed DOI PMC

Hussain A.A., Hübel C., Hindborg M., Lindkvist E., Kastrup A.M., Yilmaz Z., Støving R.K., Bulik C.M., Sjögren J.M. Increased lipid and lipoprotein concentrations in anorexia nervosa: A systematic review and meta-analysis. Int. J. Eat. Disord. 2019;52:611–629. doi: 10.1002/eat.23051. PubMed DOI PMC

Feillet F., Feillet-Coudray C., Bard J.M., Parra H.J., Favre E., Kabuth B., Fruchart J.C., Vidailhet M. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa. Clin. Chim. Acta. 2000;294:45–56. doi: 10.1016/S0009-8981(99)00256-9. PubMed DOI

Zák A., Vecka M., Tvrzická E., Hrubý M., Novák F., Papezová H., Lubanda H., Veselá L., Stanková B. Composition of plasma fatty acids and non-cholesterol sterols in anorexia nervosa. Physiol. Res. 2005;54:443–451. doi: 10.33549/physiolres.930643. PubMed DOI

Nestel P.J. Cholesterol metabolism in anorexia nervosa and hypercholesterolemia. J. Clin. Endocrinol. Metab. 1974;38:325–328. doi: 10.1210/jcem-38-2-325. PubMed DOI

Föcker M., Cecil A., Prehn C., Adamski J., Albrecht M., Adams F., Hinney A., Libuda L., Bühlmeier J., Hebebrand J., et al. Evaluation of Metabolic Profiles of Patients with Anorexia Nervosa at Inpatient Admission, Short- and Long-Term Weight Regain-Descriptive and Pattern Analysis. Metabolites. 2020;11:7. doi: 10.3390/metabo11010007. PubMed DOI PMC

Yehuda S., Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit. Rev. Food Sci. Nutr. 2016;56:2021–2035. doi: 10.1080/10408398.2013.809690. PubMed DOI

Kunesová M., Hainer V., Tvrzicka E., Phinney S.D., Stich V., Parízková J., Zák A., Stunkard A.J. Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins. Lipids. 2002;37:27–32. doi: 10.1007/s11745-002-0860-z. PubMed DOI

Shimizu M., Kawai K., Yamashita M., Shoji M., Takakura S., Hata T., Nakashima M., Tatsushima K., Tanaka K., Sudo N. Very long chain fatty acids are an important marker of nutritional status in patients with anorexia nervosa: A case control study. Biopsychosoc. Med. 2020;14:14. doi: 10.1186/s13030-020-00186-8. Erratum in Biopsychosoc. Med. 2020, 14, 18. https://doi.org/10.1186/s13030-020-00192-w . PubMed DOI PMC

Satogami K., Tseng P.T., Su K.P., Takahashi S., Ukai S., Li D.J., Chen T.Y., Lin P.Y., Chen Y.W., Matsuoka Y.J. Relationship between polyunsaturated fatty acid and eating disorders: Systematic review and meta-analysis. Prostaglandins Leukot. Essent. Fatty Acids. 2019;142:11–19. doi: 10.1016/j.plefa.2019.01.001. PubMed DOI

Shih P.B., Morisseau C., Le T., Woodside B., German J.B. Personalized polyunsaturated fatty acids as a potential adjunctive treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat. 2017;133:11–19. doi: 10.1016/j.prostaglandins.2017.08.010. PubMed DOI PMC

Fetissov S.O., Hökfelt T. On the origin of eating disorders: Altered signaling between gut microbiota, adaptive immunity and the brain melanocortin system regulating feeding behavior. Curr. Opin. Pharmacol. 2019;48:82–91. doi: 10.1016/j.coph.2019.07.004. PubMed DOI

Smitka K., Prochazkova P., Roubalova R., Dvorak J., Papezova H., Hill M., Pokorny J., Kittnar O., Bilej M., Tlaskalova-Hogenova H. Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Front. Endocrinol. 2021;12:613983. doi: 10.3389/fendo.2021.613983. PubMed DOI PMC

Butler M.J., Perrini A.A., Eckel L.A. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients. 2021;13:500. doi: 10.3390/nu13020500. PubMed DOI PMC

