Why Differentiation Therapy Sometimes Fails: Molecular Mechanisms of Resistance to Retinoids
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
29301374
PubMed Central
PMC5796081
DOI
10.3390/ijms19010132
PII: ijms19010132
Knihovny.cz E-resources
- Keywords
- cell differentiation, differentiation therapy, mechanisms of resistance, retinoids,
- MeSH
- Biological Transport drug effects MeSH
- Cell Differentiation drug effects MeSH
- Drug Resistance, Neoplasm drug effects MeSH
- Transcription, Genetic drug effects MeSH
- Humans MeSH
- Receptors, Retinoic Acid metabolism MeSH
- Retinoids metabolism pharmacology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Receptors, Retinoic Acid MeSH
- Retinoids MeSH
Retinoids represent a popular group of differentiation inducers that are successfully used in oncology for treatment of acute promyelocytic leukemia in adults and of neuroblastoma in children. The therapeutic potential of retinoids is based on their key role in the regulation of cell differentiation, growth, and apoptosis, which provides a basis for their use both in cancer therapy and chemoprevention. Nevertheless, patients treated with retinoids often exhibit or develop resistance to this therapy. Although resistance to retinoids is commonly categorized as either acquired or intrinsic, resistance as a single phenotypic feature is usually based on the same mechanisms that are closely related or combined in both of these types. In this review, we summarize the most common changes in retinoid metabolism and action that may affect the sensitivity of a tumor cell to treatment with retinoids. The availability of retinoids can be regulated by alterations in retinol metabolism or in retinoid intracellular transport, by degradation of retinoids or by their efflux from the cell. Retinoid effects on gene expression can be regulated via retinoid receptors or via other molecules in the transcriptional complex. Finally, the role of small-molecular-weight inhibitors of altered cell signaling pathways in overcoming the resistance to retinoids is also suggested.
See more in PubMed
Nowak D., Stewart D., Koeffler H.P. Differentiation therapy of leukemia: 3 decades of development. Blood. 2009;113:3655–3665. doi: 10.1182/blood-2009-01-198911. PubMed DOI PMC
Masetti R., Biagi C., Zama D., Vendemini F., Martoni A., Morello W., Gasperini P., Pession A. Retinoids in pediatric onco-hematology: The model of acute promyelocytic leukemia and neuroblastoma. Adv. Ther. 2012;29:747–762. doi: 10.1007/s12325-012-0047-3. PubMed DOI
Haar C.P., Hebbar P., Wallace G.C., Das A., Vandergrift W.A., Smith J.A., Giglio P., Patel S.J., Ray S.K., Banik N.L. Drug Resistance in Glioblastoma: A Mini Review. Neurochem. Res. 2012;37:1192–1200. doi: 10.1007/s11064-011-0701-1. PubMed DOI PMC
Douer D., Estey E., Santillana S., Bennett J.M., Lopez-Bernstein G., Boehm K., Williams T. Treatment of newly diagnosed and relapsed acute promyelocytic leukemia with intravenous liposomal all-trans retinoic acid. Blood. 2001;97:73–80. doi: 10.1182/blood.V97.1.73. PubMed DOI
Freemantle S.J., Spinella M.J., Dmitrovsky E. Retinoids in cancer therapy and chemoprevention: Promise meets resistance. Oncogene. 2003;22:7305–7315. doi: 10.1038/sj.onc.1206936. PubMed DOI
Al-Dimassi S., Abou-Antoun T., El-Sibai M. Cancer cell resistance mechanisms: A mini review. Clin. Transl. Oncol. 2014;16:511–516. doi: 10.1007/s12094-014-1162-1. PubMed DOI
