Thiosemicarbazones Can Act Synergistically with Anthracyclines to Downregulate CHEK1 Expression and Induce DNA Damage in Cell Lines Derived from Pediatric Solid Tumors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-33104A
Ministry of Health
MUNI/A/1522/2020
Masaryk University
MUNI/A/1325/2021
Masaryk University
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund
LX22NPO5102
European Union - Next Generation EU
PubMed
35955683
PubMed Central
PMC9369312
DOI
10.3390/ijms23158549
PII: ijms23158549
Knihovny.cz E-zdroje
- Klíčová slova
- anthracenedione, anthracyclines, checkpoint kinase 1, combined anticancer treatment, double strand breaks in DNA, pediatric solid tumors, thiosemicarbazones,
- MeSH
- antracykliny * farmakologie MeSH
- checkpoint kinasa 1 metabolismus MeSH
- dítě MeSH
- doxorubicin metabolismus farmakologie MeSH
- inhibitory topoisomerasy II MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- P-glykoprotein metabolismus MeSH
- poškození DNA MeSH
- protinádorová antibiotika MeSH
- thiosemikarbazony * farmakologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antracykliny * MeSH
- checkpoint kinasa 1 MeSH
- CHEK1 protein, human MeSH Prohlížeč
- doxorubicin MeSH
- inhibitory topoisomerasy II MeSH
- P-glykoprotein MeSH
- protinádorová antibiotika MeSH
- thiosemikarbazony * MeSH
Anticancer therapy by anthracyclines often leads to the development of multidrug resistance (MDR), with subsequent treatment failure. Thiosemicarbazones have been previously suggested as suitable anthracycline partners due to their ability to overcome drug resistance through dual Pgp-dependent cytotoxicity-inducing effects. Here, we focused on combining anthracyclines (doxorubicin, daunorubicin, and mitoxantrone) and two thiosemicarbazones (DpC and Dp44mT) for treating cell types derived from the most frequent pediatric solid tumors. Our results showed synergistic effects for all combinations of treatments in all tested cell types. Nevertheless, further experiments revealed that this synergism was independent of Pgp expression but rather resulted from impaired DNA repair control leading to cell death via mitotic catastrophe. The downregulation of checkpoint kinase 1 (CHEK1) expression by thiosemicarbazones and the ability of both types of agents to induce double-strand breaks in DNA may explain the Pgp-independent synergism between anthracyclines and thiosemicarbazones. Moreover, the concomitant application of these agents was found to be the most efficient approach, achieving the strongest synergistic effect with lower concentrations of these drugs. Overall, our study identified a new mechanism that offers an avenue for combining thiosemicarbazones with anthracyclines to treat tumors regardless the Pgp status.
Department of Experimental Biology Faculty of Science Masaryk University 61137 Brno Czech Republic
International Clinical Research Center St Anne's University Hospital 65691 Brno Czech Republic
Zobrazit více v PubMed
Martins-Teixeira M.B., Carvalho I. Antitumour Anthracyclines: Progress and Perspectives. Chem. Med. Chem. 2020;15:933–948. doi: 10.1002/cmdc.202000131. PubMed DOI
Nadas J., Sun D. Anthracyclines as effective anticancer drugs. Expert Opin. Drug Discov. 2006;1:549–568. doi: 10.1517/17460441.1.6.549. PubMed DOI