Iannone L.F., Preda A., Blottière H.M., Clarke G., Albani D., Belcastro V., Carotenuto M., Cattaneo A., Citraro R., Ferraris C., et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019;19:1037–1050. doi: 10.1080/14737175.2019.1638763. PubMed DOI

Monteleone A.M., Troisi J., Serena G., Fasano A., Dalle Grave R., Cascino G., Marciello F., Calugi S., Scala G., Corrivetti G., et al. The Gut Microbiome and Metabolomics Profiles of Restricting and Binge-Purging Type Anorexia Nervosa. Nutrients. 2021;13:507. doi: 10.3390/nu13020507. PubMed DOI PMC

Winston J.A., Theriot C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11:158–171. doi: 10.1080/19490976.2019.1674124. PubMed DOI PMC

Vecka M., Dušejovská M., Staňková B., Rychlík I., Žák A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites. 2021;11:774. doi: 10.3390/metabo11110774. PubMed DOI PMC

Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. PubMed DOI

Sarvani C., Sireesh D., Ramkumar K.M. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol. Res. 2017;119:412–421. doi: 10.1016/j.phrs.2017.02.018. PubMed DOI

Hosoi T., Sasaki M., Miyahara T., Hashimoto C., Matsuo S., Yoshii M., Ozawa K. Endoplasmic reticulum stress induces leptin resistance. Mol. Pharmacol. 2008;74:1610–1619. doi: 10.1124/mol.108.050070. PubMed DOI

Yin Y., Guo Q., Zhou X., Duan Y., Yang Y., Gong S., Han M., Liu Y., Yang Z., Chen Q., et al. Role of brain-gut-muscle axis in human health and energy homeostasis. Front. Nutr. 2022;9:947033. doi: 10.3389/fnut.2022.947033. PubMed DOI PMC

Alotaibi G., Alkhammash A. Pharmacological landscape of endoplasmic reticulum stress: Uncovering therapeutic avenues for metabolic diseases. Eur. J. Pharmacol. 2025;998:177509. doi: 10.1016/j.ejphar.2025.177509. PubMed DOI

Romero-Ramírez L., Mey J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int. J. Mol. Sci. 2024;25:9279. doi: 10.3390/ijms25179279. PubMed DOI PMC

Amerio A., Escelsior A., Martino E., Strangio A., Giacomini C., Montagna E., Aguglia A., Bellomo M., Sukkar S.G., Saverino D. Dysfunction of Inflammatory Pathways and Their Relationship with Anti-Hypothalamic Autoantibodies in Patients with Anorexia Nervosa. Nutrients. 2023;15:2199. doi: 10.3390/nu15092199. PubMed DOI PMC

Hebebrand J., Hildebrandt T., Schlögl H., Seitz J., Denecke S., Vieira D., Gradl-Dietsch G., Peters T., Antel J., Lau D., et al. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: Implications for anorexia nervosa. Neurosci. Biobehav. Rev. 2022;141:104807. doi: 10.1016/j.neubiorev.2022.104807. PubMed DOI

Floriánková M., Uhlíková P., Dostálová V., Vecka M., Szitányi P., Žák A. Nutritional and Clinical Status of Czech Adolescents with Anorexia Nervosa before and during the SARS-CoV-2 Pandemic. Bratisl. Med. J. 2025;126:609–618. doi: 10.1007/s44411-025-00077-w. DOI

Tosi F., Sartori F., Guarini P., Olivieri O., Martinelli N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014;824:61–81. doi: 10.1007/978-3-319-07320-0_7. PubMed DOI

Zák A., Tvrzická E., Vecka M., Jáchymová M., Duffková L., Stanková B., Vávrová L., Kodydková J., Zeman M. Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J. Exp. Med. 2007;212:359–371. doi: 10.1620/tjem.212.359. PubMed DOI

Siguel E.N., Lerman R.H. Prevalence of essential fatty acid deficiency in patients with chronic gastrointestinal disorders. Metabolism. 1996;45:12–23. doi: 10.1016/S0026-0495(96)90194-8. PubMed DOI

Žížalová K., Vecka M., Vítek L., Leníček M. Enzymatic methods may underestimate the total serum bile acid concentration. PLoS ONE. 2020;15:e0236372. doi: 10.1371/journal.pone.0236372. PubMed DOI PMC

