Thiosemicarbazones Can Act Synergistically with Anthracyclines to Downregulate CHEK1 Expression and Induce DNA Damage in Cell Lines Derived from Pediatric Solid Tumors

. 2022 Aug 01 ; 23 (15) : . [epub] 20220801

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35955683

Grantová podpora
17-33104A Ministry of Health
MUNI/A/1522/2020 Masaryk University
MUNI/A/1325/2021 Masaryk University
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund
LX22NPO5102 European Union - Next Generation EU

Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status.

Zobrazit více v PubMed

Martins-Teixeira M.B., Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. Chem. Med. Chem. 2020;15:933–948. doi: 10.1002/cmdc.202000131. PubMed DOI

Nadas J., Sun D. Anthracyclines as effective anticancer drugs. Expert Opin. Drug Discov. 2006;1:549–568. doi: 10.1517/17460441.1.6.549. PubMed DOI

Cortés-Funes H., Coronado C. Role of anthracyclines in the era of targeted therapy. Cardiovasc. Toxicol. 2007;7:56–60. doi: 10.1007/s12012-007-0015-3. PubMed DOI

Gewirtz D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999;57:727–741. doi: 10.1016/S0006-2952(98)00307-4. PubMed DOI

Marinello J., Delcuratolo M., Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int. J. Mol. Sci. 2018;19:3480. doi: 10.3390/ijms19113480. PubMed DOI PMC

Menna P., Paz O.G., Chello M., Covino E., Salvatorelli E., Minotti G. Anthracycline cardiotoxicity. Expert Opin. Drug Saf. 2012;11((Suppl. S1)):S21–S36. doi: 10.1517/14740338.2011.589834. PubMed DOI

Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009;16:3267–3285. doi: 10.2174/092986709788803312. PubMed DOI

Evison B.J., Sleebs B.E., Watson K.G., Phillips D.R., Cutts S.M. Mitoxantrone, More than Just Another Topoisomerase II Poison. Med. Res. Rev. 2016;36:248–299. doi: 10.1002/med.21364. PubMed DOI

Capelôa T., Benyahia Z., Zampieri L.X., Blackman M.C.N.M., Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin. Cell Dev. Biol. 2020;98:181–191. doi: 10.1016/j.semcdb.2019.05.006. PubMed DOI

Raviv Y., Pollard H.B., Bruggemann E.P., Pastan I., Gottesman M.M. Photosensitized labeling of a functional multidrug transporter in living drug–resistant tumor cells. J. Biol. Chem. 1990;265:3975–3980. doi: 10.1016/S0021-9258(19)39690-5. PubMed DOI

Nielsen D., Maare C., Poulsen F., Lauridsen S.T., Skovsgaard T. Relationship between resistance, P-glycoprotein content and steady-state accumulation in five series of Ehrlich ascites tumour cell lines selected for resistance to daunorubicin. Cell Pharmacol. 1994;1:127–135.

Nielsen D., Maare C., Skovsgaard T. Kinetics of daunorubicin transport in Ehrlich ascites tumor cells with different expression of P-glycoprotein. Biochem. Pharmacol. 1994;47:2125–2135. doi: 10.1016/0006-2952(94)90247-X. PubMed DOI

Shieh M.J., Hsu C.Y., Huang L.Y., Chen H.Y., Huang F.H., Lai P.S. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. J. Control Release. 2011;152:418–425. doi: 10.1016/j.jconrel.2011.03.017. PubMed DOI

Cheah H.Y., Šarenac O., Arroyo J.J., Vasić M., Lozić M., Glumac S., Hoe S.Z., Hindmarch C.C., Murphy D., Kiew L.V., et al. Hemodynamic effects of HPMA copolymer based doxorubicin conjugate: A randomized controlled and comparative spectral study in conscious rats. Nanotoxicology. 2017;11:210–222. doi: 10.1080/17435390.2017.1285071. PubMed DOI PMC

Ma P., Mumper R.J. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review. Nano Today. 2013;8:313–331. doi: 10.1016/j.nantod.2013.04.006. PubMed DOI PMC

Akasov R., Drozdova M., Zaytseva-Zotova D., Leko M., Chelushkin P., Marc A., Chevalot I., Burov S., Klyachko N., Vandamme T., et al. Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Adv. Pharm. Bull. 2017;7:593–601. doi: 10.15171/apb.2017.071. PubMed DOI PMC

Weiss R.B. The anthracyclines: Will we ever find a better doxorubicin? Semin. Oncol. 1992;19:670–686. PubMed

Chhikara B.S., Mandal D., Parang K. Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate. J. Med. Chem. 2012;55:1500–1510. doi: 10.1021/jm201653u. PubMed DOI

Yu S., Zhang G., Zhang W., Luo H., Qiu L., Liu Q., Sun D., Wang P.G., Wang F. Synthesis and biological activities of a 3′-azido analogue of Doxorubicin against drug-resistant cancer cells. Int. J. Mol. Sci. 2012;13:3671–3684. doi: 10.3390/ijms13033671. PubMed DOI PMC