Cortés-Funes H., Coronado C. Role of anthracyclines in the era of targeted therapy. Cardiovasc. Toxicol. 2007;7:56–60. doi: 10.1007/s12012-007-0015-3. PubMed DOI
Gewirtz D.A. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999;57:727–741. doi: 10.1016/S0006-2952(98)00307-4. PubMed DOI
Marinello J., Delcuratolo M., Capranico G. Anthracyclines as Topoisomerase II Poisons: From Early Studies to New Perspectives. Int. J. Mol. Sci. 2018;19:3480. doi: 10.3390/ijms19113480. PubMed DOI PMC
Menna P., Paz O.G., Chello M., Covino E., Salvatorelli E., Minotti G. Anthracycline cardiotoxicity. Expert Opin. Drug Saf. 2012;11((Suppl. S1)):S21–S36. doi: 10.1517/14740338.2011.589834. PubMed DOI
Carvalho C., Santos R.X., Cardoso S., Correia S., Oliveira P.J., Santos M.S., Moreira P.I. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009;16:3267–3285. doi: 10.2174/092986709788803312. PubMed DOI
Evison B.J., Sleebs B.E., Watson K.G., Phillips D.R., Cutts S.M. Mitoxantrone, More than Just Another Topoisomerase II Poison. Med. Res. Rev. 2016;36:248–299. doi: 10.1002/med.21364. PubMed DOI
Capelôa T., Benyahia Z., Zampieri L.X., Blackman M.C.N.M., Sonveaux P. Metabolic and non-metabolic pathways that control cancer resistance to anthracyclines. Semin. Cell Dev. Biol. 2020;98:181–191. doi: 10.1016/j.semcdb.2019.05.006. PubMed DOI
Raviv Y., Pollard H.B., Bruggemann E.P., Pastan I., Gottesman M.M. Photosensitized labeling of a functional multidrug transporter in living drug–resistant tumor cells. J. Biol. Chem. 1990;265:3975–3980. doi: 10.1016/S0021-9258(19)39690-5. PubMed DOI
Nielsen D., Maare C., Poulsen F., Lauridsen S.T., Skovsgaard T. Relationship between resistance, P-glycoprotein content and steady-state accumulation in five series of Ehrlich ascites tumour cell lines selected for resistance to daunorubicin. Cell Pharmacol. 1994;1:127–135.
Nielsen D., Maare C., Skovsgaard T. Kinetics of daunorubicin transport in Ehrlich ascites tumor cells with different expression of P-glycoprotein. Biochem. Pharmacol. 1994;47:2125–2135. doi: 10.1016/0006-2952(94)90247-X. PubMed DOI
Shieh M.J., Hsu C.Y., Huang L.Y., Chen H.Y., Huang F.H., Lai P.S. Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. J. Control Release. 2011;152:418–425. doi: 10.1016/j.jconrel.2011.03.017. PubMed DOI
Cheah H.Y., Šarenac O., Arroyo J.J., Vasić M., Lozić M., Glumac S., Hoe S.Z., Hindmarch C.C., Murphy D., Kiew L.V., et al. Hemodynamic effects of HPMA copolymer based doxorubicin conjugate: A randomized controlled and comparative spectral study in conscious rats. Nanotoxicology. 2017;11:210–222. doi: 10.1080/17435390.2017.1285071. PubMed DOI PMC
Ma P., Mumper R.J. Anthracycline Nano-Delivery Systems to Overcome Multiple Drug Resistance: A Comprehensive Review. Nano Today. 2013;8:313–331. doi: 10.1016/j.nantod.2013.04.006. PubMed DOI PMC
Akasov R., Drozdova M., Zaytseva-Zotova D., Leko M., Chelushkin P., Marc A., Chevalot I., Burov S., Klyachko N., Vandamme T., et al. Novel Doxorubicin Derivatives: Synthesis and Cytotoxicity Study in 2D and 3D in Vitro Models. Adv. Pharm. Bull. 2017;7:593–601. doi: 10.15171/apb.2017.071. PubMed DOI PMC
Weiss R.B. The anthracyclines: Will we ever find a better doxorubicin? Semin. Oncol. 1992;19:670–686. PubMed
