NANOG/NANOGP8 Localizes at the Centrosome and is Spatiotemporally Associated with Centriole Maturation
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32168958
PubMed Central
PMC7140602
DOI
10.3390/cells9030692
PII: cells9030692
Knihovny.cz E-zdroje
- Klíčová slova
- NANOG, NANOGP8, centrosome, human, localization, mother centriole,
- MeSH
- centrioly imunologie MeSH
- centrozom imunologie MeSH
- lidé MeSH
- nanog imunologie MeSH
- proliferace buněk MeSH
- transfekce MeSH
- transkripční faktory MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- NANOG protein, human MeSH Prohlížeč
- nanog MeSH
- transkripční faktory MeSH
NANOG is a transcription factor involved in the regulation of pluripotency and stemness. The functional paralog of NANOG, NANOGP8, differs from NANOG in only three amino acids and exhibits similar reprogramming activity. Given the transcriptional regulatory role played by NANOG, the nuclear localization of NANOG/NANOGP8 has primarily been considered to date. In this study, we investigated the intriguing extranuclear localization of NANOG and demonstrated that a substantial pool of NANOG/NANOGP8 is localized at the centrosome. Using double immunofluorescence, the colocalization of NANOG protein with pericentrin was identified by two independent anti-NANOG antibodies among 11 tumor and non-tumor cell lines. The validity of these observations was confirmed by transient expression of GFP-tagged NANOG, which also colocalized with pericentrin. Mass spectrometry of the anti-NANOG immunoprecipitated samples verified the antibody specificity and revealed the expression of both NANOG and NANOGP8, which was further confirmed by real-time PCR. Using cell fractionation, we show that a considerable amount of NANOG protein is present in the cytoplasm of RD and NTERA-2 cells. Importantly, cytoplasmic NANOG was unevenly distributed at the centrosome pair during the cell cycle and colocalized with the distal region of the mother centriole, and its presence was markedly associated with centriole maturation. Along with the finding that the centrosomal localization of NANOG/NANOGP8 was detected in various tumor and non-tumor cell types, these results provide the first evidence suggesting a common centrosome-specific role of NANOG.
Department of Experimental Biology Faculty of Science Masaryk University 61137 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Chambers I., Colby D., Robertson M., Nichols J., Lee S., Tweedie S., Smith A. Functional Expression Cloning of Nanog, a Pluripotency Sustaining Factor in Embryonic Stem Cells. Cell. 2003;113:643–655. doi: 10.1016/S0092-8674(03)00392-1. PubMed DOI
Mitsui K., Tokuzawa Y., Itoh H., Segawa K., Murakami M., Takahashi K., Maruyama M., Maeda M., Yamanaka S. The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell. 2003;113:631–642. doi: 10.1016/S0092-8674(03)00393-3. PubMed DOI
Silva J., Nichols J., Theunissen T.W., Guo G., van Oosten A.L., Barrandon O., Wray J., Yamanaka S., Chambers I., Smith A. Nanog is the gateway to the pluripotent ground state. Cell. 2009;138:722–737. doi: 10.1016/j.cell.2009.07.039. PubMed DOI PMC
Hart A.H., Hartley L., Parker K., Ibrahim M., Looijenga L.H.J., Pauchnik M., Chow C.W., Robb L. The pluripotency homeobox gene NANOG is expressed in human germ cell tumors. Cancer. 2005;104:2092–2098. doi: 10.1002/cncr.21435. PubMed DOI
Zbinden M., Duquet A., Lorente-Trigos A., Ngwabyt S.-N., Borges I., Ruiz i Altaba A. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J. 2010;29:2659–2674. doi: 10.1038/emboj.2010.137. PubMed DOI PMC