Felsted R.L., Gupta S.K., Glover C.J., Fischkoff S.A., Gallagher R.E. Cell surface membrane protein changes during the differentiation of cultured human promyelocytic leukemia HL-60 cells. Cancer Res. 1983;43:2754–2761. PubMed
Sidell N., Altman A., Haussler M.R., Seeger R.C. Effects of retinoic acid (RA) on the growth and phenotypic expression of several human neuroblastoma cell lines. Exp. Cell Res. 1983;148:21–30. doi: 10.1016/0014-4827(83)90184-2. PubMed DOI
Chou J.Y. Effects of retinoic acid on differentiation of choriocarcinoma cells in vitro. J. Clin. Endocrinol. Metab. 1982;54:1174–1180. doi: 10.1210/jcem-54-6-1174. PubMed DOI
Lehtonen E., Lehto V.P., Badley R.A., Virtanen I. Formation of vinculin plaques precedes other cytoskeletal changes during retinoic acid-induced teratocarcinoma cell differentiation. Exp. Cell Res. 1983;144:191–197. doi: 10.1016/0014-4827(83)90453-6. PubMed DOI
Veselska R., Zitterbart K., Auer J., Neradil J. Differentiation of HL-60 myeloid leukemia cells induced by all-trans retinoic acid is enhanced in combination with caffeic acid. Int. J. Mol. Med. 2004;14:305–310. doi: 10.3892/ijmm.14.2.305. PubMed DOI
Redova M., Chlapek P., Loja T., Zitterbart K., Hermanova M., Sterba J., Veselska R. Influence of LOX/COX inhibitors on cell differentiation induced by all-trans retinoic acid in neuroblastoma cell lines. Int. J. Mol. Med. 2010;25:271–280. PubMed
Chlapek P., Redova M., Zitterbart K., Hermanova M., Sterba J., Veselska R. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: An expression profiling study. J. Exp. Clin. Cancer Res. 2010;29:45. doi: 10.1186/1756-9966-29-45. PubMed DOI PMC
Chlapek P., Neradil J., Redova M., Zitterbart K., Sterba J., Veselska R. The ATRA-induced differentiation of medulloblastoma cells is enhanced with LOX/COX inhibitors: An analysis of gene expression. Cancer Cell Int. 2014;14:51. doi: 10.1186/1475-2867-14-51. PubMed DOI PMC
O’Byrne S.M., Blaner W.S. Retinol and retinyl esters: Biochemistry and physiology. J. Lipid Res. 2013;54:1731–1743. doi: 10.1194/jlr.R037648. PubMed DOI PMC
Blaner W.S., Li Y., Brun P.-J., Yuen J.J., Lee S.-A., Clugston R.D. Vitamin A Absorption, Storage and Mobilization. Subcell. Biochem. 2016;81:95–125. doi: 10.1007/978-94-024-0945-1_4. PubMed DOI
Moise A.R., Noy N., Palczewski K., Blaner W.S. Delivery of retinoid-based therapies to target tissues. Biochemistry. 2007;46:4449–4458. doi: 10.1021/bi7003069. PubMed DOI PMC
Januchowski R., Wojtowicz K., Zabel M. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomed. Pharmacother. 2013;67:669–680. doi: 10.1016/j.biopha.2013.04.005. PubMed DOI
Lanvers C., Hempel G., Blaschke G., Boos J. Chemically induced isomerization and differential uptake modulate retinoic acid disposition in HL-60 cells. FASEB J. 1998;12:1627–1633. PubMed
Armstrong J.L., Redfern C.P.F., Veal G.J. 13-cis retinoic acid and isomerisation in paediatric oncology—Is changing shape the key to success? Biochem. Pharmacol. 2005;69:1299–1306. doi: 10.1016/j.bcp.2005.02.003. PubMed DOI
Napoli J.L. Cellular retinoid binding-proteins, CRBP, CRABP, FABP5: Effects on retinoid metabolism, function and related diseases. Pharmacol. Ther. 2017;173:19–33. doi: 10.1016/j.pharmthera.2017.01.004. PubMed DOI PMC
Uray I.P., Dmitrovsky E., Brown P.H. Retinoids and Rexinoids in Cancer Prevention: From Laboratory to Clinic. Semin. Oncol. 2016;43:49–64. doi: 10.1053/j.seminoncol.2015.09.002. PubMed DOI PMC
