Dyslipidemia in Anorexia Nervosa Is Associated with Decreased Plasma Tauroursodeoxycholic Acid and a Specific Fatty Acid Pattern
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MH CZ-DRO-VFN64165
Czech Ministry of Health
Cooperatio-Gastroenterology
Ministry of Education, Youth and Sports of the Czech Republic
Research of Excellence on Digital Technologies and Wellbeing CZ.02.01.01/00/22_008/0004583
the European Union
PubMed
40732972
PubMed Central
PMC12300223
DOI
10.3390/nu17142347
PII: nu17142347
Knihovny.cz E-zdroje
- Klíčová slova
- anorexia nervosa, fatty acid pattern, lipids and lipoproteins, long-chain polyunsaturated fatty acids of n-6 family, multiple linear regression analysis, plasma bile acid composition,
- MeSH
- dospělí MeSH
- dyslipidemie * krev etiologie komplikace MeSH
- kyselina taurochenodeoxycholová * krev MeSH
- lidé MeSH
- mastné kyseliny * krev MeSH
- mentální anorexie * krev komplikace MeSH
- mladiství MeSH
- mladý dospělý MeSH
- studie případů a kontrol MeSH
- žlučové kyseliny a soli krev MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina taurochenodeoxycholová * MeSH
- mastné kyseliny * MeSH
- ursodoxicoltaurine MeSH Prohlížeč
- žlučové kyseliny a soli MeSH
BACKGROUND: Dyslipidemia and distorted fatty acid (FA) metabolism are frequent biochemical abnormalities associated with anorexia nervosa (AN). Gut microbiota is supposed to play an important role in the etiopathogenesis of AN. Apart from the digestive function of bile acids (BAs), these compounds have multiple metabolic functions due to the activation of specific receptors. OBJECTIVE/AIMS: The aims of the study were to investigate biochemical measures, including plasma lipids (lipoproteins, respectively), fatty acid (FA) patterns, and the profile of plasma Bas, in AN patients and healthy controls (CON). METHODS: Plasma phospholipid FA and BAs profiles were analyzed in 39 women with a restrictive type of AN (AN-R; median age 17 years) and in 35 CON women (median age 20 years). RESULTS: Compared to CON, AN had an increased concentration of HDL-C, increased content of palmitic acid, and decreased proportion of linoleic acid. Moreover, AN had a drop in the level of the sum of PUFAn-6 and increased delta 9 desaturase activity for stearic acid. In AN, we found decreased levels of plasma tauroursodeoxycholic acid (TUDCA). In AN, concentrations of 22:5n-6, 16:0, 20:3n-6 and fat mass index were predic-tors of HDL-C levels (R2 = 0.43). CONCLUSIONS: Patients with AN-R had an increased concentration of HDL-C, decreased levels of total PUFA n-6, and increased activity of D9D for stearic acid. Furthermore, AN exerted decreased levels of TUDCA. Therefore, a decreased level of TUDCA could potentially serve as a marker of AN.
Zobrazit více v PubMed
DSM-5 . Diagnostic and Statistical Manual of Mental Disorders. 5th ed. American Psychiatric Association; Arlington, VA, USA: 2013. DOI
Katzman D.K. Medical complications in adolescents with anorexia nervosa: A review of the literature. Int. J. Eat. Disord. 2005;37:S52–S59. discussion S87–S89. doi: 10.1002/eat.20118. PubMed DOI
Katzman D.K., Kearney S.A., Becker A.E. Feeding and Eating Disorders. In: Feldman M., Friedman L.S., Brandt L.J., editors. Slesinger and Fordtran’s Gastrointestinal and Liver Disease. 10th ed. Volume 1. Saunders Elsevier; Philadelphia, PA, USA: 2016. pp. 130–147.
