Genotoxic Effects of Tributyltin and Triphenyltin Isothiocyanates, Cognate RXR Ligands: Comparison in Human Breast Carcinoma MCF 7 and MDA-MB-231 Cells

. 2019 Mar 09 ; 20 (5) : . [epub] 20190309

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30857277

Grantová podpora
APVV-15-0372 Agentúra na Podporu Výskumu a Vývoja
2/0084/16, 2/0092/16 and 1/0136/18 Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Academy of Sciences
320/2018/FaF IGA UVPS Brno
TRANSMED, ITMS: 26240120008 and ITMS: 26240220071 and TRANSMED 2, ITMS: 26240120030 Research & Development Operational Programme funded by the ERDF

The cytotoxicity of two recently synthesized triorganotin isothiocyanate derivatives, nuclear retinoid X receptor ligands, was tested and compared in estrogen-receptor-positive MCF 7 and -negative MDA-MB-231 human breast carcinoma cell lines. A 48 h MTT assay indicated that tributyltin isothiocyanate (TBT-ITC) is more cytotoxic than triphenyltin isothiocyanate (TPT-ITC) in MCF 7 cells, and the same trend was observed in the MDA-MB-231 cell line. A comet assay revealed the presence of both crosslinks and increasing DNA damage levels after the 17 h treatment with both derivatives. Differences in cytotoxicity of TBT-ITC and TPT-ITC detected by FDA staining correspond to the MTT data, communicating more pronounced effects in MCF 7 than in the MDA-MB-231 cell line. Both derivatives were found to cause apoptosis, as shown by the mitochondrial membrane potential (MMP) depolarization and caspase-3/7 activation. The onset of caspase activation correlated with MMP dissipation and the total cytotoxicity more than with the amount of active caspases. In conclusion, our data suggest that the DNA damage induced by TBT-ITC and TPT-ITC treatment could underlie their cytotoxicity in the cell lines studied.

Zobrazit více v PubMed

Nakanishi T., Nishikawa J., Hiromori Y., Yokoyama H., Koyanagi M., Takasuga S., Ishizaki J., Watanabe M., Isa S., Utoguchi N., et al. Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Mol. Endocrinol. 2005;19:2502–2516. doi: 10.1210/me.2004-0397. PubMed DOI

leMaire A., Grimaldi M., Roecklin D., Dagnino S., Vivat-Hannah V., Balaguer P., Bourguet W. Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep. 2009;10:367–373. doi: 10.1038/embor.2009.8. PubMed DOI PMC

Toporova L., Macejova D., Brtko J. Radioligand binding assay for accurate determination of nuclear retinoid X receptors: A case of triorganotin endocrine disrupting ligands. Toxicol. Lett. 2016;254:32–36. doi: 10.1016/j.toxlet.2016.05.005. PubMed DOI

Nakanishi T. Endocrine disruption induced by organotin compounds: Organotins function as a powerful agonist for nuclear receptors rather than aromatase inhibitor. J. Toxicol. Sci. 2008;33:269–276. doi: 10.2131/jts.33.269. PubMed DOI

Brtko J., Dvorak Z. Triorganotin compounds—Ligands for “rexinoid” inducible transcription factors: Biological effects. Toxicol. Lett. 2015;234:50–58. doi: 10.1016/j.toxlet.2015.02.009. PubMed DOI

Novotny L., Sharaf L., Abdel-Hamid M.E., Brtko J. Stability studies of endocrine disrupting tributyltin and triphenyltin compounds in an artificial sea water model. Gen. Physiol. Biophys. 2018;37:93–99. doi: 10.4149/gpb_2017051. PubMed DOI

Macejova D., Toporova L., Brtko J. The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals. Endocr. Regul. 2016;50:154–164. doi: 10.1515/enr-2016-0018. PubMed DOI

Grün F., Blumberg B. Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147:S50–S55. doi: 10.1210/en.2005-1129. PubMed DOI

Florea A.M., Dopp E., Obe G. Organic Metal and Metalloid Species in the Environment: Analysis, Distribution, Processes and Toxicology Evaluation. Springer; Heidelberg, Germany: 2004. Genotoxicity of organometallic species; pp. 205–219.