Iskakova M., Karbyshev M., Piskunov A., Rochette-Egly C. Nuclear and extranuclear effects of vitamin A. Can. J. Physiol. Pharmacol. 2015;93:1065–1075. doi: 10.1139/cjpp-2014-0522. PubMed DOI
Niles R.M. Recent advances in the use of vitamin A (retinoids) in the prevention and treatment of cancer. Nutrition. 2000;16:1084–1089. doi: 10.1016/S0899-9007(00)00436-6. PubMed DOI
Huang S., Laoukili J., Epping M.T., Koster J., Hölzel M., Westerman B.A., Nijkamp W., Hata A., Asgharzadeh S., Seeger R.C., et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell. 2009;15:328–340. doi: 10.1016/j.ccr.2009.02.023. PubMed DOI PMC
Chen N., Napoli J.L. All-trans-retinoic acid stimulates translation and induces spine formation in hippocampal neurons through a membrane-associated RARalpha. FASEB J. 2008;22:236–245. doi: 10.1096/fj.07-8739com. PubMed DOI
Chen N., Onisko B., Napoli J.L. The Nuclear Transcription Factor RARα Associates with Neuronal RNA Granules and Suppresses Translation. J. Biol. Chem. 2008;283:20841–20847. doi: 10.1074/jbc.M802314200. PubMed DOI PMC
Pan J., Kao Y.-L., Joshi S., Jeetendran S., Dipette D., Singh U.S. Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: Role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J. Neurochem. 2005;93:571–583. doi: 10.1111/j.1471-4159.2005.03106.x. PubMed DOI
Masia S., Alvarez S., de Lera A.R., Barettino D. Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol. Endocrinol. 2007;21:2391–2402. doi: 10.1210/me.2007-0062. PubMed DOI
Tang X.-H., Gudas L.J. Retinoids, retinoic acid receptors, and cancer. Annu. Rev. Pathol. 2011;6:345–364. doi: 10.1146/annurev-pathol-011110-130303. PubMed DOI
Amann P.M., Czaja K., Bazhin A.V., Rühl R., Skazik C., Heise R., Marquardt Y., Eichmüller S.B., Merk H.F., Baron J.M. Knockdown of lecithin retinol acyltransferase increases all-trans retinoic acid levels and restores retinoid sensitivity in malignant melanoma cells. Exp. Dermatol. 2014;23:832–837. doi: 10.1111/exd.12548. PubMed DOI
Amann P.M., Czaja K., Bazhin A.V., Rühl R., Eichmüller S.B., Merk H.F., Baron J.M. LRAT overexpression diminishes intracellular levels of biologically active retinoids and reduces retinoid antitumor efficacy in the murine melanoma B16F10 cell line. Skin Pharmacol. Physiol. 2015;28:205–212. doi: 10.1159/000368806. PubMed DOI
Kurlandsky S.B., Duell E.A., Kang S., Voorhees J.J., Fisher G.J. Auto-regulation of retinoic acid biosynthesis through regulation of retinol esterification in human keratinocytes. J. Biol. Chem. 1996;271:15346–15352. doi: 10.1074/jbc.271.26.15346. PubMed DOI
Hartomo T.B., Van Huyen Pham T., Yamamoto N., Hirase S., Hasegawa D., Kosaka Y., Matsuo M., Hayakawa A., Takeshima Y., Iijima K., et al. Involvement of aldehyde dehydrogenase 1A2 in the regulation of cancer stem cell properties in neuroblastoma. Int. J. Oncol. 2015;46:1089–1098. doi: 10.3892/ijo.2014.2801. PubMed DOI
Moreb J.S., Mohuczy D., Muhoczy D., Ostmark B., Zucali J.R. RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemother. Pharmacol. 2007;59:127–136. doi: 10.1007/s00280-006-0233-6. PubMed DOI
Moreb J.S., Ucar-Bilyeu D.A., Khan A. Use of retinoic acid/aldehyde dehydrogenase pathway as potential targeted therapy against cancer stem cells. Cancer Chemother. Pharmacol. 2017;79:295–301. doi: 10.1007/s00280-016-3213-5. PubMed DOI
Fu Y.-S., Wang Q., Ma J.-X., Yang X.-H., Wu M.-L., Zhang K.-L., Kong Q.-Y., Chen X.-Y., Sun Y., Chen N.-N., et al. CRABP-II methylation: A critical determinant of retinoic acid resistance of medulloblastoma cells. Mol. Oncol. 2012;6:48–61. doi: 10.1016/j.molonc.2011.11.004. PubMed DOI PMC