Nagata T., Shimada Y., Sekine S., Hori R., Matsui K., Okumura T., Sawada S., Fukuoka J., Tsukada K. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer. 2014;21:96–101. doi: 10.1007/s12282-012-0357-y. PubMed DOI
Santaliz-Ruiz L.E., Xie X., Old M., Teknos T.N., Pan Q. Emerging Role of Nanog in Tumorigenesis and Cancer Stem Cells. Int. J. Cancer J. Int. Cancer. 2014;135:2741–2748. doi: 10.1002/ijc.28690. PubMed DOI PMC
Fan Z., Li M., Chen X., Wang J., Liang X., Wang H., Wang Z., Cheng B., Xia J. Prognostic Value of Cancer Stem Cell Markers in Head and Neck Squamous Cell Carcinoma: A Meta-analysis. Sci. Rep. 2017;7:43008. doi: 10.1038/srep43008. PubMed DOI PMC
Freitag D., McLean A.L., Simon M., Koch A., Grube S., Walter J., Kalff R., Ewald C. NANOG overexpression and its correlation with stem cell and differentiation markers in meningiomas of different WHO grades. Mol. Carcinog. 2017;56:1953–1964. doi: 10.1002/mc.22653. PubMed DOI
Rasti A., Mehrazma M., Madjd Z., Abolhasani M., Zanjani L.S., Asgari M. Co-expression of Cancer Stem Cell Markers OCT4 and NANOG Predicts Poor Prognosis in Renal Cell Carcinomas. Sci. Rep. 2018;8:1–11. doi: 10.1038/s41598-018-30168-4. PubMed DOI PMC
Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., Schöler H., Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998;95:379–391. doi: 10.1016/S0092-8674(00)81769-9. PubMed DOI
Avilion A.A., Nicolis S.K., Pevny L.H., Perez L., Vivian N., Lovell-Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003;17:126–140. doi: 10.1101/gad.224503. PubMed DOI PMC
Pan G., Thomson J.A. Nanog and transcriptional networks in embryonic stem cell pluripotency. Cell Res. 2007;17:42–49. doi: 10.1038/sj.cr.7310125. PubMed DOI
Hyslop L., Stojkovic M., Armstrong L., Walter T., Stojkovic P., Przyborski S., Herbert M., Murdoch A., Strachan T., Lako M. Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells Dayt. Ohio. 2005;23:1035–1043. doi: 10.1634/stemcells.2005-0080. PubMed DOI
Schorle H., Nettersheim D. NANOG (Nanog homeobox) Atlas Genet. Cytogenet. Oncol. Haematol. 2012 doi: 10.4267/2042/48149. DOI
Booth H.A.F., Holland P.W.H. Eleven daughters of NANOG. Genomics. 2004;84:229–238. doi: 10.1016/j.ygeno.2004.02.014. PubMed DOI
Palla A.R., Piazzolla D., Abad M., Li H., Dominguez O., Schonthaler H.B., Wagner E.F., Serrano M. Reprogramming activity of NANOGP8, a NANOG family member widely expressed in cancer. Oncogene. 2014;33:2513–2519. doi: 10.1038/onc.2013.196. PubMed DOI
Zhang J., Wang X., Li M., Han J., Chen B., Wang B., Dai J. NANOGP8 is a retrogene expressed in cancers. FEBS J. 2006;273:1723–1730. doi: 10.1111/j.1742-4658.2006.05186.x. PubMed DOI
Ambady S., Malcuit C., Kashpur O., Kole D., Holmes W.F., Hedblom E., Page R.L., Dominko T. Expression of NANOG and NANOGP8 in a variety of undifferentiated and differentiated human cells. Int. J. Dev. Biol. 2010;54:1743–1754. doi: 10.1387/ijdb.103192sa. PubMed DOI PMC
Do H.-J., Lim H.-Y., Kim J.-H., Song H., Chung H.-M., Kim J.-H. An intact homeobox domain is required for complete nuclear localization of human Nanog. Biochem. Biophys. Res. Commun. 2007;353:770–775. doi: 10.1016/j.bbrc.2006.12.100. PubMed DOI
Chang D.F., Tsai S.C., Wang X.C., Xia P., Senadheera D., Lutzko C. Molecular Characterization of the Human NANOG Protein. Stem Cells. 2009;27:812–821. doi: 10.1634/stemcells.2008-0657. PubMed DOI
Gu T.-T., Liu S.-Y., Zheng P.-S. Cytoplasmic NANOG-Positive Stromal Cells Promote Human Cervical Cancer Progression. Am. J. Pathol. 2012;181:652–661. doi: 10.1016/j.ajpath.2012.04.008. PubMed DOI