Chhikara B.S., Mandal D., Parang K. Synthesis, anticancer activities, and cellular uptake studies of lipophilic derivatives of doxorubicin succinate. J. Med. Chem. 2012;55:1500–1510. doi: 10.1021/jm201653u. PubMed DOI
Yu S., Zhang G., Zhang W., Luo H., Qiu L., Liu Q., Sun D., Wang P.G., Wang F. Synthesis and biological activities of a 3′-azido analogue of Doxorubicin against drug-resistant cancer cells. Int. J. Mol. Sci. 2012;13:3671–3684. doi: 10.3390/ijms13033671. PubMed DOI PMC
Piorecka K., Stanczyk W., Florczak M. NMR analysis of antitumor drugs: Doxorubicin, daunorubicin and their functionalized derivatives. Tetrahedron Lett. 2017;58:152–155. doi: 10.1016/j.tetlet.2016.11.118. DOI
Kratz F., Beyer U., Roth T., Tarasova N., Collery P., Lechenault F., Cazabat A., Schumacher P., Unger C., Falken U. Transferrin conjugates of doxorubicin: Synthesis, characterization, cellular uptake, and in vitro efficacy. J. Pharm. Sci. 1998;87:338–346. doi: 10.1021/js970246a. PubMed DOI
Callaghan R., Luk F., Bebawy M. Inhibition of the multidrug resistance P-glycoprotein: Time for a change of strategy? Drug Metab. Dispos. 2014;42:623–631. doi: 10.1124/dmd.113.056176. PubMed DOI PMC
Ozols R.F., Cunnion R.E., Klecker R.W., Jr., Hamilton T.C., Ostchega Y., Parrillo J.E., Young R.C. Verapamil and adriamycin in the treatment of drug-resistant ovarian cancer patients. J. Clin. Oncol. 1987;5:641–647. doi: 10.1200/JCO.1987.5.4.641. PubMed DOI
List A.F., Kopecky K.J., Willman C.L., Head D.R., Persons D.L., Slovak M.L., Dorr R., Karanes C., Hynes H.E., Doroshow J.H., et al. Benefit of cyclosporine modulation of drug resistance in patients with poor-risk acute myeloid leukemia: A Southwest Oncology Group study. Blood. 2011;98:3212–3220. doi: 10.1182/blood.V98.12.3212. PubMed DOI
Dalton W.S., Grogan T.M., Meltzer P.S., Scheper R.J., Durie B.G., Taylor C.W., Miller T.P., Salmon S.E. Drug-resistance in multiple myeloma and non-Hodgkin’s lymphoma: Detection of P-glycoprotein and potential circumvention by addition of verapamil to chemotherapy. J. Clin. Oncol. 1989;7:415–424. doi: 10.1200/JCO.1989.7.4.415. PubMed DOI
Kim H.G., Hien T.T., Han E.H., Hwang Y.P., Choi J.H., Kang K.W., Kwon K.I., Kim B.H., Kim S.K., Song G.Y., et al. Metformin inhibits P-glycoprotein expression via the NF-κB pathway and CRE transcriptional activity through AMPK activation. Br. J. Pharmacol. 2011;162:1096–1108. doi: 10.1111/j.1476-5381.2010.01101.x. PubMed DOI PMC
Seebacher N.A., Richardson D.R., Jansson P.J. A mechanism for overcoming P-glycoprotein-mediated drug resistance: Novel combination therapy that releases stored doxorubicin from lysosomes via lysosomal permeabilization using Dp44mT or DpC. Cell Death Dis. 2016;7:e2510. doi: 10.1038/cddis.2016.381. PubMed DOI PMC
Seebacher N., Lane D.J.R., Richardson D.R., Jansson P.J. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance. Free Radic. Biol. Med. 2016;96:432–445. doi: 10.1016/j.freeradbiomed.2016.04.201. PubMed DOI
Yamagishi T., Sahni S., Sharp D.M., Arvind A., Jansson P.J., Richardson D.R. P-glycoprotein mediates drug resistance via a novel mechanism involving lysosomal sequestration. J. Biol. Chem. 2013;288:31761–31771. doi: 10.1074/jbc.M113.514091. PubMed DOI PMC
