Comparative Analysis of Putative Prognostic and Predictive Markers in Neuroblastomas: High Expression of PBX1 Is Associated With a Poor Response to Induction Therapy

. 2019 ; 9 () : 1221. [epub] 20191115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31803613

The survival rate for patients with high-risk neuroblastomas remains poor despite new improvements in available therapeutic modalities. A detailed understanding of the mechanisms underlying clinical responses to multimodal treatment is one of the important aspects that may provide precision in the prediction of a patient's clinical outcome. Our study was designed as a detailed comparative analysis of five selected proteins (DDX39A, HMGA1, HOXC9, NF1, and PBX1) in one cohort of patients using the same methodical approaches. These proteins were already reported separately as related to the resistance or sensitivity to retinoids and as useful prognostic markers of survival probability. In the cohort of 19 patients suffering from high-risk neuroblastomas, we analyzed initial immunohistochemistry samples obtained by diagnostic biopsy and post-induction samples taken after the end of induction therapy. The expression of DDX39A, HMGA1, HOXC9, and NF1 showed varied patterns with almost no differences between responders and non-responders. Nevertheless, we found very interesting results for PBX1: non-responders had significantly higher expression levels of this protein in the initial tumor samples when compared with responders; this expression pattern changed inversely in the post-induction samples, and this change was also statistically significant. Moreover, our results from survival analyses reveal the prognostic value of PBX1, NF1, and HOXC9 expression in neuroblastoma tissue. In addition to the prognostic importance of PBX1, NF1, and HOXC9 proteins, our results demonstrated that PBX1 could be used for the prediction of the clinical response to induction chemotherapy in patients suffering from high-risk neuroblastoma.

Zobrazit více v PubMed

Park JR, Bagatell R, London WB, Maris JM, Cohn SL, Mattay KK, et al. . Children's Oncology Group's 2013 blueprint for research: neuroblastoma. Pediatr Blood Cancer. (2013) 60:9859–93. 10.1002/pbc.24433 PubMed DOI

Irwin MS, Park JR. Neuroblastoma: paradigm for precision medicine. Pediatr Clin North Am. (2015) 62:225–56. 10.1016/j.pcl.2014.09.015 PubMed DOI

Kholodenko IV, Kalinovsky DV, Doronin II, Deyev SM, Kholodenko RV. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res. (2018) 2018:7394268. 10.1155/2018/7394268 PubMed DOI PMC

Nakagawara A, Li Y, Izumi H, Muramori K, Inada H, Nishi M. Neuroblastoma. Jpn J Clin Oncol. (2018) 48:214–41. 10.1093/jjco/hyx176 PubMed DOI

Kushner BH, Modak S, Kramer K, Basu EM, Roberts SS, Cheung NK. Ifosfamide, carboplatin, and etoposide for neuroblastoma: a high-dose salvage regimen and review of the literature. Cancer. (2013) 119:665–71. 10.1002/cncr.27783 PubMed DOI

Reynolds CP, Matthay KK, Villablanca JG, Maurer BJ. Retinoid therapy of high-risk neuroblastoma. Cancer Lett. (2003) 197:185–92. 10.1016/S0304-3835(03)00108-3 PubMed DOI

Matthay KK, Reynolds CP, Seeger RC, Shimada H, Adkins ES, Haas-Kogan D, et al. . Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a children's oncology group study. J Clin Oncol. (2009) 27:1007–13. 10.1200/JCO.2007.13.8925 PubMed DOI PMC

Masetti R, Biagi C, Zama D, Vendemini F, Martoni A, Morello W, et al. . Retinoids in pediatric onco-hematology: the model of acute promyelocytic leukemia and neuroblastoma. Adv Ther. (2012) 29:747–62. 10.1007/s12325-012-0047-3 PubMed DOI

Chlapek P, Slavikova V, Mazanek P, Sterba J, Veselska R. Why differentiation therapy sometimes fails: molecular mechanisms of resistance to retinoids. Int J Mol Sci. (2018) 19:E132. 10.3390/ijms19010132 PubMed DOI PMC

Dobrotkova V, Chlapek P, Mazanek P, Sterba J, Veselska R. Traffic lights for retinoids in oncology: molecular markers of retinoid resistance and sensitivity and their use in the management of cancer differentiation therapy. BMC Cancer. (2018) 18:1059. 10.1186/s12885-018-4966-5 PubMed DOI PMC

Hölzel M, Huang S, Koster J, Ora I, Lakeman A, Caron H, et al. . NF1 is a tumor suppressor in neuroblastoma that determines retinoic acid response and disease outcome. Cell. (2010) 142:218–29. 10.1016/j.cell.2010.06.004 PubMed DOI PMC

