Real-Time Tracking of Photoinduced Metal-Metal Bond Formation in a d8d8 Di-Iridium Complex by Vibrational Coherence and Femtosecond Stimulated Raman Spectroscopy
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40048150
PubMed Central
PMC11926863
DOI
10.1021/jacs.4c18527
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We report real-time dynamics of photoinduced metal-metal bond formation acquired from ultrafast time-resolved stimulated emission and femtosecond stimulated Raman spectra (FSRS) of [Ir2(2,5-dimethyl-2,5-diisocyanohexane)4]2+ (Ir(TMB)) in the region of low-frequency vibrations. Interpretation was supported by impulsive stimulated Raman experiments and time-dependent density-functional theory (TDDFT) calculations. The Ir-Ir stretching frequency doubled on going from ground to the lowest singlet excited state 1dσ*pσ, from 53 to 126 cm-1, demonstrating Ir-Ir bond formation. Spectral evolution during the first 4 ps after excitation showed extremely large-amplitude coherent oscillations of stimulated emission as well as FSRS signal intensities, which occurred with the excited-state Ir-Ir stretching frequency combined with frequencies of several deformation vibrations and the first Ir-Ir overtone. Corresponding vibrations were observed in FSRS directly but most of them vanished in the first 3 ps, indicating that they belonged to transiently populated hot vibrational states. Fourier transforms of intensity oscillations plotted against FSRS frequencies produced two-dimensional (2D-FSRS) maps with diagonal and off-diagonal features due to Franck-Condon-excited and anharmonically coupled vibrations, some of which acquired Raman intensity through coupling with the Ir-Ir stretch. We concluded that optical excitation impulsively shortens the Ir-Ir distance and increases its stretching force constant, assisted by a simultaneously excited network of coupled deformation modes. The electronically/vibrationally excited system then relaxes through periodic strengthening and weakening of the Ir-Ir interaction and changing conformations of the TMB ligand framework, forming a metal-metal bonded 1dσ*pσ state after 4-5 ps.
Beckman Institute California Institute of Technology Pasadena California 91125 United States
Department of Chemistry Occidental College Los Angeles California 90041 United States
Department of Chemistry Queen Mary University of London E1 4NS London U K
Zobrazit více v PubMed
Gray H. B.; Záliš S.; Vlček A. Electronic structures and photophysics of d8-d8 complexes. Coord. Chem. Rev. 2017, 345, 297–317. 10.1016/j.ccr.2017.01.008. DOI
Záliš S.; Lam Y. C.; Gray H. B.; Vlček A. Jr. Spin–Orbit TDDFT Electronic Structure of Diplatinum(II,II) Complexes. Inorg. Chem. 2015, 54, 3491–3500. 10.1021/acs.inorgchem.5b00063. PubMed DOI
Pižl M.; Hunter B. M.; Sazanovich I. V.; Towrie M.; Gray H. B.; Záliš S.; Vlček A. Excitation-Wavelength-Dependent Photophysics of d8d8 Di-isocyanide Complexes. Inorg. Chem. 2022, 61, 2745–2759. 10.1021/acs.inorgchem.1c02645. PubMed DOI
Zhong J.-J.; To W.-P.; Liu Y.; Lu W.; Che C.-M. Efficient acceptorless photo-dehydrogenation of alcohols and N-heterocycles with binuclear platinum(II) diphosphite complexes. Chem. Sci. 2019, 10, 4883–4889. 10.1039/C8SC05600E. PubMed DOI PMC