The R Development Core Team: R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2015. [(accessed on 28 April 2025)]. Available online: https://www.r-project.org/

Huang Y.Q., Liu X.C., Lo K., Liu L., Yu Y.L., Chen C.L., Huang J.Y., Feng Y.Q., Zhang B. The U Shaped Relationship Between High-Density Lipoprotein Cholesterol and All-Cause or Cause-Specific Mortality in Adult Population. Clin. Interv. Aging. 2020;15:1883–1896. doi: 10.2147/CIA.S271528. PubMed DOI PMC

Chen L., Zhao Y., Wang Z., Wang Y., Bo X., Jiang X., Hao C., Ju C., Qu Y., Dong H. Very high HDL-C (high-density lipoprotein cholesterol) is associated with increased cardiovascular risk in patients with NSTEMI (non-ST-segment elevation myocardial infarction) undergoing PCI (percutaneous coronary intervention) BMC Cardiovasc. Disord. 2023;23:357. doi: 10.1186/s12872-023-03383-9. PubMed DOI PMC

Schorr M., Miller K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017;13:174–186. doi: 10.1038/nrendo.2016.175. PubMed DOI PMC

Jafar W., Morgan J. Anorexia nervosa and the gastrointestinal tract. Frontline Gastroenterol. 2021;13:316–324. doi: 10.1136/flgastro-2021-101857. PubMed DOI PMC

Králová Lesná I., Suchánek P., Kovář J., Poledne R. Life style change and reverse cholesterol transport in obese women. Physiol. Res. 2009;58:S33–S38. doi: 10.33549/physiolres.931856. PubMed DOI

Nguyen N., Dow M., Woodside B., German J.B., Quehenberger O., Shih P.B. Food-Intake Normalization of Dysregulated Fatty Acids in Women with Anorexia Nervosa. Nutrients. 2019;11:2208. doi: 10.3390/nu11092208. PubMed DOI PMC

Caspar-Bauguil S., Montastier E., Galinon F., Frisch-Benarous D., Salvayre R., Ritz P. Anorexia nervosa patients display a deficit in membrane long chain polyunsaturated fatty acids. Clin. Nutr. 2012;31:386–390. doi: 10.1016/j.clnu.2011.11.015. PubMed DOI

Keys A. Diet and the epidemiology of coronary heart disease. J. Am. Med. Assoc. 1957;164:1912–1919. doi: 10.1001/jama.1957.62980170024007e. PubMed DOI

Kremmyda L.S., Tvrzicka E., Stankova B., Zak A. Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011;155:195–218. doi: 10.5507/bp.2011.052. PubMed DOI

Zeman M. Fatty acids and cardiovascular disease. In: Zeman M., Macášek J., Vecka M., editors. Fatty Acids and Fats in Health and Disease. 1st ed. Grada Publishing; Prague, Czech Republic: 2024. pp. 109–126. (In Czech)

van der Wurff I.S.M., von Schacky C., Bergeland T., Leontjevas R., Zeegers M.P., Kirschner P.A., de Groot R.H.M. Exploring the association between whole blood Omega-3 Index, DHA, EPA, DHA, AA and n-6 DPA, and depression and self-esteem in adolescents of lower general secondary education. Eur. J. Nutr. 2019;58:1429–1439. doi: 10.1007/s00394-019-02175-2. Erratum in Eur. J. Nutr. 2020, 59, 843. PubMed DOI PMC

Zec M.M., Schutte A.E., Ricci C., Baumgartner J., Kruger I.M., Smuts C.M. Long-Chain Polyunsaturated Fatty Acids Are Associated with Blood Pressure and Hypertension over 10-Years in Black South African Adults Undergoing Nutritional Transition. Foods. 2019;8:394. doi: 10.3390/foods8090394. PubMed DOI PMC

de Groot R.H., van Boxtel M.P., Schiepers O.J., Hornstra G., Jolles J. Age dependence of plasma phospholipid fatty acid levels: Potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations. Br. J. Nutr. 2009;102:1058–1064. doi: 10.1017/S0007114509359103. PubMed DOI

