Genotoxic Effects of Tributyltin and Triphenyltin Isothiocyanates, Cognate RXR Ligands: Comparison in Human Breast Carcinoma MCF 7 and MDA-MB-231 Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
APVV-15-0372
Agentúra na Podporu Výskumu a Vývoja
2/0084/16, 2/0092/16 and 1/0136/18
Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Academy of Sciences
320/2018/FaF
IGA UVPS Brno
TRANSMED, ITMS: 26240120008 and ITMS: 26240220071 and TRANSMED 2, ITMS: 26240120030
Research & Development Operational Programme funded by the ERDF
PubMed
30857277
PubMed Central
PMC6429456
DOI
10.3390/ijms20051198
PII: ijms20051198
Knihovny.cz E-zdroje
- Klíčová slova
- DNA crosslinks, apoptosis, breast cancer, cytotoxicity, triorganotin isothiocyanates,
- MeSH
- antitumorózní látky chemie farmakologie MeSH
- apoptóza účinky léků MeSH
- isothiokyanatany chemie farmakologie MeSH
- lidé MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- MFC-7 buňky MeSH
- nádorové buněčné linie MeSH
- nádory prsu farmakoterapie genetika metabolismus MeSH
- organocínové sloučeniny chemie farmakologie MeSH
- poškození DNA účinky léků MeSH
- retinoidní X receptory metabolismus MeSH
- trialkylcínové sloučeniny chemie farmakologie MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- antitumorózní látky MeSH
- isothiokyanatany MeSH
- organocínové sloučeniny MeSH
- retinoidní X receptory MeSH
- trialkylcínové sloučeniny MeSH
- tributyltin MeSH Prohlížeč
- triphenyltin MeSH Prohlížeč
The cytotoxicity of two recently synthesized triorganotin isothiocyanate derivatives, nuclear retinoid X receptor ligands, was tested and compared in estrogen-receptor-positive MCF 7 and -negative MDA-MB-231 human breast carcinoma cell lines. A 48 h MTT assay indicated that tributyltin isothiocyanate (TBT-ITC) is more cytotoxic than triphenyltin isothiocyanate (TPT-ITC) in MCF 7 cells, and the same trend was observed in the MDA-MB-231 cell line. A comet assay revealed the presence of both crosslinks and increasing DNA damage levels after the 17 h treatment with both derivatives. Differences in cytotoxicity of TBT-ITC and TPT-ITC detected by FDA staining correspond to the MTT data, communicating more pronounced effects in MCF 7 than in the MDA-MB-231 cell line. Both derivatives were found to cause apoptosis, as shown by the mitochondrial membrane potential (MMP) depolarization and caspase-3/7 activation. The onset of caspase activation correlated with MMP dissipation and the total cytotoxicity more than with the amount of active caspases. In conclusion, our data suggest that the DNA damage induced by TBT-ITC and TPT-ITC treatment could underlie their cytotoxicity in the cell lines studied.
Zobrazit více v PubMed
Nakanishi T., Nishikawa J., Hiromori Y., Yokoyama H., Koyanagi M., Takasuga S., Ishizaki J., Watanabe M., Isa S., Utoguchi N., et al. Trialkyltin compounds bind retinoid X receptor to alter human placental endocrine functions. Mol. Endocrinol. 2005;19:2502–2516. doi: 10.1210/me.2004-0397. PubMed DOI
leMaire A., Grimaldi M., Roecklin D., Dagnino S., Vivat-Hannah V., Balaguer P., Bourguet W. Activation of RXR-PPAR heterodimers by organotin environmental endocrine disruptors. EMBO Rep. 2009;10:367–373. doi: 10.1038/embor.2009.8. PubMed DOI PMC
Toporova L., Macejova D., Brtko J. Radioligand binding assay for accurate determination of nuclear retinoid X receptors: A case of triorganotin endocrine disrupting ligands. Toxicol. Lett. 2016;254:32–36. doi: 10.1016/j.toxlet.2016.05.005. PubMed DOI
Nakanishi T. Endocrine disruption induced by organotin compounds: Organotins function as a powerful agonist for nuclear receptors rather than aromatase inhibitor. J. Toxicol. Sci. 2008;33:269–276. doi: 10.2131/jts.33.269. PubMed DOI
Brtko J., Dvorak Z. Triorganotin compounds—Ligands for “rexinoid” inducible transcription factors: Biological effects. Toxicol. Lett. 2015;234:50–58. doi: 10.1016/j.toxlet.2015.02.009. PubMed DOI
Novotny L., Sharaf L., Abdel-Hamid M.E., Brtko J. Stability studies of endocrine disrupting tributyltin and triphenyltin compounds in an artificial sea water model. Gen. Physiol. Biophys. 2018;37:93–99. doi: 10.4149/gpb_2017051. PubMed DOI
Macejova D., Toporova L., Brtko J. The role of retinoic acid receptors and their cognate ligands in reproduction in a context of triorganotin based endocrine disrupting chemicals. Endocr. Regul. 2016;50:154–164. doi: 10.1515/enr-2016-0018. PubMed DOI
Grün F., Blumberg B. Environmental obesogens: Organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006;147:S50–S55. doi: 10.1210/en.2005-1129. PubMed DOI
Florea A.M., Dopp E., Obe G. Organic Metal and Metalloid Species in the Environment: Analysis, Distribution, Processes and Toxicology Evaluation. Springer; Heidelberg, Germany: 2004. Genotoxicity of organometallic species; pp. 205–219.