Chaaban M.; Zhou C.; Lin H.; Chyi B.; Ma B. Platinum(II) binuclear complexes: molecular structures, photophysical properties, and applications. J. Mater. Chem. C 2019, 7, 5910–5924. 10.1039/C9TC01585J. DOI
Vlček A. Jr; Gray H. B. Binuclear Platinum(II) Photochemistry. Rates of Hydrogen Atom Transfer from Organometallic Hydrides to Electronically Excited Pt2(P2O5H2)44-. J. Am. Chem. Soc. 1987, 109, 286–287. 10.1021/ja00235a051. DOI
Mara M. W.; Weingartz N. P.; Leshchev D.; Hsu D.; Valentine A.; Mills A.; Roy S.; Chakraborty A.; Kim P.; Biasin E.; Haldrup K.; Kirschner M. S.; Rimmerman D.; Chollet M.; Glownia J. M.; van Driel T. B.; Castellano F. N.; Li X.; Chen L. X. Deciphering Charge Transfer Processes in Transition Metal Complexes from the Perspective of Ultrafast Electronic and Nuclear Motions. J. Phys. Chem. Lett. 2024, 15, 5250–5258. 10.1021/acs.jpclett.4c00735. PubMed DOI
Weingartz N. P.; Mara M. W.; Roy S.; Hong J.; Chakraborty A.; Brown-Xu S. E.; Phelan B. T.; Castellano F. N.; Chen L. X. Excited-State Bond Contraction and Charge Migration in a Platinum Dimer Complex Characterized by X-ray and Optical Transient Absorption Spectroscopy. J. Phys. Chem. A 2021, 125, 8891–8898. 10.1021/acs.jpca.1c07201. PubMed DOI
Fox L. S.; Kozik M.; Winkler J. R.; Gray H. B. Gaussian Free-Energy Dependence of Electron-Transfer Rates in Iridium Complexes. Science 1990, 247, 1069–1071. 10.1126/science.247.4946.1069. PubMed DOI
van der Veen R. M.; Cannizzo A.; van Mourik F.; Vlček A. Jr.; Chergui M. Vibrational Relaxation and Intersystem Crossing of Binuclear Metal Complexes in Solution. J. Am. Chem. Soc. 2011, 133, 305–315. 10.1021/ja106769w. PubMed DOI
Monni R.; Capano G.; Auböck G.; Gray H. B.; Vlček A.; Tavernelli I.; Chergui M. Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E6396–E6403. 10.1073/pnas.1719899115. PubMed DOI PMC
Monni R.; Auböck G.; Kinschel D.; Aziz-Lange K. M.; Gray H. B.; Vlček A.; Chergui M. Conservation of vibrational coherence in ultrafast electronic relaxation: The case of diplatinum complexes in solution. Chem. Phys. Lett. 2017, 683, 112–120. 10.1016/j.cplett.2017.02.071. DOI
Hartsock R. W.; Zhang W.; Hill M. G.; Sabat B.; Gaffney K. J. Characterizing the Deformational Isomers of Bimetallic Ir2(dimen)42+ (dimen = 1,8-diisocyano-p-menthane) with Vibrational Wavepacket Dynamics. J. Phys. Chem. A 2011, 115, 2920–2926. 10.1021/jp1114493. PubMed DOI
Pižl M.; Hunter B. M.; Greetham G. M.; Towrie M.; Záliš S.; Gray H. B.; Vlček A. Ultrafast Wiggling and Jiggling: Ir2(1,8-diisocyanomenthane)42+. J. Phys. Chem. A 2017, 121, 9275–9283. 10.1021/acs.jpca.7b10215. PubMed DOI
van Driel T. B.; Kjær K. S.; Hartsock R. W.; Dohn A. O.; Harlang T.; Chollet M.; Christensen M.; Gawelda W.; Henriksen N. E.; Kim J. G.; Haldrup K.; Kim K. H.; Ihee H.; Kim J.; Lemke H.; Sun Z.; Sundström V.; Zhang W.; Zhu D.; Møller K. B.; Nielsen M. M.; Gaffney K. J. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst. Nat. Commun. 2016, 7, 1367810.1038/ncomms13678. PubMed DOI PMC
Rather S. R.; Weingartz N. P.; Kromer S.; Castellano F. N.; Chen L. X. Spin–vibronic coherence drives singlet–triplet conversion. Nature 2023, 620, 776–781. 10.1038/s41586-023-06233-y. PubMed DOI
Kim P.; Valentine A. J. S.; Roy S.; Mills A. W.; Chakraborty A.; Castellano F. N.; Li X.; Chen L. X. Ultrafast Excited-State Dynamics of Photoluminescent Pt(II) Dimers Probed by a Coherent Vibrational Wavepacket. J. Phys. Chem. Lett. 2021, 12, 6794–6803. 10.1021/acs.jpclett.1c01289. PubMed DOI
Kim T. W.; Kim P.; Mills A. W.; Chakraborty A.; Kromer S.; Valentine A. J. S.; Castellano F. N.; Li X.; Chen L. X. Ligand-Structure-Dependent Coherent Vibrational Wavepacket Dynamics in Pyrazolate-Bridged Pt(II) Dimers. J. Phys. Chem. C 2022, 126, 11487–11497. 10.1021/acs.jpcc.2c02256. DOI
Leshchev D.; Valentine A. J. S.; Kim P.; Mills A. W.; Roy S.; Chakraborty A.; Biasin E.; Haldrup K.; Hsu D. J.; Kirschner M. S.; Rimmerman D.; Chollet M.; Glownia J. M.; van Driel T. B.; Castellano F. N.; Li X.; Chen L. X. Revealing Excited-State Trajectories on Potential Energy Surfaces with Atomic Resolution in Real Time. Angew. Chem., Int. Ed. 2023, 62, e20230461510.1002/anie.202304615. PubMed DOI
Kim P.; Valentine A. J. S.; Roy S.; Mills A. W.; Castellano F. N.; Li X.; Chen L. X. Ultrafast branching in intersystem crossing dynamics revealed by coherent vibrational wavepacket motions in a bimetallic Pt(II) complex. Faraday Discuss. 2022, 237, 259–273. 10.1039/D2FD00009A. PubMed DOI
Mewes L.; Ingle R. A.; Megow S.; Böhnke H.; Baranoff E.; Temps F.; Chergui M. Ultrafast Intersystem Crossing and Structural Dynamics of [Pt(ppy)(μ-tBu2pz)]2. Inorg. Chem. 2020, 59, 14643–14653. 10.1021/acs.inorgchem.0c00902. PubMed DOI
Iwamura M.; Fukui A.; Nozaki K.; Kuramochi H.; Takeuchi S.; Tahara T. Coherent Vibration and Femtosecond Dynamics of the Platinum Complex Oligomers upon Intermolecular Bond Formation in the Excited State. Angew. Chem., Int. Ed. 2020, 59, 23154–23161. 10.1002/anie.202011813. PubMed DOI
Watanabe H.; Iwamura M.; Nozaki K.; Takanashi T.; Kuramochi H.; Tahara T. Torsional Structural Relaxation Caused by Pt–Pt Bond Formation in the Photoexcited Dimer of Pt(II) N∧C∧N Complex in Solution. J. Phys. Chem. Lett. 2025, 16, 406–414. 10.1021/acs.jpclett.4c03170. PubMed DOI
Biasin E.; van Driel T. B.; Levi G.; Laursen M. G.; Dohn A. O.; Moltke A.; Vester P.; Hansen F. B. K.; Kjaer K. S.; Harlang T.; Hartsock R.; Christensen M.; Gaffney K. J.; Henriksen N. E.; Møller K. B.; Haldrup K.; Nielsen M. M.; et al. Anisotropy enhanced X-ray scattering from solvated transition metal complexes. J. Synchrotron Rad. 2018, 25, 306–315. 10.1107/S1600577517016964. PubMed DOI
Batignani G.; Ferrante C.; Fumero G.; Martinati M.; Scopigno T. Femtosecond stimulated Raman spectroscopy. Nat. Rev. Methods Primers 2024, 4, 34.10.1038/s43586-024-00314-6. DOI
Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond Stimulated Raman Spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI
Dietze D. R.; Mathies R. A. Femtosecond Stimulated Raman Spectroscopy. ChemPhysChem 2016, 17, 1224–1251. 10.1002/cphc.201600104. PubMed DOI
Smith D. C.Electronic Structure and Photochemical Reactivity of Binuclear Metal Complexes. Ph.D. Dissertation, California Institute of Technology: Pasadena, CA, 1989.
Smith D. C.; Miskowski V. M.; Mason W. R.; Gray H. B. Electronic Absorption and MCD Spectra of M2(TMB)42+, M = Rh and Ir. A Valence-Bond Description of the Upper Electronic Excited States. J. Am. Chem. Soc. 1990, 112, 3759–3767. 10.1021/ja00166a008. DOI
Zewail A. H. Femtochemistry: Atomic Scale Dynamics of the Chemical Bond. J. Phys. Chem. A 2000, 104, 5660–5694. 10.1021/jp001460h. PubMed DOI
Bardeen C. J.; Wang Q.; Shank C. V. Selective excitation of vibrational wave packet motion using chirped pulses. Phys. Rev. Lett. 1995, 75, 3410–3413. 10.1103/PhysRevLett.75.3410. PubMed DOI
Jumper C. C.; Arpin P. C.; Turner D. B.; McClure S. D.; Rafiq S.; Dean J. C.; Cina J.; Kovac P. A.; Mirkovic T.; Scholes G. D. Broad-Band Pump–Probe Spectroscopy Quantifies Ultrafast Solvation Dynamics of Proteins and Molecules. J. Phys. Chem. Lett. 2016, 7, 4722–4731. 10.1021/acs.jpclett.6b02237. PubMed DOI
Rather S. R.; Scholes G. D. Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets. J. Phys. Chem. A 2016, 120, 6792–6799. 10.1021/acs.jpca.6b07796. PubMed DOI
Vos M. H.; Rappaport F.; Lambry J.-C.; Breton J.; Martin J.-L. Visualization of Coherent Nuclear Motion in a Membrane Protein by Femtosecond Spectroscopy. Nature 1993, 363, 320–325. 10.1038/363320a0. DOI
Cina J. A.; Kovac P. A.; Jumper C. C.; Dean J. C.; Scholes G. D. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features. J. Chem. Phys. 2016, 144, 17510210.1063/1.4947568. PubMed DOI
Kuramochi H.; Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J. Am. Chem. Soc. 2021, 143, 9699–9717. 10.1021/jacs.1c02545. PubMed DOI PMC
Liebel M.; Schnedermann C.; Wende T.; Kukura P. Principles and Applications of Broadband Impulsive Vibrational Spectroscopy. J. Phys. Chem. A 2015, 119, 9506–9517. 10.1021/acs.jpca.5b05948. PubMed DOI
Frontiera R. R.; Fang C.; Dasgupta J.; Mathies R. A. Probing structural evolution along multidimensional reaction coordinates with femtosecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2012, 14, 405–414. 10.1039/C1CP22767J. PubMed DOI
Prince R. C.; Frontiera R. R.; Potma E. O. Stimulated Raman Scattering: From Bulk to Nano. Chem. Rev. 2017, 117, 5070–5094. 10.1021/acs.chemrev.6b00545. PubMed DOI PMC
Lynch P. G.; Das A.; Alam S.; Rich C. C.; Frontiera R. R. Mastering Femtosecond Stimulated Raman Spectroscopy: A Practical Guide. ACS Phys. Chem. Au 2024, 4, 1–18. 10.1021/acsphyschemau.3c00031. PubMed DOI PMC
Frontiera R. R.; Shim S.; Mathies R. A. Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy. J. Chem. Phys. 2008, 129, 06450710.1063/1.2966361. PubMed DOI
Harbola U.; Umapathy S.; Mukamel S. Loss and gain signals in broadband stimulated-Raman spectra: Theoretical analysis. Phys. Rev. A 2013, 88, 011801(R)10.1103/PhysRevA.88.011801. DOI
Weigel A.; Ernsting N. P. Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. B 2010, 114, 7879–7893. 10.1021/jp100181z. PubMed DOI
Liu W.; Tang L.; Oscar B. G.; Wang Y.; Chen C.; Fang C. Tracking Ultrafast Vibrational Cooling during Excited-State Proton Transfer Reaction with Anti-Stokes and Stokes Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. Lett. 2017, 8, 997–1003. 10.1021/acs.jpclett.7b00322. PubMed DOI
Oscar B. G.; Chen C.; Liu W.; Zhu L.; Fang C. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. A 2017, 121, 5428–5441. 10.1021/acs.jpca.7b04404. PubMed DOI
Clark R. J. H.; Dines T. J. Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. Angew. Chem., Int. Ed. 1986, 25, 131–158. 10.1002/anie.198601311. DOI
Batignani G.; Pontecorvo E.; Giovannetti G.; Ferrante C.; Fumero G.; Scopigno T. Electronic resonances in broadband stimulated Raman spectroscopy. Sci. Rep. 2016, 6, 1844510.1038/srep18445. PubMed DOI PMC
Weigel A.; Dobryakov A.; Klaumünzer B.; Sajadi M.; Saalfrank P.; Ernsting N. P. Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation. J. Phys. Chem. B 2011, 115, 3656–3680. 10.1021/jp1117129. PubMed DOI
Dobryakov A. L.; Krohn O. A.; Quick M.; Ioffe I. N.; Kovalenko S. A. Positive and negative signal and line shape in stimulated Raman spectroscopy: Resonance femtosecond Raman spectra of diphenylbutadiene. J. Chem. Phys. 2022, 156, 08430410.1063/5.0075116. PubMed DOI
McCamant D. W. Re-Evaluation of Rhodopsin’s Relaxation Kinetics Determined from Femtosecond Stimulated Raman Lineshapes. J. Phys. Chem. B 2011, 115, 9299–9305. 10.1021/jp2028164. PubMed DOI PMC
Mukamel S.; Biggs J. D. Communication: Comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 2011, 134, 16110110.1063/1.3581889. PubMed DOI PMC
Hoffman D. P.; Mathies R. A. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity. Acc. Chem. Res. 2016, 49, 616–625. 10.1021/acs.accounts.5b00508. PubMed DOI
Hoffman D. P.; Ellis S. R.; Mathies R. A. Characterization of a Conical Intersection in a Charge-Transfer Dimer with Two-Dimensional Time-Resolved Stimulated Raman Spectroscopy. J. Phys. Chem. A 2014, 118, 4955–4965. 10.1021/jp5041986. PubMed DOI
Stiegman A. E.; Rice S. F.; Gray H. B.; Miskowski V. M. Electronic Spectroscopy of d8-d8 Diplatinum Complexes. 1A2u(dσ*→pσ), 3Eu(dxz,dyz→pσ), and 3,1B2u(dσ*→dx2-y2) Excited States of Pt2(P2O5H2)44-. Inorg. Chem. 1987, 26, 1112–1116. 10.1021/ic00254a029. DOI
Jean J. M.; Fleming G. R. Competition between energy and phase relaxation in electronic curve crossing processes. J. Chem. Phys. 1995, 103, 2092–2101. 10.1063/1.469684. DOI
Dohn A. O.; Jónsson E. O.; Kjær K. S.; van Driel T. B.; Nielsen M. M.; Jacobsen K. W.; Henriksen N. E.; Møller K. B. Direct Dynamics Studies of a Binuclear Metal Complex in Solution: The Interplay Between Vibrational Relaxation, Coherence, and Solvent Effects. J. Phys. Chem. Lett. 2014, 5, 2414–2418. 10.1021/jz500850s. PubMed DOI
Paulus B. C.; Adelman S. L.; Jamula L. L.; McCusker J. K. Leveraging excited-state coherence for synthetic control of ultrafast dynamics. Nature 2020, 582, 214–218. 10.1038/s41586-020-2353-2. PubMed DOI
Romero E.; Novoderezhkin V. I.; van Grondelle R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017, 543, 355–365. 10.1038/nature22012. PubMed DOI
Rather S. R.; Scholes G. D. From Fundamental Theories to Quantum Coherences in Electron Transfer. J. Am. Chem. Soc. 2019, 141, 708–722. 10.1021/jacs.8b09059. PubMed DOI
Scholes G. D.; Fleming G. R.; Chen L. X.; Aspuru-Guzik A.; Buchleitner A.; Coker D. F.; Engel G. S.; van Grondelle R.; Ishizaki A.; Jonas D. M.; Lundeen J. S.; McCusker J. K.; Mukamel S.; Ogilvie J. P.; Olaya-Castro A.; Ratner M. A.; Spano F. C.; Whaley K. B.; Zhu X. Using coherence to enhance function in chemical and biophysical systems. Nature 2017, 543, 647–656. 10.1038/nature21425. PubMed DOI
Che C.-M.; Schaefer W. P.; Gray H. B.; Dickson M. K.; Stein P. B.; Roundhill D. M. Novel Binuclear Platinum(III) Diphosphite Complexes. J. Am. Chem. Soc. 1982, 104, 4253–4255. 10.1021/ja00379a038. DOI
Harvey E. L.; Stiegman A. E.; Vlček A. Jr; Gray H. B. Dihydridotetrakis(pyrophosphito(2-))diplatinate(III). J. Am. Chem. Soc. 1987, 109, 5233–5235. 10.1021/ja00251a031. DOI
Whittemore T. J.; Xue C.; Huang J.; Gallucci J. C.; Turro C. Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light. Nat. Chem. 2020, 12, 180–185. 10.1038/s41557-019-0397-4. PubMed DOI
Gupta P.; Moore C. E.; Turro C. Photo- and Electrocatalytic Hydrogen Evolution by Heteroleptic Dirhodium(II,II) Complexes: Role of the Bridging and Diimine Ligands. J. Am. Chem. Soc. 2024, 146, 27161–27172. 10.1021/jacs.4c10626. PubMed DOI
Fortunato M. T.; Moore C. E.; Turro C. Ligand-Centered Photocatalytic Hydrogen Production in an Axially Capped Rh2(II,II) Paddlewheel Complex with Red Light. J. Am. Chem. Soc. 2023, 145, 27348–27357. 10.1021/jacs.3c07532. PubMed DOI