van Schaijik B., Davis P.F., Wickremesekera A.C., Tan S.T., Itinteang T. Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: A review. J. Clin. Pathol. 2018;71:88–91. doi: 10.1136/jclinpath-2017-204815. PubMed DOI
Dvorak P., Dvorakova D., Koskova S., Vodinska M., Najvirtova M., Krekac D., Hampl A. Expression and Potential Role of Fibroblast Growth Factor 2 and Its Receptors in Human Embryonic Stem Cells. STEM CELLS. 2005;23:1200–1211. doi: 10.1634/stemcells.2004-0303. PubMed DOI
Sana J., Zambo I., Skoda J., Neradil J., Chlapek P., Hermanova M., Mudry P., Vasikova A., Zitterbart K., Hampl A., et al. CD133 Expression and Identification of CD133/nestin Positive Cells in Rhabdomyosarcomas and Rhabdomyosarcoma Cell Lines. Anal. Cell. Pathol. Amst. 2011;34:303–318. doi: 10.1155/2011/939457. PubMed DOI PMC
Loja T., Chlapek P., Kuglik P., Pesakova M., Oltova A., Cejpek P., Veselska R. Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncol. Rep. 2009;21:119–127. PubMed
Veselska R., Skoda J., Loja T., Zitterbart K., Pavelka Z., Smardova J., Valaskova I., Hermanova M., Sterba J. An unusual loss of EGFR gene copy in glioblastoma multiforme in a child: A case report and analysis of a successfully derived HGG-02 cell line. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2010;26:841–846. doi: 10.1007/s00381-010-1110-5. PubMed DOI
Veselska R., Janisch R. Reaction of the Skin Fibroblast Cytoskeleton to Micromanipulation Interventions–ScienceDirect. [(accessed on 2 August 2019)]; Available online: https://www.sciencedirect.com/science/article/pii/S1047847701944326. PubMed
Mikulenkova E., Neradil J., Zitterbart K., Sterba J., Veselska R. Overexpression of the ∆Np73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumour Biol. J. Int. Soc. Oncodevelopmental Biol. Med. 2015;36:7483–7491. doi: 10.1007/s13277-015-3474-3. PubMed DOI
Kleylein-Sohn J., Westendorf J., Le Clech M., Habedanck R., Stierhof Y.-D., Nigg E.A. Plk4-induced centriole biogenesis in human cells. Dev. Cell. 2007;13:190–202. doi: 10.1016/j.devcel.2007.07.002. PubMed DOI
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal sample preparation method for proteome analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Holman J.D., Tabb D.L., Mallick P. Employing ProteoWizard to Convert Raw Mass Spectrometry Data. Curr. Protoc. Bioinforma. 2014;46:13–24. doi: 10.1002/0471250953.bi1324s46. PubMed DOI PMC
McIlwain S., Tamura K., Kertesz-Farkas A., Grant C.E., Diament B., Frewen B., Howbert J.J., Hoopmann M.R., Käll L., Eng J.K., et al. Crux: Rapid open source protein tandem mass spectrometry analysis. J. Proteome Res. 2014;13:4488–4491. doi: 10.1021/pr500741y. PubMed DOI PMC
The M., MacCoss M.J., Noble W.S., Käll L. Fast and Accurate Protein False Discovery Rates on Large-Scale Proteomics Data Sets with Percolator 3.0. J. Am. Soc. Mass Spectrom. 2016;27:1719–1727. doi: 10.1007/s13361-016-1460-7. PubMed DOI PMC
Millikin R.J., Solntsev S.K., Shortreed M.R., Smith L.M. Ultrafast Peptide Label-Free Quantification with FlashLFQ. J. Proteome Res. 2018;17:386–391. doi: 10.1021/acs.jproteome.7b00608. PubMed DOI PMC
Silva J.C., Gorenstein M.V., Li G.-Z., Vissers J.P.C., Geromanos S.J. Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition. Mol. Cell. Proteomics MCP. 2006;5:144–156. doi: 10.1074/mcp.M500230-MCP200. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods San Diego Calif. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Ma X., Wang B., Wang X., Luo Y., Fan W. NANOGP8 is the key regulator of stemness, EMT, Wnt pathway, chemoresistance, and other malignant phenotypes in gastric cancer cells. PLoS ONE. 2018;13:e0192436. doi: 10.1371/journal.pone.0192436. PubMed DOI PMC