Jansson P.J., Yamagishi T., Arvind A., Seebacher N., Gutierrez E., Stacy A., Maleki S., Sharp D., Sahni S., Richardson D.R. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug-resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp) J. Biol. Chem. 2015;290:9588–9603. doi: 10.1074/jbc.M114.631283. PubMed DOI PMC
Seebacher N.A., Lane D.J.R., Jansson P.J., Richardson D.R. Glucose modulation induces lysosome formation and increases lysosomotropic drug sequestration via the P-glycoprotein drug transporter. J. Biol. Chem. 2016;291:3796–3820. doi: 10.1074/jbc.M115.682450. PubMed DOI PMC
Gottesman M.M. Multidrug resistance in cancer: Role of ATP-dependent transporters. Nat. Rev. Cancer. 2002;2:48–58. doi: 10.1038/nrc706. PubMed DOI
Lovejoy D.B., Jansson P.J., Brunk U.T., Wong J., Ponka P., Richardson D.R. Antitumor Activity of Metal-Chelating Compound Dp44mT Is Mediated by Formation of a Redox-Active Copper Complex That Accumulates in Lysosomes. Cancer Res. 2011;71:5871–5880. doi: 10.1158/0008-5472.CAN-11-1218. PubMed DOI
Gutierrez E.M., Seebacher N.A., Arzuman L., Kovacevic Z., Lane D.J., Richardson V., Merlot A.M., Lok H., Kalinowski D.S., Sahni S., et al. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) Biochim. Biophys. Acta. 2016;1863:1665–1681. doi: 10.1016/j.bbamcr.2016.04.017. PubMed DOI
Stacy A.E., Palanimuthu D., Bernhardt P.V., Kalinowski D.S., Jansson P.J., Richardson D.R. Zinc(II)-thiosemicarbazone complexes are localized to the lysosomal compartment where they transmetallate with copper ions to induce cytotoxicity. J. Med. Chem. 2016;59:4965–4984. doi: 10.1021/acs.jmedchem.6b00238. PubMed DOI
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. doi: 10.3322/caac.21332. PubMed DOI
Fruci D., Cho W.C.S., Nobili V., Locatelli F., Alisi A. Drug Transporters and Multiple Drug Resistance in Pediatric Solid Tumors. Curr. Drug Metab. 2016;17:308–316. doi: 10.2174/1567205010666131212110948. PubMed DOI
Vitale I., Galluzzi L., Castedo M., Kroemer G. Mitotic catastrophe: A mechanism for avoiding genomic instability. Nat. Rev. Mol. Cell Biol. 2011;12:385–392. doi: 10.1038/nrm3115. PubMed DOI
Chen Z., Zhang D., Yue F., Zheng M., Kovacevic Z., Richardson D.R. The Iron Chelators Dp44mT and DFO Inhibit TGF-β-induced Epithelial-Mesenchymal Transition via Up-Regulation of N-Myc Downstream-regulated Gene 1 (NDRG1) J. Biol. Chem. 2012;287:17016–17028. doi: 10.1074/jbc.M112.350470. PubMed DOI PMC
Kuo L.J., Yang L.X. Gamma-H2AX—A novel biomarker for DNA double-strand breaks. In Vivo. 2008;22:305–309. PubMed
Stacy A.E., Palanimuthu D., Bernhardt P.V., Kalinowski D.S., Jansson P.J., Richardson D.R. Structure-activity relationships of di-2-pyridylketone, 2-benzoylpyridine and 2-acetylpyridine thiosemicarbazones for overcoming Pgp-mediated drug resistance. J. Med. Chem. 2016;59:8601–8620. doi: 10.1021/acs.jmedchem.6b01050. PubMed DOI
Hande K.R. Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer. 1998;34:1514–1521. doi: 10.1016/S0959-8049(98)00228-7. PubMed DOI
Kastan M.B., Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432:316–323. doi: 10.1038/nature03097. PubMed DOI
Visconti R., Della Monica R., Grieco D. Cell cycle checkpoint in cancer: A therapeutically targetable double-edged sword. J. Exp. Clin. Cancer Res. 2016;35:153. doi: 10.1186/s13046-016-0433-9. PubMed DOI PMC
