Biochemical Background in Mitochondria Affects 2HG Production by IDH2 and ADHFE1 in Breast Carcinoma
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
21-01205S
Grantová Agentura České Republiky
PubMed
33916579
PubMed Central
PMC8038481
DOI
10.3390/cancers13071709
PII: cancers13071709
Knihovny.cz E-resources
- Keywords
- 2HG, IDH2, breast carcinoma,
- Publication type
- Journal Article MeSH
Mitochondrial production of 2-hydroxyglutarate (2HG) can be catalyzed by wild-type isocitrate dehydrogenase 2 (IDH2) and alcohol dehydrogenase, iron-containing 1 (ADHFE1). We investigated whether biochemical background and substrate concentration in breast cancer cells promote 2HG production. To estimate its role in 2HG production, we quantified 2HG levels and its enantiomers in breast cancer cells using analytical approaches for metabolomics. By manipulation of mitochondrial substrate fluxes using genetic and pharmacological approaches, we demonstrated the existence of active competition between 2HG producing enzymes, i.e., IDH2 and ADHFE1. Moreover, we showed that distinct fractions of IDH2 enzyme molecules operate in distinct oxido-reductive modes, providing NADPH and producing 2HG simultaneously. We have also detected 2HG release in the urine of breast cancer patients undergoing adjuvant therapy and detected a correlation with stages of breast carcinoma development. In summary, we provide a background for vital mitochondrial production of 2HG in breast cancer cells with outcomes towards cancer biology and possible future diagnosis of breast carcinoma.
See more in PubMed
Smolková K., Mikó E., Kovács T., Leguina-Ruzzi A., Sipos A., Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid. Redox Signal. 2020;33:966–997. doi: 10.1089/ars.2020.8024. PubMed DOI PMC
Losman J.-A., Looper R.E., Koivunen P., Lee S., Schneider R.K., McMahon C., Cowley G.S., Root D.E., Ebert B.L., Jr. (R)-2-Hydroxyglutarate Is Sufficient to Promote Leukemogenesis and Its Effects Are Reversible. Science. 2013;339:1621–1625. doi: 10.1126/science.1231677. PubMed DOI PMC
Koivunen P., Lee S., Duncan C.G., Lopez G.Y., Lu G., Ramkissoon S.H., Losman J.A., Joensuu P., Bergmann U., Gross S., et al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature. 2012;483:484–488. doi: 10.1038/nature10898. PubMed DOI PMC
Figueroa M.E., Abdel-Wahab O., Lu C., Ward P.S., Patel J., Shih A., Li Y., Bhagwat N., VasanthaKumar A., Fernandez H.F., et al. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function and Impair Hematopoietic Differentiation. Cancer Cell. 2010;18:553–567. doi: 10.1016/j.ccr.2010.11.015. PubMed DOI PMC
Lu C., Ward P.S., Kapoor G.S., Rohle D., Turcan S., Abdel-Wahab O., Edwards C.R., Khanin R., Figueroa M.E., Melnick A., et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474–478. doi: 10.1038/nature10860. PubMed DOI PMC
Borger D.R., Goyal L., Yau T., Poon R.T., Ancukiewicz M., Deshpande V., Christiani D.C., Liebman H.M., Yang H., Kim H., et al. Circulating Oncometabolite 2-Hydroxyglutarate Is a Potential Surrogate Biomarker in Patients with Isocitrate Dehydrogenase-Mutant Intrahepatic Cholangiocarcinoma. Clin. Cancer Res. 2014;20:1884–1890. doi: 10.1158/1078-0432.CCR-13-2649. PubMed DOI PMC
Ježek P. 2-Hydroxyglutarate in Cancer Cells. Antioxid. Redox Signal. 2020;33:903–926. doi: 10.1089/ars.2019.7902. PubMed DOI PMC