Piorecka K., Stanczyk W., Florczak M. NMR analysis of antitumor drugs: Doxorubicin, daunorubicin and their functionalized derivatives. Tetrahedron Lett. 2017;58:152–155. doi: 10.1016/j.tetlet.2016.11.118. DOI

Kratz F., Beyer U., Roth T., Tarasova N., Collery P., Lechenault F., Cazabat A., Schumacher P., Unger C., Falken U. Transferrin conjugates of doxorubicin: Synthesis, characterization, cellular uptake, and in vitro efficacy. J. Pharm. Sci. 1998;87:338–346. doi: 10.1021/js970246a. PubMed DOI

Callaghan R., Luk F., Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos. 2014;42:623–631. doi: 10.1124/dmd.113.056176. PubMed DOI PMC

Ozols R.F., Cunnion R.E., Klecker R.W., Jr., Hamilton T.C., Ostchega Y., Parrillo J.E., Young R.C. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J. Clin. Oncol. 1987;5:641–647. doi: 10.1200/JCO.1987.5.4.641. PubMed DOI

List A.F., Kopecky K.J., Willman C.L., Head D.R., Persons D.L., Slovak M.L., Dorr R., Karanes C., Hynes H.E., Doroshow J.H., et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: A Southwest Oncology Group study. Blood. 2011;98:3212–3220. doi: 10.1182/blood.V98.12.3212. PubMed DOI

Dalton W.S., Grogan T.M., Meltzer P.S., Scheper R.J., Durie B.G., Taylor C.W., Miller T.P., Salmon S.E. Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: Detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J. Clin. Oncol. 1989;7:415–424. doi: 10.1200/JCO.1989.7.4.415. PubMed DOI

Kim H.G., Hien T.T., Han E.H., Hwang Y.P., Choi J.H., Kang K.W., Kwon K.I., Kim B.H., Kim S.K., Song G.Y., et al. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br. J. Pharmacol. 2011;162:1096–1108. doi: 10.1111/j.1476-5381.2010.01101.x. PubMed DOI PMC

Seebacher N.A., Richardson D.R., Jansson P.J. A mechanism for overcoming P-glycoprotein-mediated drug resistance: Novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis. 2016;7:e2510. doi: 10.1038/cddis.2016.381. PubMed DOI PMC

Seebacher N., Lane D.J.R., Richardson D.R., Jansson P.J. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic. Biol. Med. 2016;96:432–445. doi: 10.1016/j.freeradbiomed.2016.04.201. PubMed DOI

Yamagishi T., Sahni S., Sharp D.M., Arvind A., Jansson P.J., Richardson D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 2013;288:31761–31771. doi: 10.1074/jbc.M113.514091. PubMed DOI PMC

Jansson P.J., Yamagishi T., Arvind A., Seebacher N., Gutierrez E., Stacy A., Maleki S., Sharp D., Sahni S., Richardson D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug-resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp) J. Biol. Chem. 2015;290:9588–9603. doi: 10.1074/jbc.M114.631283. PubMed DOI PMC

Seebacher N.A., Lane D.J.R., Jansson P.J., Richardson D.R. Glucose modulation induces lysosome formation and increases lysosomotropic drug sequestration via the P-glycoprotein drug transporter. J. Biol. Chem. 2016;291:3796–3820. doi: 10.1074/jbc.M115.682450. PubMed DOI PMC

Gottesman M.M. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI

Lovejoy D.B., Jansson P.J., Brunk U.T., Wong J., Ponka P., Richardson D.R. Antitumor Activity of Metal-Chelating Compound Dp44mT Is Mediated by Formation of a Redox-Active Copper Complex That Accumulates in Lysosomes. Cancer Res. 2011;71:5871–5880. doi: 10.1158/0008-5472.CAN-11-1218. PubMed DOI

Gutierrez E.M., Seebacher N.A., Arzuman L., Kovacevic Z., Lane D.J., Richardson V., Merlot A.M., Lok H., Kalinowski D.S., Sahni S., et al. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) Biochim. Biophys. Acta. 2016;1863:1665–1681. doi: 10.1016/j.bbamcr.2016.04.017. PubMed DOI

Stacy A.E., Palanimuthu D., Bernhardt P.V., Kalinowski D.S., Jansson P.J., Richardson D.R. Zinc(II)-thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity. J. Med. Chem. 2016;59:4965–4984. doi: 10.1021/acs.jmedchem.6b00238. PubMed DOI

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI

Fruci D., Cho W.C.S., Nobili V., Locatelli F., Alisi A. Drug Transporters and Multiple Drug Resistance in Pediatric Solid Tumors. Curr. Drug Metab. 2016;17:308–316. doi: 10.2174/1567205010666131212110948. PubMed DOI