Cornic M., Delva L., Castaigne S., Lefebvre P., Balitrand N., Degos L., Chomienne C. In Vitro all-trans retinoic acid (ATRA) sensitivity and cellular retinoic acid binding protein (CRABP) levels in relapse leukemic cells after remission induction by ATRA in acute promyelocytic leukemia. Leukemia. 1994;8(Suppl. 2):S16–S19. PubMed
Delva L., Cornic M., Balitrand N., Guidez F., Micléa J.M., Delmer A., Teillet F., Fenaux P., Castaigne S., Degos L. Resistance to all-trans retinoic acid (ATRA) therapy in relapsing acute promyelocytic leukemia: Study of in vitro ATRA sensitivity and cellular retinoic acid binding protein levels in leukemic cells. Blood. 1993;82:2175–2181. PubMed
Zhou D.C., Hallam S.J., Lee S.J., Klein R.S., Wiernik P.H., Tallman M.S., Gallagher R.E. Constitutive expression of cellular retinoic acid binding protein II and lack of correlation with sensitivity to all-trans retinoic acid in acute promyelocytic leukemia cells. Cancer Res. 1998;58:5770–5776. PubMed
Van der Leede B.M., van den Brink C.E., Pijnappel W.W., Sonneveld E., van der Saag P.T., van der Burg B. Autoinduction of retinoic acid metabolism to polar derivatives with decreased biological activity in retinoic acid-sensitive, but not in retinoic acid-resistant human breast cancer cells. J. Biol. Chem. 1997;272:17921–17928. doi: 10.1074/jbc.272.29.17921. PubMed DOI
Kelly M.A., Sidell N., Haussler M.R. Saturation analysis of cellular retinoid binding proteins: Application to retinoic acid resistant human neuroblastoma cells and to human tumors. Biochem. Cell Biol. 1987;65:163–172. doi: 10.1139/o87-021. PubMed DOI
Nelson C.H., Buttrick B.R., Isoherranen N. Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Curr. Top. Med. Chem. 2013;13:1402–1428. doi: 10.2174/1568026611313120004. PubMed DOI PMC
Muindi J., Frankel S.R., Miller W.H., Jakubowski A., Scheinberg D.A., Young C.W., Dmitrovsky E., Warrell R.P. Continuous treatment with all-trans retinoic acid causes a progressive reduction in plasma drug concentrations: Implications for relapse and retinoid “resistance” in patients with acute promyelocytic leukemia. Blood. 1992;79:299–303. PubMed
Muindi J.R., Frankel S.R., Huselton C., DeGrazia F., Garland W.A., Young C.W., Warrell R.P. Clinical pharmacology of oral all-trans retinoic acid in patients with acute promyelocytic leukemia. Cancer Res. 1992;52:2138–2142. PubMed
Diaz P., Huang W., Keyari C.M., Buttrick B., Price L., Guilloteau N., Tripathy S., Sperandio V.G., Fronczek F.R., Astruc-Diaz F., et al. Development and characterization of novel and selective inhibitors of cytochrome P450 CYP26A1, the human liver retinoic acid hydroxylase. J. Med. Chem. 2016;59:2579–2595. doi: 10.1021/acs.jmedchem.5b01780. PubMed DOI PMC
Wu C.-P., Hsieh C.-H., Wu Y.-S. The emergence of drug transporter-mediated multidrug resistance to cancer chemotherapy. Mol. Pharm. 2011;8:1996–2011. doi: 10.1021/mp200261n. PubMed DOI
Peaston A.E., Gardaneh M., Franco A.V., Hocker J.E., Murphy K.M., Farnsworth M.L., Catchpoole D.R., Haber M., Norris M.D., Lock R.B., et al. MRP1 gene expression level regulates the death and differentiation response of neuroblastoma cells. Br. J. Cancer. 2001;85:1564–1571. doi: 10.1054/bjoc.2001.2144. PubMed DOI PMC
