DiaPASEF proteotype analysis indicates changes in cell growth and metabolic switch induced by caspase-9 inhibition in chondrogenic cells

. 2023 Jun ; 23 (11) : e2200408. [epub] 20230407

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36960851

Caspase-9 is the major apical caspase responsible for triggering the intrinsic apoptotic pathway. Our previous study indicated that specific inhibition of caspase-9 caused microscopically evident alterations in appearance of the primary chondrogenic cultures which cannot be explained by decrease in apoptosis. To describe a complex molecular background of this effect, proteomics analysis of control and caspase-9 inhibitor-treated chondrogenic cultures were performed. Proteins were extracted, identified and quantified using LC-MS in both data dependent and data independent acquisition (DIA) mode. While directDIA analysis of diaPASEF data obtained using timsTOF Pro LC-MS system revealed 7849 protein groups (Q-value <0.01), a parallel analysis of iTRAQ-2DLC-MS3 and conventional DIA-MS data identified only 5146 and 4098 protein groups, respectively, showing diaPASEF a superior method for the study. The detailed analysis of diaPASEF data disclosed 236/551 significantly down-/up-regulated protein groups after caspase-9 inhibition, respectively (|log2FC|>0.58, Q value <0.05). Classification of downregulated proteins revealed changes in extracellular matrix organization, collagen metabolism, and muscle system processes. Moreover, deregulations suggest a switch from glycolytic to lipid based metabolism in the inhibited cells. No essential changes were found in the proteins involved in apoptosis. The data indicate new non-apoptotic participation of caspases in chondrocyte homeostasis with potential applications in cartilage pathophysiology.

Zobrazit více v PubMed

Tsang, K. Y., & Cheah, K. S. (2019). The extended chondrocyte lineage: implications for skeletal homeostasis and disorders. Current Opinion in Cell Biology, 61, 132-140.

Samvelyan, H. J., Madi, K., Törnqvist, A. E., Javaheri, B., & Staines, K. A. (2021). Characterisation of growth plate dynamics in murine models of osteoarthritis. Frontiers in Endocrinology, 12, 734988.

De Luca, F. (2006). Impaired growth plate chondrogenesis in children with chronic illnesses. Pediatric Research, 59, 625-629.

Aigner, T. (2007). Osteoarthritis. Current opinion in rheumatology, 19, 427-428.

Van Der Kraan, P. M., & Van Den Berg, W. B. (2012). Chondrocyte hypertrophy and osteoarthritis: Role in initiation and progression of cartilage degeneration? Osteoarthritis and Cartilage, 20, 223-232.

Tseng, C. C., Chen, Y. J., Chang, W. A., Tsai, W. C., Ou, T.-T., Wu, C.-C., Sung, W.-Y., Yen, J.-H., & Kuo, P.-L. (2020). Dual role of chondrocytes in rheumatoid arthritis: The chicken and the egg. International Journal of Molecular Sciences, 21(3), 1071.

Chen, G. Q., Wang, S., & Hu, S. Y. (2012). Osteoporosis increases chondrocyte proliferation without a change in apoptosis during fracture healing in an ovariectomized rat model. Molecular Medicine Reports, 5, 202-206.

Li, J., & Dong, S. (2016). The signaling pathways involved in chondrocyte differentiation and hypertrophic differentiation. Stem Cells International, 2016, 2470351.

Kühn, K., D'lima, D. D., Hashimoto, S., & Lotz, M. (2004). Cell death in cartilage. Osteoarthritis and Cartilage, 12, 1-16.

Chen, S., & Li, B. (2020). MiR-128-3p Post-transcriptionally inhibits WISP1 to suppress apoptosis and inflammation in human articular chondrocytes via the PI3K/AKT/NF-κB signaling pathway. Cell Transplantation, 29, 963689720939131.

Hwang, H., & Kim, H. (2015). Chondrocyte Apoptosis in the Pathogenesis of Osteoarthritis. International Journal of Molecular Sciences, 16, 26035-26054.

Malysheva, I. E., Topchieva, L. V., Barysheva, O. Y., Kurbatova, I. V., Vasykova, O. A., Vezikova, N. N., Marusenko, I. M., & Nemova, N. N. (2016). The level of cytokines and expression of caspase genes in rheumatoid arthritis. Doklady. Biochemistry and Biophysics, 468, 226-228.