Watson H.J., Yilmaz Z., Thornton L.M., Hübel C., Coleman J.R.I., Gaspar H.A., Bryois J., Hinney A., Leppä V.M., Mattheisen M., et al. Genome-Wide Association Study Identifies Eight Risk Loci and Implicates Metabo-Psychiatric Origins for Anorexia Nervosa. Nat. Genet. 2019;51:1207–1214. doi: 10.1038/s41588-019-0439-2. PubMed DOI PMC
Mayo-Martínez L., Rupérez F.J., Martos-Moreno G.Á., Graell M., Barbas C., Argente J., García A. Unveiling Metabolic Phenotype Alterations in Anorexia Nervosa through Metabolomics. Nutrients. 2021;13:4249. doi: 10.3390/nu13124249. PubMed DOI PMC
Mack T., Sanchez-Roige S., Davis L.K. Genetic investigation of the contribution of body composition to anorexia nervosa in an electronic health record setting. Transl. Psychiatry. 2022;12:486. doi: 10.1038/s41398-022-02251-y. PubMed DOI PMC
Frostad S. Are the Effects of Malnutrition on the Gut Microbiota-Brain Axis the Core Pathologies of Anorexia Nervosa? Microorganisms. 2022;10:1486. doi: 10.3390/microorganisms10081486. PubMed DOI PMC
Winston A.P. The clinical biochemistry of anorexia nervosa. Ann. Clin. Biochem. 2012;49:132–143. doi: 10.1258/acb.2011.011185. PubMed DOI
Klinefelter H.F. Hypercholesterolemia in anorexia nervosa. J. Clin. Endocrinol. Metab. 1965;25:1520–1521. doi: 10.1210/jcem-25-11-1520. PubMed DOI
Crisp A.H., Blendis L.M., Pawan G.L. Aspects of fat metabolism in anorexia nervosa. Metabolism. 1968;17:1109–1118. doi: 10.1016/0026-0495(68)90090-5. PubMed DOI
Mordasini R., Klose G., Greten H. Secondary type II hyperlipoproteinemia in patients with anorexia nervosa. Metabolism. 1978;27:71–79. doi: 10.1016/0026-0495(78)90125-7. PubMed DOI
Mira M., Stewart P.M., Vizzard J., Abraham S. Biochemical abnormalities in anorexia nervosa and bulimia. Ann. Clin. Biochem. 1987;24:29–35. doi: 10.1177/000456328702400104. PubMed DOI
Gotto A.M., Jr., Pownall H.J. Manual of Lipid Disorders. Williams & Wilkins; Baltimore, MD, USA: 1999.
Arden M.R., Weiselberg E.C., Nussbaum M.P., Shenker I.R., Jacobson M.S. Effect of weight restoration on the dyslipoproteinemia of anorexia nervosa. J. Adolesc. Health Care. 1990;11:199–202. doi: 10.1016/0197-0070(90)90348-6. PubMed DOI
Stadler J.T., Lackner S., Mörkl S., Meier-Allard N., Scharnagl H., Rani A., Mangge H., Zelzer S., Holasek S.J., Marsche G. Anorexia Nervosa Is Associated with a Shift to Pro-Atherogenic Low-Density Lipoprotein Subclasses. Biomedicines. 2022;10:895. doi: 10.3390/biomedicines10040895. PubMed DOI PMC
Hussain A.A., Hübel C., Hindborg M., Lindkvist E., Kastrup A.M., Yilmaz Z., Støving R.K., Bulik C.M., Sjögren J.M. Increased lipid and lipoprotein concentrations in anorexia nervosa: A systematic review and meta-analysis. Int. J. Eat. Disord. 2019;52:611–629. doi: 10.1002/eat.23051. PubMed DOI PMC
Feillet F., Feillet-Coudray C., Bard J.M., Parra H.J., Favre E., Kabuth B., Fruchart J.C., Vidailhet M. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa. Clin. Chim. Acta. 2000;294:45–56. doi: 10.1016/S0009-8981(99)00256-9. PubMed DOI
Zák A., Vecka M., Tvrzická E., Hrubý M., Novák F., Papezová H., Lubanda H., Veselá L., Stanková B. Composition of plasma fatty acids and non-cholesterol sterols in anorexia nervosa. Physiol. Res. 2005;54:443–451. doi: 10.33549/physiolres.930643. PubMed DOI
Nestel P.J. Cholesterol metabolism in anorexia nervosa and hypercholesterolemia. J. Clin. Endocrinol. Metab. 1974;38:325–328. doi: 10.1210/jcem-38-2-325. PubMed DOI