Vitale I., Galluzzi L., Castedo M., Kroemer G. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 2011;12:385–392. doi: 10.1038/nrm3115. PubMed DOI

Chen Z., Zhang D., Yue F., Zheng M., Kovacevic Z., Richardson D.R. The Iron Chelators Dp44mT and DFO Inhibit TGF-β-induced Epithelial-Mesenchymal Transition via Up-Regulation of N-Myc Downstream-regulated Gene 1 (NDRG1) J. Biol. Chem. 2012;287:17016–17028. doi: 10.1074/jbc.M112.350470. PubMed DOI PMC

Kuo L.J., Yang L.X. Gamma-H2AX—A novel biomarker for DNA double-strand breaks. In Vivo. 2008;22:305–309. PubMed

Stacy A.E., Palanimuthu D., Bernhardt P.V., Kalinowski D.S., Jansson P.J., Richardson D.R. Structure-activity relationships of di-2-pyridylketone, 2-benzoylpyridine and 2-acetylpyridine thiosemicarbazones for overcoming Pgp-mediated drug resistance. J. Med. Chem. 2016;59:8601–8620. doi: 10.1021/acs.jmedchem.6b01050. PubMed DOI

Hande K.R. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer. 1998;34:1514–1521. doi: 10.1016/S0959-8049(98)00228-7. PubMed DOI

Kastan M.B., Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–323. doi: 10.1038/nature03097. PubMed DOI

Visconti R., Della Monica R., Grieco D. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword. J. Exp. Clin. Cancer Res. 2016;35:153. doi: 10.1186/s13046-016-0433-9. PubMed DOI PMC

Kurz E.U., Douglas P., Lees-Miller S.P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 2004;279:53272–53281. doi: 10.1074/jbc.M406879200. PubMed DOI

Bartek J., Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001;490:117–122. doi: 10.1016/S0014-5793(01)02114-7. PubMed DOI

Mustofa M.K., Tanoue Y., Tateishi C., Vaziri C., Tateishi S. Roles of CHEK2/CHEK2 in guarding against environmentally induced DNA damage and replication-stress. Environ. Mol. Mutagenes. 2020;61:730–735. doi: 10.1002/em.22397. PubMed DOI

Rao V.A., Klein S.R., Agama K.K., Toyoda E., Adachi N., Pommier Y., Shacter E.B. The Iron Chelator Dp44mT Causes DNA Damage and Selective Inhibition of Topoisomerase IIα in Breast Cells. Cancer Res. 2009;69:948–957. doi: 10.1158/0008-5472.CAN-08-1437. PubMed DOI PMC

Banáth J.P., Olive P.L. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res. 2003;63:4347–4350. PubMed

Olive P.L. Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol. 2004;75:355–373. doi: 10.1016/s0091-679x(04)75014-1. PubMed DOI

Takahashi A., Ohnishi T. Does gammaH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett. 2005;229:171–179. doi: 10.1016/j.canlet.2005.07.016. PubMed DOI

Hartwell L.H., Kastan M.B. Cell cycle control and cancer. Science. 1994;266:1821–1828. doi: 10.1126/science.7997877. PubMed DOI

Zhou B.B., Elledge S.J. The DNA damage response: Putting checkpoints in perspective. Nature. 2000;408:433–439. doi: 10.1038/35044005. PubMed DOI

Xiao Z., Xue J., Sowin T.J., Rosenberg S.H., Zhang H. A novel mechanism of checkpoint abrogation conferred by CHEK1 downregulation. Oncogene. 2005;24:1403–1411. doi: 10.1038/sj.onc.1208309. PubMed DOI

Richardson D.R., Tran E.H., Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood. 1995;86:4295–4306. doi: 10.1182/blood.V86.11.4295.bloodjournal86114295. PubMed DOI

Krzyzankova M., Chovanova S., Chlapek P., Radsetoulal M., Neradil J., Zitterbart K., Sterba J., Veselska R. LOX/COX inhibitors enhance the antineoplastic effects of all-trans retinoic acid in osteosarcoma cell lines. Tumor Biol. 2014;35:7617–7627. doi: 10.1007/s13277-014-2019-5. PubMed DOI

Lovejoy D.B., Sharp D.M., Seebacher N., Obeidy P., Prichard T., Stefani C., Basha M.T., Sharpe P.C., Jansson P.J., Kalinowski D.S., et al. Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo. J. Med. Chem. 2012;55:7230–7244. doi: 10.1021/jm300768u. PubMed DOI

Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI

Mikulenkova E., Neradil J., Zitterbart K., Sterba J., Veselska R. Overexpression of the ∆Np73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumor. Biol. 2015;36:7483–7491. doi: 10.1007/s13277-015-3474-3. PubMed DOI

Vindeløv L.L., Christensen I.J., Nissen N.I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983;3:323–327. doi: 10.1002/cyto.990030503. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...