Smolková K., Dvorak A., Zelenka J., Vítek L., Jezek P. Reductive carboxylation and 2-hydroxyglutarate formation by wild-type IDH2 in breast carcinoma cells. Int. J. Biochem. Cell Biol. 2015;65:125–133. doi: 10.1016/j.biocel.2015.05.012. PubMed DOI
Smolková K., Špačková J., Gotvaldová K., Dvořák A., Křenková A., Hubálek M., Holendová B., Vítek L., Ježek P. SIRT3 and GCN5L regulation of NADP+ and NADPH-driven reactions of mitochondrial isocitrate dehydrogenase IDH2. Sci. Rep. 2020;10:1–12. doi: 10.1038/s41598-020-65351-z. PubMed DOI PMC
Dvořák A., Zelenka J., Smolková K., Vítek L., Ježek P. Background levels of neomorphic 2-hydroxyglutarate facilitate proliferation of primary fibroblasts. Physiol. Res. 2017;66 doi: 10.33549/physiolres.933249. PubMed DOI
Terunuma A., Putluri N., Mishra P., Mathé E.A., Dorsey T.H., Yi M., Wallace T.A., Issaq H.J., Zhou M., Killian J.K., et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast cancer prognosis. J. Clin. Investig. 2014;124:398–412. doi: 10.1172/JCI71180. PubMed DOI PMC
Struys E.A., Verhoeven N.M., Brink H.J.T., Wickenhagen W.V., Gibson K.M., Jakobs C. Kinetic characterization of human hydroxyacid-oxoacid transhydrogenase: Relevance toD-2-hydroxyglutaric and γ-hydroxybutyric acidurias. J. Inherit. Metab. Dis. 2005;28:921–930. doi: 10.1007/s10545-005-0114-x. PubMed DOI
Mishra P., Tang W., Putluri V., Dorsey T.H., Jin F., Wang F., Zhu D., Amable L., Deng T., Zhang S., et al. ADHFE1 is a breast cancer oncogene and induces metabolic reprogramming. J. Clin. Investig. 2017;128:323–340. doi: 10.1172/JCI93815. PubMed DOI PMC
Nadtochiy S.M., Schafer X., Fu D., Nehrke K., Munger J., Brookes P.S. Acidic pH Is a Metabolic Switch for 2-Hydroxyglutarate Generation and Signaling. J. Biol. Chem. 2016;291:20188–20197. doi: 10.1074/jbc.M116.738799. PubMed DOI PMC
Intlekofer A.M., Dematteo R.G., Venneti S., Finley L.W., Lu C., Judkins A.R., Rustenburg A.S., Grinaway P.B., Chodera J.D., Cross J.R., et al. Hypoxia Induces Production of L-2-Hydroxyglutarate. Cell Metab. 2015;22:304–311. doi: 10.1016/j.cmet.2015.06.023. PubMed DOI PMC
Kranendijk M., Struys E.A., Salomons G.S., Van Der Knaap M.S., Jakobs C. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 2012;35:571–587. doi: 10.1007/s10545-012-9462-5. PubMed DOI PMC
Fendt S.-M., Bell E.L., Keibler M.A., Olenchock B.A., Mayers J.R., Wasylenko T.M., Vokes N.I., Guarente L., Heiden M.G.V., Stephanopoulos G. Reductive glutamine metabolism is a function of the α-ketoglutarate to citrate ratio in cells. Nat. Commun. 2013;4:1–11. doi: 10.1038/ncomms3236. PubMed DOI PMC
Gameiro P.A., Yang J., Metelo A.M., Pérez-Carro R., Baker R., Wang Z., Arreola A., Rathmell W.K., Olumi A., López-Larrubia P., et al. In Vivo HIF-Mediated Reductive Carboxylation Is Regulated by Citrate Levels and Sensitizes VHL-Deficient Cells to Glutamine Deprivation. Cell Metab. 2013;17:372–385. doi: 10.1016/j.cmet.2013.02.002. PubMed DOI PMC
Sazanov L.A., Jackson J.B. Proton-translocating transhydrogenase and NAD-and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett. 1994;344:109–116. doi: 10.1016/0014-5793(94)00370-X. PubMed DOI
Mullen A.R., Hu Z., Shi X., Jiang L., Boroughs L.K., Kovacs Z., Boriack R., Rakheja D., Sullivan L.B., Linehan W.M., et al. Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects. Cell Rep. 2014;7:1679–1690. doi: 10.1016/j.celrep.2014.04.037. PubMed DOI PMC