Musumeci, G., Castrogiovanni, P., Trovato, F., Weinberg, A., Al-Wasiyah, M., Alqahtani, M., & Mobasheri, A. (2015). Biomarkers of chondrocyte apoptosis and autophagy in osteoarthritis. International Journal of Molecular Sciences, 16, 20560-20575.

Janečková, E., Bíliková, P., & Matalová, E. (2018). Osteogenic potential of caspases related to endochondral ossification. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 66, 47-58.

Shalini, S., Dorstyn, L., Dawar, S., & Kumar, S. (2015). Old, new and emerging functions of caspases. Cell Death & Differentiation, 22, 526-539.

Callus, B. A., & Vaux, D. L. (2007). Caspase inhibitors: Viral, cellular and chemical. Cell Death and Differentiation, 14, 73-78.

Adamova, E., Janeckova, E., Kleparnik, K., & Matalova, E. (2016). Caspases and osteogenic markers-in vitro screening of inhibition impact. In Vitro Cellular & Developmental Biology - Animal, 52, 144-148.

Vesela, B., Svandova, E., Ramesova, A., Kratochvilova, A., Tucker, A. S., & Matalova, E. (2020). Caspase inhibition affects the expression of autophagy-related molecules in chondrocytes. CARTILAGE, 13(2), 956S-968S.

Vesela, B., Zapletalova, M., Svandova, E., Ramesova, A., Doubek, J., Lesot, H., & Matalova, E. (2021). General caspase inhibition in primary chondrogenic cultures impacts their transcription profile including osteoarthritis-related factors. Cartilage, 13(2), 1144S-1154S.

Ramesova, A., Vesela, B., Svandova, E., Lesot, H., & Matalova, E. (2022). Caspase-9 inhibition decreases expression of Mmp9 during chondrogenesis. Histochemistry and Cell Biology, 157(4), 403-413.

Meier, F., Brunner, A. D., Frank, M., Ha, A., Bludau, I., Voytik, E., Kaspar-Schoenefeld, S., Lubeck, M., Raether, O., Bache, N., Aebersold, R., Collins, B. C., Röst, H. L., & Mann, M. (2020). diaPASEF: Parallel accumulation-serial fragmentation combined with data-independent acquisition. Nature Methods, 17, 1229-1236.

Bouchalova, P., Sommerova, L., Potesil, D., Martisova, A., Lapcik, P., Koci, V., Scherl, A., Vonka, P., Planas-Iglesias, J., Chevet, E., Bouchal, P., & Hrstka, R. (2022). Characterization of the AGR2 interactome uncovers new players of protein disulfide isomerase network in cancer cells. Molecular & Cellular Proteomics: MCP, 21, 100188.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545-15550.

Lai, L., Hennessey, J., Bares, V., Son, E. W., Ban, Y., Wang, W., Qi, J., Jiang, G., Liberzon, A., & Xijin Ge, S. (2016). GSKB: A gene set database for pathway analysis in mouse. bioRxiv, 82511.

Liao, Y., Wang, J., Jaehnig, E. J., Shi, Z., & Zhang, B. (2019). WebGestalt 2019: Gene set analysis toolkit with revamped UIs and APIs. Nucleic Acids Research, 47, W199-W205.

Raudvere, U., Kolberg, L., Kuzmin, I., Arak, T., Adler, P., Peterson, H., & Vilo, J. (2019). g:Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Research, 47, W191-W198.

Motenko, H., Neuhauser, S. B., O'keefe, M., & Richardson, J. E. (2015). MouseMine: A new data warehouse for MGI. Mammalian Genome, 26, 325-330.

Jassal, B., Matthews, L., Viteri, G., Gong, C., Lorente, P., Fabregat, A., Sidiropoulos, K., Cook, J., Gillespie, M., Haw, R., Loney, F., May, B., Milacic, M., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai, T., Weiser, J., … D'Eustachio, P. (2020). The reactome pathway knowledgebase. Nucleic Acids Research, 48, D498-D503.

Shannon, P., Markiel, A., Ozier, O., Baliga, N S., Wang, J T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498-2504.

Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England), 25, 1091-1093.

Bindea, G., Galon, J., & Mlecnik, B. (2013). CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics (Oxford, England), 29, 661-663.

Butterfield, N., Qian, C., & Logan, M. (2017). Pitx1 determines characteristic hindlimb morphologies in cartilage micromass culture. PLoS ONE, 12(7), e0180453.

Nakajima, Y.-I., & Kuranaga, E. (2017). Caspase-dependent non-apoptotic processes in development. Cell Death and Differentiation, 24, 1422-1430.

Kabigting, J. E. T., & Toyama, Y. (2020). Interplay between caspase, Yes-associated protein, and mechanics: A possible switch between life and death? Current Opinion in Cell Biology, 67, 141-146.

Mello, M. A., & Tuan, R. S. (1999). High density micromass cultures of embryonic limb bud mesenchymal cells: An in vitro model of endochondral skeletal development. In Vitro Cellular & Developmental Biology - Animal, 35, 262-269.

Meier, F., Brunner, A. D., Koch, S., Koch, H., Lubeck, M., Krause, M., Goedecke, N., Decker, J., Kosinski, T., Park, M. A., Bache, N., Hoerning, O., Cox, J., Räther, O., & Mann, M. (2018). Online Parallel Accumulation-Serial Fragmentation (PASEF) with a novel trapped ion mobility mass spectrometer. Molecular & Cellular Proteomics: MCP, 17, 2534-2545.

Kuida, K., Haydar, T. F., Kuan, C.-Y., Gu, Y., Taya, C., Karasuyama, H., Su, M S.-S, Rakic, P., & Flavell, R. A. (1998). Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell, 94, 325-337.

Hakem, R., Hakem, A., Duncan, G. S., Henderson, J. T., Woo, M., Soengas, M. S., Elia, A., De La Pompa, J. L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S. A., Lowe, S. W., Penninger, J. M., & Mak, T. W. (1998). Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell, 94, 339-352.

Seol, J. W., Lee, H. B., Kim, N. S., & Park, S. Y. (2009). Tartrate-resistant acid phosphatase as a diagnostic factor for arthritis. International Journal of Molecular Medicine, 24, 57-62.

Olszewska-Slonina, D., Jung, S., Matewski, D., Olszewski, K. J., Krzyzynska-Malinowska, E., Braszkiewicz, A., & Kowaliszyn, B. (2015). Lysosomal enzymes in serum and synovial fluid in patients with osteoarthritis. Scandinavian Journal of Clinical and Laboratory Investigation, 75, 145-151.

Zhang, S.-Z., Xu, Y., Xie, H.-Q., Li, X. Q., Wei, Y.-Q., & Yang, Z. M. (2009). The possible role of myosin light chain in myoblast proliferation. Biological Research, 42, 121-132.

Zhang, T., Birbrair, A., Wang, Z. M., Taylor, J., Messi, M. L., & Delbono, O. (2013). Troponin T nuclear localization and its role in aging skeletal muscle. Age (Dordrecht, Netherlands), 35, 353-370.

Moses, M. A., Wiederschain, D., Wu, I., Fernandez, C. A., Ghazizadeh, V., Lane, W. S., Flynn, E., Sytkowski, A., Tao, T., & Langer, R. (1999). Troponin I is present in human cartilage and inhibits angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 96, 2645-2650.

Casas-Tintó, S., Maraver, A., Serrano, M., & Ferrús, A. (2016). Troponin-I enhances and is required for oncogenic overgrowth. Oncotarget, 7, 52631-52642.

Johnston, J. R., Chase, P. B, & Pinto, J. R. (2018). Troponin through the looking-glass: Emerging roles beyond regulation of striated muscle contraction. Oncotarget, 9, 1461-1482.

Murray, T. V. A., Mcmahon, J. M., Howley, B. A., Stanley, A., Ritter, T., Mohr, A., Zwacka, R., & Fearnhead, H. O. (2008). A non-apoptotic role for caspase-9 in muscle differentiation. Journal of Cell Science, 121, 3786-3793.

Smythe, G. M., Davies, M. J., Paulin, D., & Grounds, M. D. (2001). Absence of desmin slightly prolongs myoblast proliferation and delays fusion in vivo in regenerating grafts of skeletal muscle. Cell and Tissue Research, 304, 287-294.