Shahhoseini M, Taghizadeh Z, Hatami M, Baharvand H. Retinoic acid dependent histone 3 demethylation of the clustered HOX genes during neural differentiation of human embryonic stem cells. Biochem Cell Biol. (2013) 91:116–22. 10.1139/bcb-2012-0049 PubMed DOI

Shah N, Wang J, Selich-Anderson J, Graham G, Siddiqui H, Li X, et al. . PBX1 is a favorable prognostic biomarker as it modulates 13-cis retinoic acid-mediated differentiation in neuroblastoma. Clin Cancer Res. (2014) 20:4400–12. 10.1158/1078-0432.CCR-13-1486 PubMed DOI PMC

Mao L, Ding J, Zha Y, Yang L, McCarthy BA, King W, et al. . HOXC9 links cell-cycle exit and neuronal differentiation and is a prognostic marker in neuroblastoma. Cancer Res. (2011) 71:4314–24. 10.1158/0008-5472.CAN-11-0051 PubMed DOI PMC

Dobrotkova V, Chlapek P, Jezova M, Adamkova K, Mazanek P, Sterba J, et al. . Prediction of neuroblastoma cell response to treatment with natural or synthetic retinoids using selected protein biomarkers. PLoS ONE. (2019) 14:e0218269. 10.1371/journal.pone.0218269 PubMed DOI PMC

Mikulenkova E, Neradil J, Zitterbart K, Sterba J, Veselska R. Overexpression of the ΔNp73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumour Biol. (2015) 36:7483–91. 10.1007/s13277-015-3474-3 PubMed DOI

R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna: (2018). Available online at: https://www.R-project.org/

Nakata D, Nakao S, Nakayama K, Araki S, Nakayama Y, Aparicio S, et al. . The RNA helicase DDX39B and its paralog DDX39A regulate androgen receptor splice variant AR-V7 generation. Biochem Biophys Res Commun. (2017) 483:271–6. 10.1016/j.bbrc.2016.12.153 PubMed DOI

Otake K, Uchida K, Ide S, Kobayashi Y, Kobayashi I, Kusunoki M. Identification of DDX39A as a potential biomarker for unfavorable neuroblastoma using a proteomic approach. Pediatr Blood Cancer. (2016) 63:221–7. 10.1002/pbc.25778 PubMed DOI

Kikuta K, Kubota D, Saito T, Orita H, Yoshida A, Tsuda H, et al. . Clinical proteomics identified ATP-dependent RNA helicase DDX39 as a novel biomarker to predict poor prognosis of patients with gastrointestinal stromal tumor. J Proteomics. (2012) 75:1089–98. 10.1016/j.jprot.2011.10.005 PubMed DOI

Kato M, Wei M, Yamano S, Kakehashi A, Tamada S, Nakatani T, et al. . DDX39 acts as a suppressor of invasion for bladder cancer. Cancer Sci. (2012) 103:1363–9. 10.1111/j.1349-7006.2012.02298.x PubMed DOI PMC

Ma J, Chang W, Zhang W. Relationship between the expression of DDX39 protein and prognosis of colorectal cancer. Zhonghua Wei Chang Wai Ke Za Zhi. (2018) 21:336–41. PubMed

Wang X, Choi JH, Ding J, Yang L, Ngoka LC, Lee EJ, et al. . HOXC9 directly regulates distinct sets of genes to coordinate diverse cellular processes during neuronal differentiation. BMC Genomics. (2013) 14:830. 10.1186/1471-2164-14-830 PubMed DOI PMC

Wang X, Yang L, Choi JH, Kitamura E, Chang CS, Ding J, et al. . Genome-wide analysis of HOXC9-induced neuronal differentiation of neuroblastoma cells. Genom Data. (2014) 2:50–2. 10.1016/j.gdata.2014.04.002 PubMed DOI PMC

Xuan F, Huang M, Liu W, Ding H, Yang L, Cui H. Homeobox C9 suppresses Beclin1-mediated autophagy in glioblastoma by directly inhibiting the transcription of death-associated protein kinase 1. Neuro Oncol. (2016) 18:819–29. 10.1093/neuonc/nov281 PubMed DOI PMC

Hur H, Lee JY, Yang S, Kim JM, Park AE, Kim MH. HOXC9 induces phenotypic switching between proliferation and invasion in breast cancer cells. J Cancer. (2016) 7:768–73. 10.7150/jca.13894 PubMed DOI PMC

Philpott C, Tovell H, Frayling IM, Cooper DN, Upadhyaya M. The NF1 somatic mutational landscape in sporadic human cancers. Hum Genomics. (2017) 11:13. 10.1186/s40246-017-0109-3 PubMed DOI PMC

Sabova L, Kretova M, Luciakova K. New insights into the role of NF1 in cancer. Neoplasma. (2013) 60:233–9. 10.4149/neo_2013_031 PubMed DOI

Elzagheid A, Emaetig F, Elsaghayer W, Torjman F, Latto M, Syrjänen K, et al. . Neurofibromin expression is associated with aggressive disease and poor outcome in colorectal carcinoma. Anticancer Res. (2016) 36:5301–6. 10.21873/anticanres.11102 PubMed DOI

Cerignoli F, Ambrosi C, Mellone M, Assimi I, di Marcotullio L, Gulino A, et al. . HMGA molecules in neuroblastic tumors. Ann N Y Acad Sci. (2004)1028:122–32. 10.1196/annals.1322.013 PubMed DOI

Giannini G, Cerignoli F, Mellone M, Massimi I, Ambrosi C, Rinaldi C, et al. . High mobility group A1 is a molecular target for MYCN in human neuroblastoma. Cancer Res. (2005) 65:8308–16. 10.1158/0008-5472.CAN-05-0607 PubMed DOI

Huang R, Huang D, Dai W, Yang F. Overexpression of HMGA1 correlates with the malignant status and prognosis of breast cancer. Mol Cell Biochem. (2015) 404:251–7. 10.1007/s11010-015-2384-4 PubMed DOI

Zhang S, Lei R, Wu J, Shan J, Hu Z, Chen L, et al. . Role of high mobility group A1 and body mass index in the prognosis of patients with breast cancer. Oncol Lett. (2017) 14:5719–26. 10.3892/ol.2017.6963 PubMed DOI PMC

Qi C, Cao J, Li M, Liang C, He Y, Li Y, et al. . HMGA1 overexpression is associated with the malignant status and progression of breast cancer. Anat Rec. (2018) 301:1061–7. 10.1002/ar.23777 PubMed DOI

Liau SS, Rocha F, Matros E, Redston M, Whang E. High mobility group AT-hook 1 (HMGA1) is an independent prognostic factor and novel therapeutic target in pancreatic adenocarcinoma. Cancer. (2008) 113:302–14. 10.1002/cncr.23560 PubMed DOI PMC

Toyozumi T, Hoshino I, Takahashi M, Usui A, Akutsu Y, Hanari N, et al. . Fra-1 regulates the expression of HMGA1, which is associated with a poor prognosis in human esophageal squamous cell carcinoma. Ann Surg Oncol. (2017) 24:3446–55. 10.1245/s10434-016-5666-5 PubMed DOI

Zhang Z, Wang Q, Chen F, Liu J. Elevated expression of HMGA1 correlates with the malignant status and prognosis of non-small cell lung cancer. Tumour Biol. (2015) 36:1213–9. 10.1007/s13277-014-2749-4 PubMed DOI

Qu Y, Wang Y, Ma J, Zhang Y, Meng N, Li H, et al. . Overexpression of high mobility group A1 protein in human uveal melanomas: implication for prognosis. PLoS ONE. (2013) 8:e68724. 10.1371/journal.pone.0068724 PubMed DOI PMC

Jun KH, Jung JH, Choi HJ, Shin EY, Chin HM. HMGA1/HMGA2 protein expression and prognostic implications in gastric cancer. Int J Surg. (2015) 24:39–44. 10.1016/j.ijsu.2015.10.031 PubMed DOI

Lin SY, Peng F. Association of SIRT1 and HMGA1 expression in non-small cell lung cancer. Oncol Lett. (2016) 11:782–8. 10.3892/ol.2015.3914 PubMed DOI PMC

Schnabel CA, Selleri L, Cleary ML. Pbx1 is essential for adrenal development and urogenital differentiation. Genesis. (2003) 37:123–30. 10.1002/gene.10235 PubMed DOI

Thiaville MM, Stoeck A, Chen L, Wu RC, Magnani L, Oidtman J, et al. . Identification of PBX1 target genes in cancer cells by global mapping of PBX1 binding sites. PLoS ONE. (2012) 7:e36054. 10.1371/journal.pone.0036054 PubMed DOI PMC

Grebbin BM, Schulte D. PBX1 as pioneer factor: a case still open. Front Cell Dev Biol. (2017) 5:9. 10.3389/fcell.2017.00009 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...