Gameiro P.A., Laviolette L.A., Kelleher J.K., Iliopoulos O., Stephanopoulos G. Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J. Biol. Chem. 2013;288:12967–12977. doi: 10.1074/jbc.M112.396796. PubMed DOI PMC
Dlasková A., Špaček T., Engstová H., Špačková J., Schröfel A., Holendová B., Smolková K., Plecitá-Hlavatá L., Ježek P. Mitochondrial cristae narrowing upon higher 2-oxoglutarate load. Biochim. Biophys. Acta Bioenerg. 2019;1860:659–678. doi: 10.1016/j.bbabio.2019.06.015. PubMed DOI
Ferreira A.P.S., Cassago A., Gonçalves K.A., Dias M.M., Adamoski D., Ascenção C.F.R., Honorato R.V., Oliveira J.F., Ferreira I.M., Fornezari C., et al. Active Glutaminase C Self-assembles into a Supratetrameric Oligomer that Can be Disrupted by an Allosteric Inhibitor. J. Biol. Chem. 2013;288:28009. doi: 10.1074/jbc.M113.501346. PubMed DOI PMC
Wise D.R., Ward P.S., Shay J.E.S., Cross J.R., Gruber J.J., Sachdeva U.M., Platt J.M., DeMatteo R.G., Simon M.C., Thompson C.B. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. USA. 2011;108:19611–19616. doi: 10.1073/pnas.1117773108. PubMed DOI PMC
Yang L., Moss T., Mangala L.S., Marini J., Zhao H., Wahlig S., Armaiz-Pena G., Jiang D., Achreja A., Win J., et al. Metabolic shifts toward glutamine regulate tumor growth, invasion and bioenergetics in ovarian cancer. Mol. Syst. Biol. 2014;10:728. doi: 10.1002/msb.20134892. PubMed DOI PMC
Ward P.S., Lu C., Cross J.R., Abdel-Wahab O., Levine R.L., Schwartz G.K., Thompson C.B. The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization. J. Biol. Chem. 2013;288:3804–3815. doi: 10.1074/jbc.M112.435495. PubMed DOI PMC
Dexter J.P., Ward P.S., Dasgupta T., Hosios A.M., Gunawardena J., Vander Heiden M.G. Lack of evidence for substrate channeling or flux between wildtype and mutant isocitrate dehydrogenase to produce the oncometabolite 2-hydroxyglutarate. J. Biol. Chem. 2018;293:20051–20061. doi: 10.1074/jbc.RA118.004278. PubMed DOI PMC
Yu W., Dittenhafer-Reed K.E., Denu J.M. SIRT3 Protein Deacetylates Isocitrate Dehydrogenase 2 (IDH2) and Regulates Mitochondrial Redox Status. J. Biol. Chem. 2012;287:14078–14086. doi: 10.1074/jbc.M112.355206. PubMed DOI PMC
Lu W., Wang L., Chen L., Hui S., Rabinowitz J.D. Extraction and Quantitation of Nicotinamide Adenine Dinucleotide Redox Cofactors. Antioxid. Redox Signal. 2018;28:167–179. doi: 10.1089/ars.2017.7014. PubMed DOI PMC
Cajka T., Smilowitz J.T., Fiehn O. Validating quantitative untargeted lipidomics across nine liquid chromatography-high-resolution mass spectrometry platforms. Anal. Chem. 2017;89:12360–12368. doi: 10.1021/acs.analchem.7b03404. PubMed DOI
Janovska P., Melenovsky V., Svobodova M., Havlenova T., Kratochvilova H., Haluzik M., Hoskova E., Pelikanova T., Kautzner J., Monzo L., et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: The role of natriuretic peptides and cardiolipin. J. Cachexia Sarcopenia Muscle. 2020;11:1614–1627. doi: 10.1002/jcsm.12631. PubMed DOI PMC
Cheng Q.Y., Xiong J., Huang W., Ma Q., Ci W., Feng Y.Q., Yuan B.F. Sensitive Determination of Onco-metabolites of D-and L-2-hydroxyglutarate Enantiomers by Chiral Derivatization Combined with Liquid Chromatography/Mass Spectrometry Analysis. Sci. Rep. 2015;5:1–11. doi: 10.1038/srep15217. PubMed DOI PMC