Zuo Z., Wang C., Wu M., Wang Y., Cheng Y. Exposure to tributyltin and triphenyltin induces DNA damage and alters nucleotide excision repair gene transcription in Sebastiscus marmoratus liver. Aquat. Toxicol. 2012;122–123:106–112. doi: 10.1016/j.aquatox.2012.05.015. PubMed DOI
Alama A., Tasso B., Novelli F., Sparatore F. Organometallic compounds in oncology: Implications of novel organotins as antitumor agents. Drug Discov. Today. 2009;14:500–508. doi: 10.1016/j.drudis.2009.02.002. PubMed DOI
Barbieri F., Viale M., Sparatore F., Schettini G., Favre A., Bruzzo C., Novelli F., Alama A. Antitumor activity of a new orally active organotin compound: A preliminary study in murine tumor models. Anticancer Drugs. 2002;13:599–604. doi: 10.1097/00001813-200207000-00006. PubMed DOI
Hunakova L., Macejova D., Toporova L., Brtko J. Anticancer effects of tributyltin chloride and triphenyltin chloride in human breast cancer cell lines MCF 7 and MDA-MB-231. Tumor Biol. 2016;37:6701–6708. doi: 10.1007/s13277-015-4524-6. PubMed DOI
Ferreira M., Blanco L., Garrido A., Vieites J.M., Cabado A.G. In vitro approaches to evaluate toxicity induced by organotin compounds tributyltin (TBT), dibutyltin (DBT), and monobutyltin (MBT) in neuroblastoma cells. J. Agric. Food Chem. 2013;61:4195–4203. doi: 10.1021/jf3050186. PubMed DOI
Botelho G., Bernardini C., Zannoni A., Ventrella V., Bacci M.L., Forni M. Effect of tributyltin on mammalian endothelial cell integrity. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2015;176–177:79–86. doi: 10.1016/j.cbpc.2015.07.012. PubMed DOI
Tabassum S., Pettinary C. Chemical and biotechnological developments in organotin cancer chemotherapy. J. Organomet. Chem. 2006;691:1761–1766. doi: 10.1016/j.jorganchem.2005.12.033. DOI
Hunakova L., Brtko J. Sn- and Ge-triorganometallics exert different cytotoxicity and modulation of migration in triple-negative breast cancer cell line MDA-MB-231. Toxicol. Lett. 2017;279:16–21. doi: 10.1016/j.toxlet.2017.07.879. PubMed DOI
Brtko J., Dvorak Z. Nuclear retinoid/retinoid X receptors and their endogenous and xenobiotic ligands in metabolism, differentiation and cancer treatment. Toxicol. Lett. 2014;229:5–6. doi: 10.1016/j.toxlet.2014.06.046. DOI
Macejova D., Toporova L., Brtko J. Effects of natural ligands and synthetic triorganotin compounds of nuclear retinoid X receptors in human MCF 7 breast cancer cell line. Gen. Physiol. Biophys. 2017;36:481–484. doi: 10.4149/gpb_2017038. PubMed DOI
Gupta P., Kim B., Kim S.H., Srivastava S.K. Molecular targets of isothiocyanates in cancer: Recent advances. Mol. Nutr. Food Res. 2014;58:1685–1707. doi: 10.1002/mnfr.201300684. PubMed DOI PMC
Hunakova L., Gronesova P., Horvathova E., Chalupa I., Cholujova D., Duraj J., Sedlak J. Modulation of cisplatin sensitivity in human ovarian carcinoma A2780 and SKOV3 cell lines by sulforaphane. Toxicol. Lett. 2014;230:479–486. doi: 10.1016/j.toxlet.2014.08.018. PubMed DOI
Bodo J., Hunakova L., Kvasnicka P., Jakubikova J., Duraj J., Kasparkova J., Sedlak J. Sensitization for cisplatin-induced apoptosis by isothiocyanate E-4IB leads to signaling pathways alterations. Br. J. Cancer. 2006;95:1348–1353. doi: 10.1038/sj.bjc.6603434. PubMed DOI PMC
Stehlik P., Paulikova H., Hunakova L. Synthetic isothiocyanate indole-3-ethyl isothiocyanate (homoITC) enhances sensitivity of human ovarian carcinoma cell lines A2780 and A2780/CP to cisplatin. Neoplasma. 2010;57:473–481. doi: 10.4149/neo_2010_05_473. PubMed DOI