Hu Q., Khanna P., Ee Wong B.S., Lin Heng Z.S., Subhramanyam C.S., Thanga L.Z., Sing Tan S.W., Baeg G.H. Oxidative stress promotes exit from the stem cell state and spontaneous neuronal differentiation. Oncotarget. 2018;9:4223–4238. doi: 10.18632/oncotarget.23786. PubMed DOI PMC
Paintrand M., Moudjou M., Delacroix H., Bornens M. Centrosome organization and centriole architecture: Their sensitivity to divalent cations. J. Struct. Biol. 1992;108:107–128. doi: 10.1016/1047-8477(92)90011-X. PubMed DOI
Sonnen K.F., Schermelleh L., Leonhardt H., Nigg E.A. 3D-structured illumination microscopy provides novel insight into architecture of human centrosomes. Biol. Open. 2012;1:965–976. doi: 10.1242/bio.20122337. PubMed DOI PMC
Nigg E.A., Holland A.J. Once and only once: Mechanisms of centriole duplication and their deregulation in disease. Nat. Rev. Mol. Cell Biol. 2018;19:297–312. doi: 10.1038/nrm.2017.127. PubMed DOI PMC
Uzbekov R., Alieva I. Who are you, subdistal appendages of centriole? Open Biol. 2018;8:180062. doi: 10.1098/rsob.180062. PubMed DOI PMC
Tanos B.E., Yang H.-J., Soni R., Wang W.-J., Macaluso F.P., Asara J.M., Tsou M.-F.B. Centriole distal appendages promote membrane docking, leading to cilia initiation. Genes Dev. 2013;27:163–168. doi: 10.1101/gad.207043.112. PubMed DOI PMC
Vorobjev I.A., Nadezhdina E.S. The centrosome and its role in the organization of microtubules. Int. Rev. Cytol. 1987;106:227–293. PubMed
Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 2002;14:25–34. doi: 10.1016/S0955-0674(01)00290-3. PubMed DOI
Hinchcliffe E.H. “It Takes Two to Tango”: Understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 2001;15:1167–1181. doi: 10.1101/gad.894001. PubMed DOI
Loncarek J., Khodjakov A. Ab ovo or de novo? Mechanisms of centriole duplication. Mol. Cells. 2009;27:135–142. doi: 10.1007/s10059-009-0017-z. PubMed DOI PMC
Fujita H., Yoshino Y., Chiba N. Regulation of the centrosome cycle. Mol. Cell. Oncol. 2015;3:e1075643. doi: 10.1080/23723556.2015.1075643. PubMed DOI PMC
Loncarek J., Bettencourt-Dias M. Building the right centriole for each cell type. J. Cell Biol. 2018;217:823–835. doi: 10.1083/jcb.201704093. PubMed DOI PMC
Stearns T. Centrosome duplication. A centriolar pas de deux. Cell. 2001;105:417–420. doi: 10.1016/S0092-8674(01)00366-X. PubMed DOI
Reina J., Gonzalez C. When fate follows age: Unequal centrosomes in asymmetric cell division. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2014;369 doi: 10.1098/rstb.2013.0466. PubMed DOI PMC
Vorobjev I.A., Chentsov Y.S. Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 1982;93:938–949. doi: 10.1083/jcb.93.3.938. PubMed DOI PMC
Piel M., Meyer P., Khodjakov A., Rieder C.L., Bornens M. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 2000;149:317–330. doi: 10.1083/jcb.149.2.317. PubMed DOI PMC
Mogensen M.M., Malik A., Piel M., Bouckson-Castaing V., Bornens M. Microtubule minus-end anchorage at centrosomal and non-centrosomal sites: The role of ninein. J. Cell Sci. 2000;113:3013–3023. PubMed
Ou Y.Y., Mack G.J., Zhang M., Rattner J.B. CEP110 and ninein are located in a specific domain of the centrosome associated with centrosome maturation. J. Cell Sci. 2002;115:1825–1835. PubMed
Lee M., Rhee K. Determination of Mother Centriole Maturation in CPAP-Depleted Cells Using the Ninein Antibody. Endocrinol. Metab. Seoul Korea. 2015;30:53–57. doi: 10.3803/EnM.2015.30.1.53. PubMed DOI PMC