Alisi A., Cho W.C., Locatelli F., Fruci D. Multidrug resistance and cancer stem cells in neuroblastoma and hepatoblastoma. Int. J. Mol. Sci. 2013;14:24706–24725. doi: 10.3390/ijms141224706. PubMed DOI PMC
Stromskaya T.P., Rybalkina E.Y., Zabotina T.N., Shishkin A.A., Stavrovskaya A.A. Influence of RARalpha gene on MDR1 expression and P-glycoprotein function in human leukemic cells. Cancer Cell Int. 2005;5:15. doi: 10.1186/1475-2867-5-15. PubMed DOI PMC
Tarapcsák S., Szalóki G., Telbisz Á., Gyöngy Z., Matúz K., Csősz É., Nagy P., Holb I.J., Rühl R., Nagy L., et al. Interactions of retinoids with the ABC transporters P-glycoprotein and Breast Cancer Resistance Protein. Sci. Rep. 2017;7:41376. doi: 10.1038/srep41376. PubMed DOI PMC
Connolly R.M., Nguyen N.K., Sukumar S. Molecular Pathways: Current Role and Future Directions of the Retinoic Acid Pathway In Cancer Prevention and Treatment. Clin. Cancer Res. 2013;19:1651–1659. doi: 10.1158/1078-0432.CCR-12-3175. PubMed DOI PMC
Duong V., Rochette-Egly C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim. Biophys. Acta. 2011;1812:1023–1031. doi: 10.1016/j.bbadis.2010.10.007. PubMed DOI
Moghal N., Neel B.G. Evidence for impaired retinoic acid receptor-thyroid hormone receptor AF-2 cofactor activity in human lung cancer. Mol. Cell. Biol. 1995;15:3945–3959. doi: 10.1128/MCB.15.7.3945. PubMed DOI PMC
Altucci L., Gronemeyer H. The promise of retinoids to fight against cancer. Nat. Rev. Cancer. 2001;1:181–193. doi: 10.1038/35106036. PubMed DOI
Ren M., Pozzi S., Bistulfi G., Somenzi G., Rossetti S., Sacchi N. Impaired Retinoic Acid (RA) Signal Leads to RARβ2 Epigenetic Silencing and RA Resistance. Mol. Cell. Biol. 2005;25:10591–10603. doi: 10.1128/MCB.25.23.10591-10603.2005. PubMed DOI PMC
Cras A., Darsin-Bettinger D., Balitrand N., Cassinat B., Soulié A., Toubert M.-E., Delva L., Chomienne C. Epigenetic patterns of the retinoic acid receptor beta2 promoter in retinoic acid-resistant thyroid cancer cells. Oncogene. 2007;26:4018–4024. doi: 10.1038/sj.onc.1210178. PubMed DOI
Cheung B., Hocker J.E., Smith S.A., Reichert U., Norris M.D., Haber M., Stewart B.W., Marshall G.M. Retinoic acid receptors beta and gamma distinguish retinoid signals for growth inhibition and neuritogenesis in human neuroblastoma cells. Biochem. Biophys. Res. Commun. 1996;229:349–354. doi: 10.1006/bbrc.1996.1804. PubMed DOI
Yan T.-D., Wu H., Zhang H.-P., Lu N., Ye P., Yu F.-H., Zhou H., Li W.-G., Cao X., Lin Y.-Y., et al. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res. 2010;70:2285–2295. doi: 10.1158/0008-5472.CAN-09-2968. PubMed DOI
Wu S., Zhang Z.P., Zhang D., Soprano D.R., Soprano K.J. Reduction of both RAR and RXR levels is required to maximally alter sensitivity of CA-OV3 ovarian tumor cells to growth suppression by all-trans-retinoic acid. Exp. Cell Res. 1997;237:118–126. doi: 10.1006/excr.1997.3769. PubMed DOI
Tari A.M., Lim S.-J., Hung M.-C., Esteva F.J., Lopez-Berestein G. Her2/neu induces all-trans retinoic acid (ATRA) resistance in breast cancer cells. Oncogene. 2002;21:5224–5232. doi: 10.1038/sj.onc.1205660. PubMed DOI
Ding W., Li Y.P., Nobile L.M., Grills G., Carrera I., Paietta E., Tallman M.S., Wiernik P.H., Gallagher R.E. Leukemic cellular retinoic acid resistance and missense mutations in the PML-RARalpha fusion gene after relapse of acute promyelocytic leukemia from treatment with all-trans retinoic acid and intensive chemotherapy. Blood. 1998;92:1172–1183. PubMed