Hunakova L., Sedlakova O., Cholujova D., Gronesova P., Duraj J., Sedlak J. Modulation of markers associated with aggressive phenotype in MDA-MB-231 breast carcinoma cells by sulforaphane. Neoplasma. 2009;56:548–556. doi: 10.4149/neo_2009_06_548. PubMed DOI
Metsios A., Verginadis I., Simos Y., Batistatou A., Peschos D., Ragos V., Vezyraki P., Evangelou A., Karkabounas S. Cytotoxic and anticancer effects of the triorganotin compound [(C6H5)3Sn(cmbzt)]: An in vitro, ex vivo and in vivo study. Eur. J. Pharm. Sci. 2012;47:490–496. doi: 10.1016/j.ejps.2012.07.011. PubMed DOI
Bohacova V., Seres M., Pavlikova L., Kontar S., Cagala M., Bobal P., Otevrel J., Brtko J., Sulova Z., Breier A. Triorganotin derivatives induce cell death effects on L1210 leukemia cells at submicromolar concentrations independently of P-glycoprotein expression. Molecules. 2018;23:1053. doi: 10.3390/molecules23051053. PubMed DOI PMC
Lorenzo Y., Costa S., Collins A.R., Azqueta A. The comet assay, DNA damage, DNA repair and cytotoxicity: Hedgehogs are not always dead. Mutagenesis. 2013;28:427–432. doi: 10.1093/mutage/get018. PubMed DOI
Unger F.T., Klasen H.A., Tchartchian G., de Wilde R.L., Witte I. DNA damage induced by cis- and carboplatin as indicator for in vitro sensitivity of ovarian carcinoma cells. BMC Cancer. 2009;9:359. doi: 10.1186/1471-2407-9-359. PubMed DOI PMC
Plunkett W., Huang P., Searcy C.E., Gandhi V. Gemcitabine: Pharmacology and mechanisms of action. Sem. Oncol. 1996;23:3–15. PubMed
Gewirtz D.A. A Critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol. 1999;57:727–741. doi: 10.1016/S0006-2952(98)00307-4. PubMed DOI
You M.K., Kim H.J., Kook J.H., Kim H.A.S. John’s wort regulates proliferation and apoptosis in MCF 7 human breast cancer cells by inhibiting AMPK/mTOR and activating the mitochondrial pathway. Int. J. Mol. Sci. 2018;19:966. doi: 10.3390/ijms19040966. PubMed DOI PMC
Arcidiacono P., Ragonese F., Stabile A., Pistilli A., Kuligina E., Rende M., Bottoni U., Calvieri S., Crisanti A., Spaccapelo R. Antitumor activity and expression profiles of genes induced by sulforaphane in human melanoma cells. Eur. J. Nutr. 2018;57:2547–2569. doi: 10.1007/s00394-017-1527-7. PubMed DOI PMC
Seltzer R. The reactions of organotin chlorides with the cyanodithioimidocarbonate anion. J. Org. Chem. 1968;33:3896–3900. doi: 10.1021/jo01274a044. DOI
Wharf I. Studies in aryltin chemistry. Part 5. Tin-119 and carbon-13 NMR spectra of some tetra- and triaryltin compounds. Inorg. Chim. Acta. 1989;159:41–48. doi: 10.1016/S0020-1693(00)80893-2. DOI
Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Slamenova D., Gabelova A., Ruzekova L., Chalupa I., Horvathova E., Farkasova T., Bozsakyova E., Stetina R. Detection of MNNG-induced DNA lesions in mammalian cells: Validation of comet assay against DNA unwinding technique, alkaline elution of DNA and chromosomal aberrations. Mutat. Res. 1997;383:243–252. doi: 10.1016/S0921-8777(97)00007-4. PubMed DOI
Bartkowiak D., Hogner S., Baust H., Nothdurft W., Rottinger E.M. Comparative analysis of apoptosis in HL60 detected by annexin V and fluorescein diacetate. Cytometry. 1999;37:191–196. doi: 10.1002/(SICI)1097-0320(19991101)37:3<191::AID-CYTO5>3.0.CO;2-U. PubMed DOI
Haugland R.P., Spence M.T.Z., Johnson I.D. Handbook of Fluorescent Probes & Research Chemicals. Molecular Probes Inc.; Eugene, OR, USA: 1996. p. 269.