Kurz E.U., Douglas P., Lees-Miller S.P. Doxorubicin activates ATM-dependent phosphorylation of multiple downstream targets in part through the generation of reactive oxygen species. J. Biol. Chem. 2004;279:53272–53281. doi: 10.1074/jbc.M406879200. PubMed DOI
Bartek J., Lukas J. Pathways governing G1/S transition and their response to DNA damage. FEBS Lett. 2001;490:117–122. doi: 10.1016/S0014-5793(01)02114-7. PubMed DOI
Mustofa M.K., Tanoue Y., Tateishi C., Vaziri C., Tateishi S. Roles of CHEK2/CHEK2 in guarding against environmentally induced DNA damage and replication-stress. Environ. Mol. Mutagenes. 2020;61:730–735. doi: 10.1002/em.22397. PubMed DOI
Rao V.A., Klein S.R., Agama K.K., Toyoda E., Adachi N., Pommier Y., Shacter E.B. The Iron Chelator Dp44mT Causes DNA Damage and Selective Inhibition of Topoisomerase IIα in Breast Cells. Cancer Res. 2009;69:948–957. doi: 10.1158/0008-5472.CAN-08-1437. PubMed DOI PMC
Banáth J.P., Olive P.L. Expression of phosphorylated histone H2AX as a surrogate of cell killing by drugs that create DNA double-strand breaks. Cancer Res. 2003;63:4347–4350. PubMed
Olive P.L. Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol. 2004;75:355–373. doi: 10.1016/s0091-679x(04)75014-1. PubMed DOI
Takahashi A., Ohnishi T. Does gammaH2AX foci formation depend on the presence of DNA double strand breaks? Cancer Lett. 2005;229:171–179. doi: 10.1016/j.canlet.2005.07.016. PubMed DOI
Hartwell L.H., Kastan M.B. Cell cycle control and cancer. Science. 1994;266:1821–1828. doi: 10.1126/science.7997877. PubMed DOI
Zhou B.B., Elledge S.J. The DNA damage response: Putting checkpoints in perspective. Nature. 2000;408:433–439. doi: 10.1038/35044005. PubMed DOI
Xiao Z., Xue J., Sowin T.J., Rosenberg S.H., Zhang H. A novel mechanism of checkpoint abrogation conferred by CHEK1 downregulation. Oncogene. 2005;24:1403–1411. doi: 10.1038/sj.onc.1208309. PubMed DOI
Richardson D.R., Tran E.H., Ponka P. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents. Blood. 1995;86:4295–4306. doi: 10.1182/blood.V86.11.4295.bloodjournal86114295. PubMed DOI
Krzyzankova M., Chovanova S., Chlapek P., Radsetoulal M., Neradil J., Zitterbart K., Sterba J., Veselska R. LOX/COX inhibitors enhance the antineoplastic effects of all-trans retinoic acid in osteosarcoma cell lines. Tumor Biol. 2014;35:7617–7627. doi: 10.1007/s13277-014-2019-5. PubMed DOI
Lovejoy D.B., Sharp D.M., Seebacher N., Obeidy P., Prichard T., Stefani C., Basha M.T., Sharpe P.C., Jansson P.J., Kalinowski D.S., et al. Novel Second-Generation Di-2-Pyridylketone Thiosemicarbazones Show Synergism with Standard Chemotherapeutics and Demonstrate Potent Activity against Lung Cancer Xenografts after Oral and Intravenous Administration in Vivo. J. Med. Chem. 2012;55:7230–7244. doi: 10.1021/jm300768u. PubMed DOI
Chou T.C. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol. Rev. 2006;58:621–681. doi: 10.1124/pr.58.3.10. PubMed DOI
Mikulenkova E., Neradil J., Zitterbart K., Sterba J., Veselska R. Overexpression of the ∆Np73 isoform is associated with centrosome amplification in brain tumor cell lines. Tumor. Biol. 2015;36:7483–7491. doi: 10.1007/s13277-015-3474-3. PubMed DOI
Vindeløv L.L., Christensen I.J., Nissen N.I. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry. 1983;3:323–327. doi: 10.1002/cyto.990030503. PubMed DOI