Föcker M., Cecil A., Prehn C., Adamski J., Albrecht M., Adams F., Hinney A., Libuda L., Bühlmeier J., Hebebrand J., et al. Evaluation of Metabolic Profiles of Patients with Anorexia Nervosa at Inpatient Admission, Short- and Long-Term Weight Regain-Descriptive and Pattern Analysis. Metabolites. 2020;11:7. doi: 10.3390/metabo11010007. PubMed DOI PMC
Yehuda S., Rabinovitz S. The Role of Essential Fatty Acids in Anorexia Nervosa and Obesity. Crit. Rev. Food Sci. Nutr. 2016;56:2021–2035. doi: 10.1080/10408398.2013.809690. PubMed DOI
Kunesová M., Hainer V., Tvrzicka E., Phinney S.D., Stich V., Parízková J., Zák A., Stunkard A.J. Assessment of dietary and genetic factors influencing serum and adipose fatty acid composition in obese female identical twins. Lipids. 2002;37:27–32. doi: 10.1007/s11745-002-0860-z. PubMed DOI
Shimizu M., Kawai K., Yamashita M., Shoji M., Takakura S., Hata T., Nakashima M., Tatsushima K., Tanaka K., Sudo N. Very long chain fatty acids are an important marker of nutritional status in patients with anorexia nervosa: A case control study. Biopsychosoc. Med. 2020;14:14. doi: 10.1186/s13030-020-00186-8. Erratum in Biopsychosoc. Med. 2020, 14, 18. https://doi.org/10.1186/s13030-020-00192-w . PubMed DOI PMC
Satogami K., Tseng P.T., Su K.P., Takahashi S., Ukai S., Li D.J., Chen T.Y., Lin P.Y., Chen Y.W., Matsuoka Y.J. Relationship between polyunsaturated fatty acid and eating disorders: Systematic review and meta-analysis. Prostaglandins Leukot. Essent. Fatty Acids. 2019;142:11–19. doi: 10.1016/j.plefa.2019.01.001. PubMed DOI
Shih P.B., Morisseau C., Le T., Woodside B., German J.B. Personalized polyunsaturated fatty acids as a potential adjunctive treatment for anorexia nervosa. Prostaglandins Other Lipid Mediat. 2017;133:11–19. doi: 10.1016/j.prostaglandins.2017.08.010. PubMed DOI PMC
Fetissov S.O., Hökfelt T. On the origin of eating disorders: Altered signaling between gut microbiota, adaptive immunity and the brain melanocortin system regulating feeding behavior. Curr. Opin. Pharmacol. 2019;48:82–91. doi: 10.1016/j.coph.2019.07.004. PubMed DOI
Smitka K., Prochazkova P., Roubalova R., Dvorak J., Papezova H., Hill M., Pokorny J., Kittnar O., Bilej M., Tlaskalova-Hogenova H. Current Aspects of the Role of Autoantibodies Directed Against Appetite-Regulating Hormones and the Gut Microbiome in Eating Disorders. Front. Endocrinol. 2021;12:613983. doi: 10.3389/fendo.2021.613983. PubMed DOI PMC
Butler M.J., Perrini A.A., Eckel L.A. The Role of the Gut Microbiome, Immunity, and Neuroinflammation in the Pathophysiology of Eating Disorders. Nutrients. 2021;13:500. doi: 10.3390/nu13020500. PubMed DOI PMC
Iannone L.F., Preda A., Blottière H.M., Clarke G., Albani D., Belcastro V., Carotenuto M., Cattaneo A., Citraro R., Ferraris C., et al. Microbiota-gut brain axis involvement in neuropsychiatric disorders. Expert Rev. Neurother. 2019;19:1037–1050. doi: 10.1080/14737175.2019.1638763. PubMed DOI
Monteleone A.M., Troisi J., Serena G., Fasano A., Dalle Grave R., Cascino G., Marciello F., Calugi S., Scala G., Corrivetti G., et al. The Gut Microbiome and Metabolomics Profiles of Restricting and Binge-Purging Type Anorexia Nervosa. Nutrients. 2021;13:507. doi: 10.3390/nu13020507. PubMed DOI PMC
Winston J.A., Theriot C.M. Diversification of host bile acids by members of the gut microbiota. Gut Microbes. 2020;11:158–171. doi: 10.1080/19490976.2019.1674124. PubMed DOI PMC
Vecka M., Dušejovská M., Staňková B., Rychlík I., Žák A. A Matched Case-Control Study of Noncholesterol Sterols and Fatty Acids in Chronic Hemodialysis Patients. Metabolites. 2021;11:774. doi: 10.3390/metabo11110774. PubMed DOI PMC