Muralidharan J., Papandreou C., Soria-Florido M.T., Sala-Vila A., Blanchart G., Estruch R., Martínez-González M.A., Corella D., Ros E., Ruiz-Canela M., et al. Cross-Sectional Associations between HDL Structure or Function, Cell Membrane Fatty Acid Composition, and Inflammation in Elderly Adults. J. Nutr. 2022;152:789–795. doi: 10.1093/jn/nxab362. PubMed DOI

van Gool C.J., van Houwelingen A.C., Hornstra G. The essential fatty acid status in phenylketonuria patients under treatment. J. Nutr. Biochem. 2000;11:543–547. doi: 10.1016/S0955-2863(00)00111-X. PubMed DOI

Thomas B.A., Ghebremeskel K., Lowy C., Offley-Shore B., Crawford M.A. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot. Essent. Fatty Acids. 2005;72:335–341. doi: 10.1016/j.plefa.2005.01.001. PubMed DOI

de Groot R.H., Hornstra G., Jolles J. Exploratory study into the relation between plasma phospholipid fatty acid status and cognitive performance. Prostaglandins Leukot. Essent. Fatty Acids. 2007;76:165–172. doi: 10.1016/j.plefa.2007.01.001. PubMed DOI

Elizondo A., Araya J., Rodrigo R., Poniachik J., Csendes A., Maluenda F., Díaz J.C., Signorini C., Sgherri C., Comporti M., et al. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity. 2007;15:24–31. doi: 10.1038/oby.2007.518. PubMed DOI

Lemaitre R.N., King I.B. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 2022;33:76–82. doi: 10.1097/MOL.0000000000000806. PubMed DOI PMC

Lai K.Z.H., Yehia N.A., Semnani-Azad Z., Mejia S.B., Boucher B.A., Malik V., Bazinet R.P., Hanley A.J. Lifestyle Factors Associated with Circulating Very Long-Chain Saturated Fatty Acids in Humans: A Systematic Review of Observational Studies. Adv. Nutr. 2023;14:99–114. doi: 10.1016/j.advnut.2022.10.004. PubMed DOI PMC

Roubalová R., Procházková P., Papežová H., Smitka K., Bilej M., Tlaskalová-Hogenová H. Anorexia nervosa: Gut microbiota-immune-brain interactions. Clin. Nutr. 2020;39:676–684. doi: 10.1016/j.clnu.2019.03.023. PubMed DOI

Shapiro H., Kolodziejczyk A.A., Halstuch D., Elinav E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 2018;215:383–396. doi: 10.1084/jem.20171965. PubMed DOI PMC

Galmiche M., Achamrah N., Déchelotte P., Ribet D., Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr. Rev. 2022;80:381–391. doi: 10.1093/nutrit/nuab030. PubMed DOI

Higashi T., Watanabe S., Tomaru K., Yamazaki W., Yoshizawa K., Ogawa S., Nagao H., Minato K., Maekawa M., Mano N. Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels. Steroids. 2017;125:107–113. doi: 10.1016/j.steroids.2017.07.001. PubMed DOI

Khalaf K., Tornese P., Cocco A., Albanese A. Tauroursodeoxycholic acid: A potential therapeutic tool in neurodegenerative diseases. Transl. Neurodegener. 2022;11:33. doi: 10.1186/s40035-022-00307-z. PubMed DOI PMC

Wu X., Li J.Y., Lee A., Lu Y.X., Zhou S.Y., Owyang C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight. 2020;5:e132400. doi: 10.1172/jci.insight.132400. PubMed DOI PMC

Perino A., Velázquez-Villegas L.A., Bresciani N., Sun Y., Huang Q., Fénelon V.S., Castellanos-Jankiewicz A., Zizzari P., Bruschetta G., Jin S., et al. Central anorexigenic actions of bile acids are mediated by TGR5. Nat. Metab. 2021;3:595–603. doi: 10.1038/s42255-021-00398-4. PubMed DOI PMC

Sato H., Macchiarulo A., Thomas C., Gioiello A., Une M., Hofmann A.F., Saladin R., Schoonjans K., Pellicciari R., Auwerx J. Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 2008;51:1831–1841. doi: 10.1021/jm7015864. PubMed DOI

Li R., Andreu-Sánchez S., Kuipers F., Fu J. Gut microbiome and bile acids in obesity-related diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2021;35:101493. doi: 10.1016/j.beem.2021.101493. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...