Zuo Z., Wang C., Wu M., Wang Y., Cheng Y. Exposure to tributyltin and triphenyltin induces DNA damage and alters nucleotide excision repair gene transcription in Sebastiscus marmoratus liver. Aquat. Toxicol. 2012;122–123:106–112. doi: 10.1016/j.aquatox.2012.05.015. PubMed DOI

Alama A., Tasso B., Novelli F., Sparatore F. Organometallic compounds in oncology: Implications of novel organotins as antitumor agents. Drug Discov. Today. 2009;14:500–508. doi: 10.1016/j.drudis.2009.02.002. PubMed DOI

Barbieri F., Viale M., Sparatore F., Schettini G., Favre A., Bruzzo C., Novelli F., Alama A. Antitumor activity of a new orally active organotin compound: A preliminary study in murine tumor models. Anticancer Drugs. 2002;13:599–604. doi: 10.1097/00001813-200207000-00006. PubMed DOI

Hunakova L., Macejova D., Toporova L., Brtko J. Anticancer effects of tributyltin chloride and triphenyltin chloride in human breast cancer cell lines MCF 7 and MDA-MB-231. Tumor Biol. 2016;37:6701–6708. doi: 10.1007/s13277-015-4524-6. PubMed DOI

Ferreira M., Blanco L., Garrido A., Vieites J.M., Cabado A.G. In vitro approaches to evaluate toxicity induced by organotin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in neuroblastoma cells. J. Agric. Food Chem. 2013;61:4195–4203. doi: 10.1021/jf3050186. PubMed DOI

Botelho G., Bernardini C., Zannoni A., Ventrella V., Bacci M.L., Forni M. Effect of tributyltin on mammalian endothelial cell integrity. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2015;176–177:79–86. doi: 10.1016/j.cbpc.2015.07.012. PubMed DOI

Tabassum S., Pettinary C. Chemical and biotechnological developments in organotin cancer chemotherapy. J. Organomet. Chem. 2006;691:1761–1766. doi: 10.1016/j.jorganchem.2005.12.033. DOI

Hunakova L., Brtko J. Sn- and Ge-triorganometallics exert different cytotoxicity and modulation of migration in triple-negative breast cancer cell line MDA-MB-231. Toxicol. Lett. 2017;279:16–21. doi: 10.1016/j.toxlet.2017.07.879. PubMed DOI

Brtko J., Dvorak Z. Nuclear retinoid/retinoid X receptors and their endogenous and xenobiotic ligands in metabolism, differentiation and cancer treatment. Toxicol. Lett. 2014;229:5–6. doi: 10.1016/j.toxlet.2014.06.046. DOI

Macejova D., Toporova L., Brtko J. Effects of natural ligands and synthetic triorganotin compounds of nuclear retinoid X receptors in human MCF 7 breast cancer cell line. Gen. Physiol. Biophys. 2017;36:481–484. doi: 10.4149/gpb_2017038. PubMed DOI

Gupta P., Kim B., Kim S.H., Srivastava S.K. Molecular targets of isothiocyanates in cancer: Recent advances. Mol. Nutr. Food Res. 2014;58:1685–1707. doi: 10.1002/mnfr.201300684. PubMed DOI PMC

Hunakova L., Gronesova P., Horvathova E., Chalupa I., Cholujova D., Duraj J., Sedlak J. Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane. Toxicol. Lett. 2014;230:479–486. doi: 10.1016/j.toxlet.2014.08.018. PubMed DOI

Bodo J., Hunakova L., Kvasnicka P., Jakubikova J., Duraj J., Kasparkova J., Sedlak J. Sensitization for cisplatin-induced apoptosis by isothiocyanate E-4IB leads to signaling pathways alterations. Br. J. Cancer. 2006;95:1348–1353. doi: 10.1038/sj.bjc.6603434. PubMed DOI PMC

Stehlik P., Paulikova H., Hunakova L. Synthetic isothiocyanate indole-3-ethyl isothiocyanate (homoITC) enhances sensitivity of human ovarian carcinoma cell lines A2780 and A2780/CP to cisplatin. Neoplasma. 2010;57:473–481. doi: 10.4149/neo_2010_05_473. PubMed DOI

