Overexpression of the ∆Np73 isoform is associated with centrosome amplification in brain tumor cell lines
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
25910708
DOI
10.1007/s13277-015-3474-3
PII: 10.1007/s13277-015-3474-3
Knihovny.cz E-resources
- Keywords
- BubR1, Centrosome amplification, Glioblastoma multiforme, Medulloblastoma, TAp73, ΔNp73,
- MeSH
- Gene Amplification * MeSH
- Centrosome physiology MeSH
- Chromosome Aberrations * MeSH
- DNA-Binding Proteins genetics MeSH
- Fluorescent Antibody Technique, Indirect MeSH
- Nuclear Proteins genetics MeSH
- Humans MeSH
- Tumor Cells, Cultured MeSH
- Tumor Suppressor Proteins genetics MeSH
- Brain Neoplasms genetics pathology MeSH
- DNA Repair MeSH
- Promoter Regions, Genetic MeSH
- Protein Isoforms MeSH
- Tumor Protein p73 MeSH
- Protein Serine-Threonine Kinases genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- BUB1 protein, human MeSH Browser
- delta Np73 protein, human MeSH Browser
- DNA-Binding Proteins MeSH
- Nuclear Proteins MeSH
- Tumor Suppressor Proteins MeSH
- Protein Isoforms MeSH
- Tumor Protein p73 MeSH
- Protein Serine-Threonine Kinases MeSH
- TP73 protein, human MeSH Browser
The p73 protein is a member of the p53 family, and this protein is known to be essential for the maintenance of genomic stability, DNA repair, and apoptosis regulation. Transcription from two promoters leads to two main N-terminal isoforms: the TAp73 isoform is reported to have tumor suppressor function, whereas the ΔNp73 isoform likely has oncogenic potential. The present study is focused on the investigation of a possible role of both these p73 N-terminal isoforms in the process of centrosome amplification. HGG-02 and GM7 glioblastoma cell lines and the Daoy medulloblastoma cell line were used in this study. The cells were analyzed using indirect immunofluorescence to determine TAp73 and ΔNp73 expression patterns and possible co-localization with the BubR1 protein, as well as the number of centrosomes. A transiently transfected GM7 cell line was used to verify the results concerning the N-terminal isoforms in relation to centrosome amplification. We found that increased immunoreactivity for the ΔNp73 isoform is associated with the occurrence of an abnormal number of centrosomes in particular cells. Using the transiently transfected GM7 cell line, we confirmed that centrosome amplification is present in cells with overexpression of the ΔNp73 isoform. In contrast, the immunoreactivity for the TAp73 isoform was weak or medium in most of the cells with an aberrant number of centrosomes. To determine the putative counterpart of the p73 N-terminal isoforms among spindle assembly checkpoint (SAC) proteins, we also evaluated possible interactions between the N-terminal isoforms and BubR1 protein, but no co-localization of these proteins was observed.
See more in PubMed
Cell Cycle. 2009 Feb 1;8(3):421-9 PubMed
Mol Cell. 2007 Aug 17;27(4):647-59 PubMed
Genes Cancer. 2011 Apr;2(4):491-502 PubMed
J Biol Chem. 2005 Aug 26;280(34):30354-60 PubMed
Int J Oncol. 2009 Feb;34(2):449-56 PubMed
J Nucleic Acids. 2012;2012:687359 PubMed
Clin Cancer Res. 2004 Oct 15;10(20):6905-11 PubMed
Oncogene. 2009 Aug 6;28(31):2806-20 PubMed
Br J Cancer. 2013 Aug 20;109 (4):965-75 PubMed
Cell Death Differ. 2002 Mar;9(3):246-51 PubMed
Ann N Y Acad Sci. 2004 Dec;1028:143-9 PubMed
Oncogene. 2008 Jul 17;27(31):4363-72 PubMed
Cancer Res. 2003 Sep 15;63(18):5829-37 PubMed
Hum Reprod Update. 2012 Jan-Feb;18(1):60-72 PubMed
Cold Spring Harb Perspect Biol. 2010 Sep;2(9):a004887 PubMed
Cell Death Differ. 2010 Dec;17 (12 ):1816-29 PubMed
FEBS Lett. 2008 Jul 23;582(17 ):2663-7 PubMed
J Cell Biol. 2012 Jul 23;198(2):205-17 PubMed
Histol Histopathol. 2013 Jul;28(7):913-24 PubMed
FASEB J. 2011 Dec;25(12 ):4406-14 PubMed
Int J Mol Med. 2013 Apr;31(4):849-54 PubMed
PLoS Genet. 2009 Oct;5(10 ):e1000680 PubMed
Biochem Biophys Res Commun. 2010 Dec 3;403(1):13-7 PubMed
Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):797-802 PubMed
Cell Death Differ. 2001 Dec;8(12 ):1213-23 PubMed
Cancer Genet Cytogenet. 2007 Apr 1;174(1):42-7 PubMed
Cell Death Differ. 2014 Aug;21(8):1240-9 PubMed
J Pathol. 2006 Dec;210(4):390-7 PubMed
Mol Cancer. 2009 Aug 11;8:61 PubMed
J Pathol. 2004 Mar;202(3):265-73 PubMed
Eur J Cancer. 2009 Feb;45(3):443-53 PubMed
J Exp Med. 1998 Nov 2;188(9):1763-8 PubMed
Mol Cell Biol. 2005 May;25(10):4046-61 PubMed
Carcinogenesis. 2008 Jan;29(1):211-8 PubMed
Hum Mol Genet. 2014 Jan 15;23 (2):467-78 PubMed
Acta Neuropathol. 2007 Dec;114(6):641-50 PubMed
Mol Neurobiol. 2011 Apr;43(2):139-46 PubMed
BMC Cancer. 2007 Jul 12;7:127 PubMed
Cell Death Differ. 2005 Dec;12 (12 ):1564-77 PubMed
Biochem Biophys Res Commun. 2005 Jun 10;331(3):713-7 PubMed
Oncol Rep. 2009 Jan;21(1):119-27 PubMed
J Clin Oncol. 2007 Apr 10;25(11):1451-3; author reply 1453-4 PubMed
Clin Cancer Res. 2011 Sep 15;17 (18):6029-39 PubMed
J Mol Histol. 2010 Oct;41(4-5):267-75 PubMed
Histol Histopathol. 2015 May;30(5):503-21 PubMed
J Clin Oncol. 2006 Feb 10;24(5):805-15 PubMed
Apoptosis. 2012 Aug;17 (8):762-76 PubMed
Childs Nerv Syst. 2010 Jun;26(6):841-6 PubMed
Clin Cancer Res. 2006 Jul 1;12 (13):3922-7 PubMed
Cell. 1997 Aug 22;90(4):809-19 PubMed