Imaizumi M., Suzuki H., Yoshinari M., Sato A., Saito T., Sugawara A., Tsuchiya S., Hatae Y., Fujimoto T., Kakizuka A., et al. Mutations in the E-domain of RAR portion of the PML/RAR chimeric gene may confer clinical resistance to all-trans retinoic acid in acute promyelocytic leukemia. Blood. 1998;92:374–382. PubMed
Tomita A., Kiyoi H., Naoe T. Mechanisms of action and resistance to all-trans retinoic acid (ATRA) and arsenic trioxide (As2O3) in acute promyelocytic leukemia. Int. J. Hematol. 2013;97:717–725. doi: 10.1007/s12185-013-1354-4. PubMed DOI
Côté S., Zhou D., Bianchini A., Nervi C., Gallagher R.E., Miller W.H. Altered ligand binding and transcriptional regulation by mutations in the PML/RARalpha ligand-binding domain arising in retinoic acid-resistant patients with acute promyelocytic leukemia. Blood. 2000;96:3200–3208. PubMed
Rochette-Egly C. Dynamic combinatorial networks in nuclear receptor-mediated transcription. J. Biol. Chem. 2005;280:32565–32568. doi: 10.1074/jbc.R500008200. PubMed DOI
Kruyt F.A., van der Veer L.J., Mader S., van den Brink C.E., Feijen A., Jonk L.J., Kruijer W., van der Saag P.T. Retinoic acid resistance of the variant embryonal carcinoma cell line RAC65 is caused by expression of a truncated RAR alpha. Differ. Res. Biol. Divers. 1992;49:27–37. doi: 10.1111/j.1432-0436.1992.tb00766.x. PubMed DOI
Crowe D.L., Osaseri U.E., Shuler C.F. Tumor suppressor function of a dominant negative retinoic acid receptor mutant. Mol. Carcinog. 1998;22:26–33. doi: 10.1002/(SICI)1098-2744(199805)22:1<26::AID-MC4>3.0.CO;2-J. PubMed DOI
Somenzi G., Sala G., Rossetti S., Ren M., Ghidoni R., Sacchi N. Disruption of retinoic acid receptor alpha reveals the growth promoter face of retinoic acid. PLoS ONE. 2007;2:e836. doi: 10.1371/journal.pone.0000836. PubMed DOI PMC
Ohnuma-Ishikawa K., Morio T., Yamada T., Sugawara Y., Ono M., Nagasawa M., Yasuda A., Morimoto C., Ohnuma K., Dang N.H., et al. Knockdown of XAB2 enhances all-trans retinoic acid-induced cellular differentiation in all-trans retinoic acid-sensitive and -resistant cancer cells. Cancer Res. 2007;67:1019–1029. doi: 10.1158/0008-5472.CAN-06-1638. PubMed DOI
Cheung B.B., Tan O., Koach J., Liu B., Shum M.S.Y., Carter D.R., Sutton S., Po’uha S.T., Chesler L., Haber M., et al. Thymosin-β4 is a determinant of drug sensitivity for Fenretinide and Vorinostat combination therapy in neuroblastoma. Mol. Oncol. 2015;9:1484–1500. doi: 10.1016/j.molonc.2015.04.005. PubMed DOI PMC
Schmoch T., Gal Z., Mock A., Mossemann J., Lahrmann B., Grabe N., Schmezer P., Lasitschka F., Beckhove P., Unterberg A., et al. Combined Treatment of ATRA with Epigenetic Drugs Increases Aggressiveness of Glioma Xenografts. Anticancer Res. 2016;36:1489–1496. PubMed
Jensen H.A., Styskal L.E., Tasseff R., Bunaciu R.P., Congleton J., Varner J.D., Yen A. The Src-family kinase inhibitor PP2 rescues inducible differentiation events in emergent retinoic acid-resistant myeloblastic leukemia cells. PLoS ONE. 2013;8:e58621. doi: 10.1371/journal.pone.0058621. PubMed DOI PMC
Kanemura N., Tsurumi H., Okuno M., Matsushima-Nishiwaki R., Shimizu M., Moriwaki H. Retinoid X receptor alpha is highly phosphorylated in retinoic acid-resistant HL-60R cells and the combination of 9-cis retinoic acid plus MEK inhibitor induces apoptosis in the cells. Leuk. Res. 2008;32:884–892. doi: 10.1016/j.leukres.2007.11.005. PubMed DOI
Mossé Y.P., Maris J.M. MEKing Retinoids Work Better. Cancer Cell. 2010;18:103–105. doi: 10.1016/j.ccr.2010.07.007. DOI