Tateishi K., Yamazaki Y., Nishida T., Watanabe S., Kunimoto K., Ishikawa H., Tsukita S. Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains. J. Cell Biol. 2013;203:417–425. doi: 10.1083/jcb.201303071. PubMed DOI PMC
Huang N., Xia Y., Zhang D., Wang S., Bao Y., He R., Teng J., Chen J. Hierarchical assembly of centriole subdistal appendages via centrosome binding proteins CCDC120 and CCDC68. Nat. Commun. 2017;8:1–14. doi: 10.1038/ncomms15057. PubMed DOI PMC
Kashihara H., Chiba S., Kanno S., Suzuki K., Yano T., Tsukita S. Cep128 associates with Odf2 to form the subdistal appendage of the centriole. Genes Cells. 2019;24:231–243. doi: 10.1111/gtc.12668. PubMed DOI
Fu J., Glover D.M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2012;2:120104. doi: 10.1098/rsob.120104. PubMed DOI PMC
Wilson P.G., Payne T. Genetic reprogramming of human amniotic cells with episomal vectors: Neural rosettes as sentinels in candidate selection for validation assays. PeerJ. 2014;2:e668. doi: 10.7717/peerj.668. PubMed DOI PMC
Chuang L.S.H., Lai S.K., Murata-Hori M., Yamada A., Li H.-Y., Gunaratne J., Ito Y. RUNX3 interactome reveals novel centrosomal targeting of RUNX family of transcription factors. Cell Cycle Georget. Tex. 2012;11:1938–1947. doi: 10.4161/cc.20278. PubMed DOI
Madarampalli B., Yuan Y., Liu D., Lengel K., Xu Y., Li G., Yang J., Liu X., Lu Z., Liu D.X. ATF5 Connects the Pericentriolar Materials to the Proximal End of the Mother Centriole. Cell. 2015;162:580–592. doi: 10.1016/j.cell.2015.06.055. PubMed DOI
Uzbekov R.E. Centriole duplication in PE (SPEV) cells starts before the beginning of the DNA replication. Biochem. Mosc. Suppl. Ser. Membr. Cell Biol. 2007;1:206–211. doi: 10.1134/S1990747807030026. DOI
Gupta A., Tsuchiya Y., Ohta M., Shiratsuchi G., Kitagawa D. NEK7 is required for G1 progression and procentriole formation. Mol. Biol. Cell. 2017;28:2123–2134. doi: 10.1091/mbc.e16-09-0643. PubMed DOI PMC
Singla V., Romaguera-Ros M., Garcia-Verdugo J.M., Reiter J.F. Ofd1, a human disease gene, regulates the length and distal structure of centrioles. Dev. Cell. 2010;18:410–424. doi: 10.1016/j.devcel.2009.12.022. PubMed DOI PMC
Ye X., Zeng H., Ning G., Reiter J.F., Liu A. C2cd3 is critical for centriolar distal appendage assembly and ciliary vesicle docking in mammals. Proc. Natl. Acad. Sci. USA. 2014;111:2164–2169. doi: 10.1073/pnas.1318737111. PubMed DOI PMC
Galati D.F., Mitchell B.J., Pearson C.G. Subdistal Appendages Stabilize the Ups and Downs of Ciliary Life. Dev. Cell. 2016;39:387–389. doi: 10.1016/j.devcel.2016.11.006. PubMed DOI
Mazo G., Soplop N., Wang W.-J., Uryu K., Tsou M.-F.B. Spatial Control of Primary Ciliogenesis by Subdistal Appendages Alters Sensation-Associated Properties of Cilia. Dev. Cell. 2016;39:424–437. doi: 10.1016/j.devcel.2016.10.006. PubMed DOI PMC
Chang P., Giddings T.H., Winey M., Stearns T. Epsilon-tubulin is required for centriole duplication and microtubule organization. Nat. Cell Biol. 2003;5:71–76. doi: 10.1038/ncb900. PubMed DOI
Yamashita Y.M., Mahowald A.P., Perlin J.R., Fuller M.T. Asymmetric Inheritance of Mother Versus Daughter Centrosome in Stem Cell Division. Science. 2007;315:518–521. doi: 10.1126/science.1134910. PubMed DOI PMC
Pelletier L., Yamashita Y.M. Centrosome asymmetry and inheritance during animal development. Curr. Opin. Cell Biol. 2012;24:541–546. doi: 10.1016/j.ceb.2012.05.005. PubMed DOI PMC
Yamashita Y.M., Jones D.L., Fuller M.T. Orientation of asymmetric stem cell division by the APC tumor suppressor and centrosome. Science. 2003;301:1547–1550. doi: 10.1126/science.1087795. PubMed DOI