Matthews D.R., Hosker J.P., Rudenski A.S., Naylor B.A., Treacher D.F., Turner R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–419. doi: 10.1007/BF00280883. PubMed DOI
Sarvani C., Sireesh D., Ramkumar K.M. Unraveling the role of ER stress inhibitors in the context of metabolic diseases. Pharmacol. Res. 2017;119:412–421. doi: 10.1016/j.phrs.2017.02.018. PubMed DOI
Hosoi T., Sasaki M., Miyahara T., Hashimoto C., Matsuo S., Yoshii M., Ozawa K. Endoplasmic reticulum stress induces leptin resistance. Mol. Pharmacol. 2008;74:1610–1619. doi: 10.1124/mol.108.050070. PubMed DOI
Yin Y., Guo Q., Zhou X., Duan Y., Yang Y., Gong S., Han M., Liu Y., Yang Z., Chen Q., et al. Role of brain-gut-muscle axis in human health and energy homeostasis. Front. Nutr. 2022;9:947033. doi: 10.3389/fnut.2022.947033. PubMed DOI PMC
Alotaibi G., Alkhammash A. Pharmacological landscape of endoplasmic reticulum stress: Uncovering therapeutic avenues for metabolic diseases. Eur. J. Pharmacol. 2025;998:177509. doi: 10.1016/j.ejphar.2025.177509. PubMed DOI
Romero-Ramírez L., Mey J. Emerging Roles of Bile Acids and TGR5 in the Central Nervous System: Molecular Functions and Therapeutic Implications. Int. J. Mol. Sci. 2024;25:9279. doi: 10.3390/ijms25179279. PubMed DOI PMC
Amerio A., Escelsior A., Martino E., Strangio A., Giacomini C., Montagna E., Aguglia A., Bellomo M., Sukkar S.G., Saverino D. Dysfunction of Inflammatory Pathways and Their Relationship with Anti-Hypothalamic Autoantibodies in Patients with Anorexia Nervosa. Nutrients. 2023;15:2199. doi: 10.3390/nu15092199. PubMed DOI PMC
Hebebrand J., Hildebrandt T., Schlögl H., Seitz J., Denecke S., Vieira D., Gradl-Dietsch G., Peters T., Antel J., Lau D., et al. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: Implications for anorexia nervosa. Neurosci. Biobehav. Rev. 2022;141:104807. doi: 10.1016/j.neubiorev.2022.104807. PubMed DOI
Floriánková M., Uhlíková P., Dostálová V., Vecka M., Szitányi P., Žák A. Nutritional and Clinical Status of Czech Adolescents with Anorexia Nervosa before and during the SARS-CoV-2 Pandemic. Bratisl. Med. J. 2025;126:609–618. doi: 10.1007/s44411-025-00077-w. DOI
Tosi F., Sartori F., Guarini P., Olivieri O., Martinelli N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014;824:61–81. doi: 10.1007/978-3-319-07320-0_7. PubMed DOI
Zák A., Tvrzická E., Vecka M., Jáchymová M., Duffková L., Stanková B., Vávrová L., Kodydková J., Zeman M. Severity of metabolic syndrome unfavorably influences oxidative stress and fatty acid metabolism in men. Tohoku J. Exp. Med. 2007;212:359–371. doi: 10.1620/tjem.212.359. PubMed DOI
Siguel E.N., Lerman R.H. Prevalence of essential fatty acid deficiency in patients with chronic gastrointestinal disorders. Metabolism. 1996;45:12–23. doi: 10.1016/S0026-0495(96)90194-8. PubMed DOI
Žížalová K., Vecka M., Vítek L., Leníček M. Enzymatic methods may underestimate the total serum bile acid concentration. PLoS ONE. 2020;15:e0236372. doi: 10.1371/journal.pone.0236372. PubMed DOI PMC
The R Development Core Team: R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2015. [(accessed on 28 April 2025)]. Available online: https://www.r-project.org/
Huang Y.Q., Liu X.C., Lo K., Liu L., Yu Y.L., Chen C.L., Huang J.Y., Feng Y.Q., Zhang B. The U Shaped Relationship Between High-Density Lipoprotein Cholesterol and All-Cause or Cause-Specific Mortality in Adult Population. Clin. Interv. Aging. 2020;15:1883–1896. doi: 10.2147/CIA.S271528. PubMed DOI PMC
Chen L., Zhao Y., Wang Z., Wang Y., Bo X., Jiang X., Hao C., Ju C., Qu Y., Dong H. Very high HDL-C (high-density lipoprotein cholesterol) is associated with increased cardiovascular risk in patients with NSTEMI (non-ST-segment elevation myocardial infarction) undergoing PCI (percutaneous coronary intervention) BMC Cardiovasc. Disord. 2023;23:357. doi: 10.1186/s12872-023-03383-9. PubMed DOI PMC
Schorr M., Miller K.K. The endocrine manifestations of anorexia nervosa: Mechanisms and management. Nat. Rev. Endocrinol. 2017;13:174–186. doi: 10.1038/nrendo.2016.175. PubMed DOI PMC
Jafar W., Morgan J. Anorexia nervosa and the gastrointestinal tract. Frontline Gastroenterol. 2021;13:316–324. doi: 10.1136/flgastro-2021-101857. PubMed DOI PMC
Králová Lesná I., Suchánek P., Kovář J., Poledne R. Life style change and reverse cholesterol transport in obese women. Physiol. Res. 2009;58:S33–S38. doi: 10.33549/physiolres.931856. PubMed DOI
Nguyen N., Dow M., Woodside B., German J.B., Quehenberger O., Shih P.B. Food-Intake Normalization of Dysregulated Fatty Acids in Women with Anorexia Nervosa. Nutrients. 2019;11:2208. doi: 10.3390/nu11092208. PubMed DOI PMC
Caspar-Bauguil S., Montastier E., Galinon F., Frisch-Benarous D., Salvayre R., Ritz P. Anorexia nervosa patients display a deficit in membrane long chain polyunsaturated fatty acids. Clin. Nutr. 2012;31:386–390. doi: 10.1016/j.clnu.2011.11.015. PubMed DOI
Keys A. Diet and the epidemiology of coronary heart disease. J. Am. Med. Assoc. 1957;164:1912–1919. doi: 10.1001/jama.1957.62980170024007e. PubMed DOI
Kremmyda L.S., Tvrzicka E., Stankova B., Zak A. Fatty acids as biocompounds: Their role in human metabolism, health and disease: A review. Part 2: Fatty acid physiological roles and applications in human health and disease. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2011;155:195–218. doi: 10.5507/bp.2011.052. PubMed DOI
Zeman M. Fatty acids and cardiovascular disease. In: Zeman M., Macášek J., Vecka M., editors. Fatty Acids and Fats in Health and Disease. 1st ed. Grada Publishing; Prague, Czech Republic: 2024. pp. 109–126. (In Czech)
van der Wurff I.S.M., von Schacky C., Bergeland T., Leontjevas R., Zeegers M.P., Kirschner P.A., de Groot R.H.M. Exploring the association between whole blood Omega-3 Index, DHA, EPA, DHA, AA and n-6 DPA, and depression and self-esteem in adolescents of lower general secondary education. Eur. J. Nutr. 2019;58:1429–1439. doi: 10.1007/s00394-019-02175-2. Erratum in Eur. J. Nutr. 2020, 59, 843. PubMed DOI PMC
Zec M.M., Schutte A.E., Ricci C., Baumgartner J., Kruger I.M., Smuts C.M. Long-Chain Polyunsaturated Fatty Acids Are Associated with Blood Pressure and Hypertension over 10-Years in Black South African Adults Undergoing Nutritional Transition. Foods. 2019;8:394. doi: 10.3390/foods8090394. PubMed DOI PMC
de Groot R.H., van Boxtel M.P., Schiepers O.J., Hornstra G., Jolles J. Age dependence of plasma phospholipid fatty acid levels: Potential role of linoleic acid in the age-associated increase in docosahexaenoic acid and eicosapentaenoic acid concentrations. Br. J. Nutr. 2009;102:1058–1064. doi: 10.1017/S0007114509359103. PubMed DOI
Muralidharan J., Papandreou C., Soria-Florido M.T., Sala-Vila A., Blanchart G., Estruch R., Martínez-González M.A., Corella D., Ros E., Ruiz-Canela M., et al. Cross-Sectional Associations between HDL Structure or Function, Cell Membrane Fatty Acid Composition, and Inflammation in Elderly Adults. J. Nutr. 2022;152:789–795. doi: 10.1093/jn/nxab362. PubMed DOI