Hunakova L., Sedlakova O., Cholujova D., Gronesova P., Duraj J., Sedlak J. Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane. Neoplasma. 2009;56:548–556. doi: 10.4149/neo_2009_06_548. PubMed DOI

Metsios A., Verginadis I., Simos Y., Batistatou A., Peschos D., Ragos V., Vezyraki P., Evangelou A., Karkabounas S. Cytotoxic and anticancer effects of the triorganotin compound [(C6H5)3Sn(cmbzt)]: An in vitro, ex vivo and in vivo study. Eur. J. Pharm. Sci. 2012;47:490–496. doi: 10.1016/j.ejps.2012.07.011. PubMed DOI

Bohacova V., Seres M., Pavlikova L., Kontar S., Cagala M., Bobal P., Otevrel J., Brtko J., Sulova Z., Breier A. Triorganotin derivatives induce cell death effects on L1210 leukemia cells at submicromolar concentrations independently of P-glycoprotein expression. Molecules. 2018;23:1053. doi: 10.3390/molecules23051053. PubMed DOI PMC

Lorenzo Y., Costa S., Collins A.R., Azqueta A. The comet assay, DNA damage, DNA repair and cytotoxicity: Hedgehogs are not always dead. Mutagenesis. 2013;28:427–432. doi: 10.1093/mutage/get018. PubMed DOI

Unger F.T., Klasen H.A., Tchartchian G., de Wilde R.L., Witte I. DNA damage induced by cis- and carboplatin as indicator for in vitro sensitivity of ovarian carcinoma cells. BMC Cancer. 2009;9:359. doi: 10.1186/1471-2407-9-359. PubMed DOI PMC

Plunkett W., Huang P., Searcy C.E., Gandhi V. Gemcitabine: Pharmacology and mechanisms of action. Sem. Oncol. 1996;23:3–15. PubMed

Gewirtz D.A. A Critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999;57:727–741. doi: 10.1016/S0006-2952(98)00307-4. PubMed DOI

You M.K., Kim H.J., Kook J.H., Kim H.A.S. John’s wort regulates proliferation and apoptosis in MCF 7 human breast cancer cells by inhibiting AMPK/mTOR and activating the mitochondrial pathway. Int. J. Mol. Sci. 2018;19:966. doi: 10.3390/ijms19040966. PubMed DOI PMC

Arcidiacono P., Ragonese F., Stabile A., Pistilli A., Kuligina E., Rende M., Bottoni U., Calvieri S., Crisanti A., Spaccapelo R. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur. J. Nutr. 2018;57:2547–2569. doi: 10.1007/s00394-017-1527-7. PubMed DOI PMC

Seltzer R. The reactions of organotin chlorides with the cyanodithioimidocarbonate anion. J. Org. Chem. 1968;33:3896–3900. doi: 10.1021/jo01274a044. DOI

Wharf I. Studies in aryltin chemistry. Part 5. Tin-119 and carbon-13 NMR spectra of some tetra- and triaryltin compounds. Inorg. Chim. Acta. 1989;159:41–48. doi: 10.1016/S0020-1693(00)80893-2. DOI

Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI

Slamenova D., Gabelova A., Ruzekova L., Chalupa I., Horvathova E., Farkasova T., Bozsakyova E., Stetina R. Detection of MNNG-induced DNA lesions in mammalian cells: Validation of comet assay against DNA unwinding technique, alkaline elution of DNA and chromosomal aberrations. Mutat. Res. 1997;383:243–252. doi: 10.1016/S0921-8777(97)00007-4. PubMed DOI

Bartkowiak D., Hogner S., Baust H., Nothdurft W., Rottinger E.M. Comparative analysis of apoptosis in HL60 detected by annexin V and fluorescein diacetate. Cytometry. 1999;37:191–196. doi: 10.1002/(SICI)1097-0320(19991101)37:3<191::AID-CYTO5>3.0.CO;2-U. PubMed DOI

Haugland R.P., Spence M.T.Z., Johnson I.D. Handbook of Fluorescent Probes & Research Chemicals. Molecular Probes Inc.; Eugene, OR, USA: 1996. p. 269.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace