Real-Time Tracking of Photoinduced Metal-Metal Bond Formation in a d8d8 Di-Iridium Complex by Vibrational Coherence and Femtosecond Stimulated Raman Spectroscopy

. 2025 Mar 19 ; 147 (11) : 9810-9824. [epub] 20250306

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40048150

We report real-time dynamics of photoinduced metal-metal bond formation acquired from ultrafast time-resolved stimulated emission and femtosecond stimulated Raman spectra (FSRS) of [Ir2(2,5-dimethyl-2,5-diisocyanohexane)4]2+ (Ir(TMB)) in the region of low-frequency vibrations. Interpretation was supported by impulsive stimulated Raman experiments and time-dependent density-functional theory (TDDFT) calculations. The Ir-Ir stretching frequency doubled on going from ground to the lowest singlet excited state 1dσ*pσ, from 53 to 126 cm-1, demonstrating Ir-Ir bond formation. Spectral evolution during the first 4 ps after excitation showed extremely large-amplitude coherent oscillations of stimulated emission as well as FSRS signal intensities, which occurred with the excited-state Ir-Ir stretching frequency combined with frequencies of several deformation vibrations and the first Ir-Ir overtone. Corresponding vibrations were observed in FSRS directly but most of them vanished in the first 3 ps, indicating that they belonged to transiently populated hot vibrational states. Fourier transforms of intensity oscillations plotted against FSRS frequencies produced two-dimensional (2D-FSRS) maps with diagonal and off-diagonal features due to Franck-Condon-excited and anharmonically coupled vibrations, some of which acquired Raman intensity through coupling with the Ir-Ir stretch. We concluded that optical excitation impulsively shortens the Ir-Ir distance and increases its stretching force constant, assisted by a simultaneously excited network of coupled deformation modes. The electronically/vibrationally excited system then relaxes through periodic strengthening and weakening of the Ir-Ir interaction and changing conformations of the TMB ligand framework, forming a metal-metal bonded 1dσ*pσ state after 4-5 ps.

Zobrazit více v PubMed

Gray H. B.; Záliš S.; Vlček A. Electronic structures and photophysics of d8-d8 complexes. Coord. Chem. Rev. 2017, 345, 297–317. 10.1016/j.ccr.2017.01.008. DOI

Záliš S.; Lam Y. C.; Gray H. B.; Vlček A. Jr. Spin–Orbit TDDFT Electronic Structure of Diplatinum(II,II) Complexes. Inorg. Chem. 2015, 54, 3491–3500. 10.1021/acs.inorgchem.5b00063. PubMed DOI

Pižl M.; Hunter B. M.; Sazanovich I. V.; Towrie M.; Gray H. B.; Záliš S.; Vlček A. Excitation-Wavelength-Dependent Photophysics of d8d8 Di-isocyanide Complexes. Inorg. Chem. 2022, 61, 2745–2759. 10.1021/acs.inorgchem.1c02645. PubMed DOI

Zhong J.-J.; To W.-P.; Liu Y.; Lu W.; Che C.-M. Efficient acceptorless photo-dehydrogenation of alcohols and N-heterocycles with binuclear platinum(II) diphosphite complexes. Chem. Sci. 2019, 10, 4883–4889. 10.1039/C8SC05600E. PubMed DOI PMC

Chaaban M.; Zhou C.; Lin H.; Chyi B.; Ma B. Platinum(II) binuclear complexes: molecular structures, photophysical properties, and applications. J. Mater. Chem. C 2019, 7, 5910–5924. 10.1039/C9TC01585J. DOI

Vlček A. Jr; Gray H. B. Binuclear Platinum(II) Photochemistry. Rates of Hydrogen Atom Transfer from Organometallic Hydrides to Electronically Excited Pt2(P2O5H2)44-. J. Am. Chem. Soc. 1987, 109, 286–287. 10.1021/ja00235a051. DOI

Mara M. W.; Weingartz N. P.; Leshchev D.; Hsu D.; Valentine A.; Mills A.; Roy S.; Chakraborty A.; Kim P.; Biasin E.; Haldrup K.; Kirschner M. S.; Rimmerman D.; Chollet M.; Glownia J. M.; van Driel T. B.; Castellano F. N.; Li X.; Chen L. X. Deciphering Charge Transfer Processes in Transition Metal Complexes from the Perspective of Ultrafast Electronic and Nuclear Motions. J. Phys. Chem. Lett. 2024, 15, 5250–5258. 10.1021/acs.jpclett.4c00735. PubMed DOI

Weingartz N. P.; Mara M. W.; Roy S.; Hong J.; Chakraborty A.; Brown-Xu S. E.; Phelan B. T.; Castellano F. N.; Chen L. X. Excited-State Bond Contraction and Charge Migration in a Platinum Dimer Complex Characterized by X-ray and Optical Transient Absorption Spectroscopy. J. Phys. Chem. A 2021, 125, 8891–8898. 10.1021/acs.jpca.1c07201. PubMed DOI

Fox L. S.; Kozik M.; Winkler J. R.; Gray H. B. Gaussian Free-Energy Dependence of Electron-Transfer Rates in Iridium Complexes. Science 1990, 247, 1069–1071. 10.1126/science.247.4946.1069. PubMed DOI

van der Veen R. M.; Cannizzo A.; van Mourik F.; Vlček A. Jr.; Chergui M. Vibrational Relaxation and Intersystem Crossing of Binuclear Metal Complexes in Solution. J. Am. Chem. Soc. 2011, 133, 305–315. 10.1021/ja106769w. PubMed DOI

Monni R.; Capano G.; Auböck G.; Gray H. B.; Vlček A.; Tavernelli I.; Chergui M. Vibrational coherence transfer in the ultrafast intersystem crossing of a diplatinum complex in solution. Proc. Natl. Acad. Sci. U.S.A. 2018, 115, E6396–E6403. 10.1073/pnas.1719899115. PubMed DOI PMC

Monni R.; Auböck G.; Kinschel D.; Aziz-Lange K. M.; Gray H. B.; Vlček A.; Chergui M. Conservation of vibrational coherence in ultrafast electronic relaxation: The case of diplatinum complexes in solution. Chem. Phys. Lett. 2017, 683, 112–120. 10.1016/j.cplett.2017.02.071. DOI

Hartsock R. W.; Zhang W.; Hill M. G.; Sabat B.; Gaffney K. J. Characterizing the Deformational Isomers of Bimetallic Ir2(dimen)42+ (dimen = 1,8-diisocyano-p-menthane) with Vibrational Wavepacket Dynamics. J. Phys. Chem. A 2011, 115, 2920–2926. 10.1021/jp1114493. PubMed DOI

Pižl M.; Hunter B. M.; Greetham G. M.; Towrie M.; Záliš S.; Gray H. B.; Vlček A. Ultrafast Wiggling and Jiggling: Ir2(1,8-diisocyanomenthane)42+. J. Phys. Chem. A 2017, 121, 9275–9283. 10.1021/acs.jpca.7b10215. PubMed DOI

van Driel T. B.; Kjær K. S.; Hartsock R. W.; Dohn A. O.; Harlang T.; Chollet M.; Christensen M.; Gawelda W.; Henriksen N. E.; Kim J. G.; Haldrup K.; Kim K. H.; Ihee H.; Kim J.; Lemke H.; Sun Z.; Sundström V.; Zhang W.; Zhu D.; Møller K. B.; Nielsen M. M.; Gaffney K. J. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst. Nat. Commun. 2016, 7, 1367810.1038/ncomms13678. PubMed DOI PMC

Rather S. R.; Weingartz N. P.; Kromer S.; Castellano F. N.; Chen L. X. Spin–vibronic coherence drives singlet–triplet conversion. Nature 2023, 620, 776–781. 10.1038/s41586-023-06233-y. PubMed DOI

Kim P.; Valentine A. J. S.; Roy S.; Mills A. W.; Chakraborty A.; Castellano F. N.; Li X.; Chen L. X. Ultrafast Excited-State Dynamics of Photoluminescent Pt(II) Dimers Probed by a Coherent Vibrational Wavepacket. J. Phys. Chem. Lett. 2021, 12, 6794–6803. 10.1021/acs.jpclett.1c01289. PubMed DOI

Kim T. W.; Kim P.; Mills A. W.; Chakraborty A.; Kromer S.; Valentine A. J. S.; Castellano F. N.; Li X.; Chen L. X. Ligand-Structure-Dependent Coherent Vibrational Wavepacket Dynamics in Pyrazolate-Bridged Pt(II) Dimers. J. Phys. Chem. C 2022, 126, 11487–11497. 10.1021/acs.jpcc.2c02256. DOI

Leshchev D.; Valentine A. J. S.; Kim P.; Mills A. W.; Roy S.; Chakraborty A.; Biasin E.; Haldrup K.; Hsu D. J.; Kirschner M. S.; Rimmerman D.; Chollet M.; Glownia J. M.; van Driel T. B.; Castellano F. N.; Li X.; Chen L. X. Revealing Excited-State Trajectories on Potential Energy Surfaces with Atomic Resolution in Real Time. Angew. Chem., Int. Ed. 2023, 62, e20230461510.1002/anie.202304615. PubMed DOI

Kim P.; Valentine A. J. S.; Roy S.; Mills A. W.; Castellano F. N.; Li X.; Chen L. X. Ultrafast branching in intersystem crossing dynamics revealed by coherent vibrational wavepacket motions in a bimetallic Pt(II) complex. Faraday Discuss. 2022, 237, 259–273. 10.1039/D2FD00009A. PubMed DOI

Mewes L.; Ingle R. A.; Megow S.; Böhnke H.; Baranoff E.; Temps F.; Chergui M. Ultrafast Intersystem Crossing and Structural Dynamics of [Pt(ppy)(μ-tBu2pz)]2. Inorg. Chem. 2020, 59, 14643–14653. 10.1021/acs.inorgchem.0c00902. PubMed DOI

Iwamura M.; Fukui A.; Nozaki K.; Kuramochi H.; Takeuchi S.; Tahara T. Coherent Vibration and Femtosecond Dynamics of the Platinum Complex Oligomers upon Intermolecular Bond Formation in the Excited State. Angew. Chem., Int. Ed. 2020, 59, 23154–23161. 10.1002/anie.202011813. PubMed DOI

Watanabe H.; Iwamura M.; Nozaki K.; Takanashi T.; Kuramochi H.; Tahara T. Torsional Structural Relaxation Caused by Pt–Pt Bond Formation in the Photoexcited Dimer of Pt(II) N∧C∧N Complex in Solution. J. Phys. Chem. Lett. 2025, 16, 406–414. 10.1021/acs.jpclett.4c03170. PubMed DOI

Biasin E.; van Driel T. B.; Levi G.; Laursen M. G.; Dohn A. O.; Moltke A.; Vester P.; Hansen F. B. K.; Kjaer K. S.; Harlang T.; Hartsock R.; Christensen M.; Gaffney K. J.; Henriksen N. E.; Møller K. B.; Haldrup K.; Nielsen M. M.; et al. Anisotropy enhanced X-ray scattering from solvated transition metal complexes. J. Synchrotron Rad. 2018, 25, 306–315. 10.1107/S1600577517016964. PubMed DOI

Batignani G.; Ferrante C.; Fumero G.; Martinati M.; Scopigno T. Femtosecond stimulated Raman spectroscopy. Nat. Rev. Methods Primers 2024, 4, 34.10.1038/s43586-024-00314-6. DOI

Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond Stimulated Raman Spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI

Dietze D. R.; Mathies R. A. Femtosecond Stimulated Raman Spectroscopy. ChemPhysChem 2016, 17, 1224–1251. 10.1002/cphc.201600104. PubMed DOI

Smith D. C.Electronic Structure and Photochemical Reactivity of Binuclear Metal Complexes. Ph.D. Dissertation, California Institute of Technology: Pasadena, CA, 1989.

Smith D. C.; Miskowski V. M.; Mason W. R.; Gray H. B. Electronic Absorption and MCD Spectra of M2(TMB)42+, M = Rh and Ir. A Valence-Bond Description of the Upper Electronic Excited States. J. Am. Chem. Soc. 1990, 112, 3759–3767. 10.1021/ja00166a008. DOI

Zewail A. H. Femtochemistry: Atomic Scale Dynamics of the Chemical Bond. J. Phys. Chem. A 2000, 104, 5660–5694. 10.1021/jp001460h. PubMed DOI

Bardeen C. J.; Wang Q.; Shank C. V. Selective excitation of vibrational wave packet motion using chirped pulses. Phys. Rev. Lett. 1995, 75, 3410–3413. 10.1103/PhysRevLett.75.3410. PubMed DOI

Jumper C. C.; Arpin P. C.; Turner D. B.; McClure S. D.; Rafiq S.; Dean J. C.; Cina J.; Kovac P. A.; Mirkovic T.; Scholes G. D. Broad-Band Pump–Probe Spectroscopy Quantifies Ultrafast Solvation Dynamics of Proteins and Molecules. J. Phys. Chem. Lett. 2016, 7, 4722–4731. 10.1021/acs.jpclett.6b02237. PubMed DOI

Rather S. R.; Scholes G. D. Slow Intramolecular Vibrational Relaxation Leads to Long-Lived Excited-State Wavepackets. J. Phys. Chem. A 2016, 120, 6792–6799. 10.1021/acs.jpca.6b07796. PubMed DOI

Vos M. H.; Rappaport F.; Lambry J.-C.; Breton J.; Martin J.-L. Visualization of Coherent Nuclear Motion in a Membrane Protein by Femtosecond Spectroscopy. Nature 1993, 363, 320–325. 10.1038/363320a0. DOI

Cina J. A.; Kovac P. A.; Jumper C. C.; Dean J. C.; Scholes G. D. Ultrafast transient absorption revisited: Phase-flips, spectral fingers, and other dynamical features. J. Chem. Phys. 2016, 144, 17510210.1063/1.4947568. PubMed DOI

Kuramochi H.; Tahara T. Tracking Ultrafast Structural Dynamics by Time-Domain Raman Spectroscopy. J. Am. Chem. Soc. 2021, 143, 9699–9717. 10.1021/jacs.1c02545. PubMed DOI PMC

Liebel M.; Schnedermann C.; Wende T.; Kukura P. Principles and Applications of Broadband Impulsive Vibrational Spectroscopy. J. Phys. Chem. A 2015, 119, 9506–9517. 10.1021/acs.jpca.5b05948. PubMed DOI

Frontiera R. R.; Fang C.; Dasgupta J.; Mathies R. A. Probing structural evolution along multidimensional reaction coordinates with femtosecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2012, 14, 405–414. 10.1039/C1CP22767J. PubMed DOI

Prince R. C.; Frontiera R. R.; Potma E. O. Stimulated Raman Scattering: From Bulk to Nano. Chem. Rev. 2017, 117, 5070–5094. 10.1021/acs.chemrev.6b00545. PubMed DOI PMC

Lynch P. G.; Das A.; Alam S.; Rich C. C.; Frontiera R. R. Mastering Femtosecond Stimulated Raman Spectroscopy: A Practical Guide. ACS Phys. Chem. Au 2024, 4, 1–18. 10.1021/acsphyschemau.3c00031. PubMed DOI PMC

Frontiera R. R.; Shim S.; Mathies R. A. Origin of negative and dispersive features in anti-Stokes and resonance femtosecond stimulated Raman spectroscopy. J. Chem. Phys. 2008, 129, 06450710.1063/1.2966361. PubMed DOI

Harbola U.; Umapathy S.; Mukamel S. Loss and gain signals in broadband stimulated-Raman spectra: Theoretical analysis. Phys. Rev. A 2013, 88, 011801(R)10.1103/PhysRevA.88.011801. DOI

Weigel A.; Ernsting N. P. Excited Stilbene: Intramolecular Vibrational Redistribution and Solvation Studied by Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. B 2010, 114, 7879–7893. 10.1021/jp100181z. PubMed DOI

Liu W.; Tang L.; Oscar B. G.; Wang Y.; Chen C.; Fang C. Tracking Ultrafast Vibrational Cooling during Excited-State Proton Transfer Reaction with Anti-Stokes and Stokes Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. Lett. 2017, 8, 997–1003. 10.1021/acs.jpclett.7b00322. PubMed DOI

Oscar B. G.; Chen C.; Liu W.; Zhu L.; Fang C. Dynamic Raman Line Shapes on an Evolving Excited-State Landscape: Insights from Tunable Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. A 2017, 121, 5428–5441. 10.1021/acs.jpca.7b04404. PubMed DOI

Clark R. J. H.; Dines T. J. Resonance Raman Spectroscopy, and Its Application to Inorganic Chemistry. Angew. Chem., Int. Ed. 1986, 25, 131–158. 10.1002/anie.198601311. DOI

Batignani G.; Pontecorvo E.; Giovannetti G.; Ferrante C.; Fumero G.; Scopigno T. Electronic resonances in broadband stimulated Raman spectroscopy. Sci. Rep. 2016, 6, 1844510.1038/srep18445. PubMed DOI PMC

Weigel A.; Dobryakov A.; Klaumünzer B.; Sajadi M.; Saalfrank P.; Ernsting N. P. Femtosecond Stimulated Raman Spectroscopy of Flavin after Optical Excitation. J. Phys. Chem. B 2011, 115, 3656–3680. 10.1021/jp1117129. PubMed DOI

Dobryakov A. L.; Krohn O. A.; Quick M.; Ioffe I. N.; Kovalenko S. A. Positive and negative signal and line shape in stimulated Raman spectroscopy: Resonance femtosecond Raman spectra of diphenylbutadiene. J. Chem. Phys. 2022, 156, 08430410.1063/5.0075116. PubMed DOI

McCamant D. W. Re-Evaluation of Rhodopsin’s Relaxation Kinetics Determined from Femtosecond Stimulated Raman Lineshapes. J. Phys. Chem. B 2011, 115, 9299–9305. 10.1021/jp2028164. PubMed DOI PMC

Mukamel S.; Biggs J. D. Communication: Comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 2011, 134, 16110110.1063/1.3581889. PubMed DOI PMC

Hoffman D. P.; Mathies R. A. Femtosecond Stimulated Raman Exposes the Role of Vibrational Coherence in Condensed-Phase Photoreactivity. Acc. Chem. Res. 2016, 49, 616–625. 10.1021/acs.accounts.5b00508. PubMed DOI

Hoffman D. P.; Ellis S. R.; Mathies R. A. Characterization of a Conical Intersection in a Charge-Transfer Dimer with Two-Dimensional Time-Resolved Stimulated Raman Spectroscopy. J. Phys. Chem. A 2014, 118, 4955–4965. 10.1021/jp5041986. PubMed DOI

Stiegman A. E.; Rice S. F.; Gray H. B.; Miskowski V. M. Electronic Spectroscopy of d8-d8 Diplatinum Complexes. 1A2u(dσ*→pσ), 3Eu(dxz,dyz→pσ), and 3,1B2u(dσ*→dx2-y2) Excited States of Pt2(P2O5H2)44-. Inorg. Chem. 1987, 26, 1112–1116. 10.1021/ic00254a029. DOI

Jean J. M.; Fleming G. R. Competition between energy and phase relaxation in electronic curve crossing processes. J. Chem. Phys. 1995, 103, 2092–2101. 10.1063/1.469684. DOI

Dohn A. O.; Jónsson E. O.; Kjær K. S.; van Driel T. B.; Nielsen M. M.; Jacobsen K. W.; Henriksen N. E.; Møller K. B. Direct Dynamics Studies of a Binuclear Metal Complex in Solution: The Interplay Between Vibrational Relaxation, Coherence, and Solvent Effects. J. Phys. Chem. Lett. 2014, 5, 2414–2418. 10.1021/jz500850s. PubMed DOI

Paulus B. C.; Adelman S. L.; Jamula L. L.; McCusker J. K. Leveraging excited-state coherence for synthetic control of ultrafast dynamics. Nature 2020, 582, 214–218. 10.1038/s41586-020-2353-2. PubMed DOI

Romero E.; Novoderezhkin V. I.; van Grondelle R. Quantum design of photosynthesis for bio-inspired solar-energy conversion. Nature 2017, 543, 355–365. 10.1038/nature22012. PubMed DOI

Rather S. R.; Scholes G. D. From Fundamental Theories to Quantum Coherences in Electron Transfer. J. Am. Chem. Soc. 2019, 141, 708–722. 10.1021/jacs.8b09059. PubMed DOI

Scholes G. D.; Fleming G. R.; Chen L. X.; Aspuru-Guzik A.; Buchleitner A.; Coker D. F.; Engel G. S.; van Grondelle R.; Ishizaki A.; Jonas D. M.; Lundeen J. S.; McCusker J. K.; Mukamel S.; Ogilvie J. P.; Olaya-Castro A.; Ratner M. A.; Spano F. C.; Whaley K. B.; Zhu X. Using coherence to enhance function in chemical and biophysical systems. Nature 2017, 543, 647–656. 10.1038/nature21425. PubMed DOI

Che C.-M.; Schaefer W. P.; Gray H. B.; Dickson M. K.; Stein P. B.; Roundhill D. M. Novel Binuclear Platinum(III) Diphosphite Complexes. J. Am. Chem. Soc. 1982, 104, 4253–4255. 10.1021/ja00379a038. DOI

Harvey E. L.; Stiegman A. E.; Vlček A. Jr; Gray H. B. Dihydridotetrakis(pyrophosphito(2-))diplatinate(III). J. Am. Chem. Soc. 1987, 109, 5233–5235. 10.1021/ja00251a031. DOI

Whittemore T. J.; Xue C.; Huang J.; Gallucci J. C.; Turro C. Single-chromophore single-molecule photocatalyst for the production of dihydrogen using low-energy light. Nat. Chem. 2020, 12, 180–185. 10.1038/s41557-019-0397-4. PubMed DOI

Gupta P.; Moore C. E.; Turro C. Photo- and Electrocatalytic Hydrogen Evolution by Heteroleptic Dirhodium(II,II) Complexes: Role of the Bridging and Diimine Ligands. J. Am. Chem. Soc. 2024, 146, 27161–27172. 10.1021/jacs.4c10626. PubMed DOI

Fortunato M. T.; Moore C. E.; Turro C. Ligand-Centered Photocatalytic Hydrogen Production in an Axially Capped Rh2(II,II) Paddlewheel Complex with Red Light. J. Am. Chem. Soc. 2023, 145, 27348–27357. 10.1021/jacs.3c07532. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...