van Gool C.J., van Houwelingen A.C., Hornstra G. The essential fatty acid status in phenylketonuria patients under treatment. J. Nutr. Biochem. 2000;11:543–547. doi: 10.1016/S0955-2863(00)00111-X. PubMed DOI
Thomas B.A., Ghebremeskel K., Lowy C., Offley-Shore B., Crawford M.A. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot. Essent. Fatty Acids. 2005;72:335–341. doi: 10.1016/j.plefa.2005.01.001. PubMed DOI
de Groot R.H., Hornstra G., Jolles J. Exploratory study into the relation between plasma phospholipid fatty acid status and cognitive performance. Prostaglandins Leukot. Essent. Fatty Acids. 2007;76:165–172. doi: 10.1016/j.plefa.2007.01.001. PubMed DOI
Elizondo A., Araya J., Rodrigo R., Poniachik J., Csendes A., Maluenda F., Díaz J.C., Signorini C., Sgherri C., Comporti M., et al. Polyunsaturated fatty acid pattern in liver and erythrocyte phospholipids from obese patients. Obesity. 2007;15:24–31. doi: 10.1038/oby.2007.518. PubMed DOI
Lemaitre R.N., King I.B. Very long-chain saturated fatty acids and diabetes and cardiovascular disease. Curr. Opin. Lipidol. 2022;33:76–82. doi: 10.1097/MOL.0000000000000806. PubMed DOI PMC
Lai K.Z.H., Yehia N.A., Semnani-Azad Z., Mejia S.B., Boucher B.A., Malik V., Bazinet R.P., Hanley A.J. Lifestyle Factors Associated with Circulating Very Long-Chain Saturated Fatty Acids in Humans: A Systematic Review of Observational Studies. Adv. Nutr. 2023;14:99–114. doi: 10.1016/j.advnut.2022.10.004. PubMed DOI PMC
Roubalová R., Procházková P., Papežová H., Smitka K., Bilej M., Tlaskalová-Hogenová H. Anorexia nervosa: Gut microbiota-immune-brain interactions. Clin. Nutr. 2020;39:676–684. doi: 10.1016/j.clnu.2019.03.023. PubMed DOI
Shapiro H., Kolodziejczyk A.A., Halstuch D., Elinav E. Bile acids in glucose metabolism in health and disease. J. Exp. Med. 2018;215:383–396. doi: 10.1084/jem.20171965. PubMed DOI PMC
Galmiche M., Achamrah N., Déchelotte P., Ribet D., Breton J. Role of microbiota-gut-brain axis dysfunctions induced by infections in the onset of anorexia nervosa. Nutr. Rev. 2022;80:381–391. doi: 10.1093/nutrit/nuab030. PubMed DOI
Higashi T., Watanabe S., Tomaru K., Yamazaki W., Yoshizawa K., Ogawa S., Nagao H., Minato K., Maekawa M., Mano N. Unconjugated bile acids in rat brain: Analytical method based on LC/ESI-MS/MS with chemical derivatization and estimation of their origin by comparison to serum levels. Steroids. 2017;125:107–113. doi: 10.1016/j.steroids.2017.07.001. PubMed DOI
Khalaf K., Tornese P., Cocco A., Albanese A. Tauroursodeoxycholic acid: A potential therapeutic tool in neurodegenerative diseases. Transl. Neurodegener. 2022;11:33. doi: 10.1186/s40035-022-00307-z. PubMed DOI PMC
Wu X., Li J.Y., Lee A., Lu Y.X., Zhou S.Y., Owyang C. Satiety induced by bile acids is mediated via vagal afferent pathways. JCI Insight. 2020;5:e132400. doi: 10.1172/jci.insight.132400. PubMed DOI PMC
Perino A., Velázquez-Villegas L.A., Bresciani N., Sun Y., Huang Q., Fénelon V.S., Castellanos-Jankiewicz A., Zizzari P., Bruschetta G., Jin S., et al. Central anorexigenic actions of bile acids are mediated by TGR5. Nat. Metab. 2021;3:595–603. doi: 10.1038/s42255-021-00398-4. PubMed DOI PMC
Sato H., Macchiarulo A., Thomas C., Gioiello A., Une M., Hofmann A.F., Saladin R., Schoonjans K., Pellicciari R., Auwerx J. Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 2008;51:1831–1841. doi: 10.1021/jm7015864. PubMed DOI
Li R., Andreu-Sánchez S., Kuipers F., Fu J. Gut microbiome and bile acids in obesity-related diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2021;35:101493. doi: 10.1016/j.beem.2021.101493. PubMed DOI