Su, N., Chen, M., Chen, S., Li, C., Xie, Y., Zhu, Y., Zhang, Y., Zhao, L., He, Q., Du, X., Chen, D., & Chen, L. (2013). Overexpression of H1 calponin in osteoblast lineage cells leads to a decrease in bone mass by disrupting osteoblast function and promoting osteoclast formation. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research, 28, 660-671.

Nie, Y., Chen, H., Guo, C., Yuan, Z., Zhang, X., Mo, D., & Chen, Y. (2017). Palmdelphin promotes myoblast differentiation and muscle regeneration. Scientific Reports, 7, 41608.

Sjöblom, B., Salmazo, A., & Djinovic-Carugo, K. (2008). Alpha-actinin structure and regulation. Cellular and Molecular Life Sciences: CMLS, 65, 2688-2701.

Abdelmagid, S. M., Barbe, M. F., Hadjiargyrou, M., Owen, T. A., Razmpour, R., Rehman, S., Popoff, S. v. N., & Safadi, F. F. (2010). Temporal and spatial expression of osteoactivin during fracture repair. Journal of Cellular Biochemistry, 111, 295-309.

Abdelmagid, S. M., Belcher, J. Y., Moussa, F. M., Lababidi, S. L., Sondag, G. R., Novak, K. M., Sanyurah, A. S., Frara, N. A., Razmpour, R., Del Carpio-Cano, F. E., & Safadi, F. F. (2014). Mutation in osteoactivin decreases bone formation in vivo and osteoblast differentiation in vitro. The American Journal of Pathology, 184, 697-713.

Tourkova, I. L., Dobrowolski, S. F., Secunda, C., Zaidi, M., Papadimitriou-Olivgeri, I., Papachristou, D. J., & Blair, H. C. (2019). The high-density lipoprotein receptor Scarb1 is required for normal bone differentiation in vivo and in vitro. Laboratory investigation; a journal of technical methods and pathology, 99, 1850-1860.

Ruchon, A. F., Tenenhouse, H. S., Marcinkiewicz, M., Siegfried, G., Aubin, J. E., Desgroseillers, L., & Boileau, G. (2000). Developmental expression and tissue distribution of Phex protein: effect of the Hyp mutation and relationship to bone markers. Journal of Bone and Mineral Research : The Official Journal of The American Society for Bone and Mineral Research, 15, 1440-1450.

Kratochvílová, A., Veselá, B., Ledvina, V., Švandová, E., Klepárník, K., Dadáková, K., Beneš, P., & Matalová, E. (2020). Osteogenic impact of pro-apoptotic caspase inhibitors in MC3T3-E1 cells. Scientific Reports, 10, 7489.

Gkretsi, V., Simopoulou, T., & Tsezou, A. (2011). Lipid metabolism and osteoarthritis: Lessons from atherosclerosis. Progress in Lipid Research, 50, 133-140.

Wilson, C. H., & Kumar, S. (2018). Caspases in metabolic disease and their therapeutic potential. Cell Death and Differentiation, 25, 1010-1024.

Dhani, S., Zhao, Y., & Zhivotovsky, B. (2021). A long way to go: Caspase inhibitors in clinical use. Cell Death & Disease, 12, 949.

Ratziu, V. (2012). Treatment of NASH with ursodeoxycholic acid: pro. Clinics and Research in Hepatology and Gastroenterology, 36(Suppl 1), S41-5.

Fukui, N., Ikeda, Y., Ohnuki, T., Tanaka, N., Hikita, A., Mitomi, H., Mori, T., Juji, T., Katsuragawa, Y., Yamamoto, S., Sawabe, M., Yamane, S., Suzuki, R., Sandell, L. J., & Ochi, T. (2008). Regional differences in chondrocyte metabolism in osteoarthritis: a detailed analysis by laser capture microdissection. Arthritis and Rheumatism, 58, 154-163.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Caspase-9 Is a Positive Regulator of Osteoblastic Cell Migration Identified by diaPASEF Proteomics

. 2024 Aug 02 ; 23 (8) : 2999-3011. [epub] 20240318

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...