Boron-based octahedral dication experimentally detected: DFT surface confirms its availability
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37388141
PubMed Central
PMC10305729
DOI
10.1039/d3ra03665k
PII: d3ra03665k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Borane and heteroborane clusters have been known as neutral or anionic species. In contrast to them, several ten-vertex monocationic nido and closo dicarbaborane-based systems have recently emerged from the reaction of the parent bicapped-square antiprismatic dicarbaboranes with N-heterocyclic carbenes followed by the protonization of the corresponding nido intermediates. The expansion of these efforts has afforded the very first closo-dicationic octahedral phosphahexaborane along with new closo-monocationic pnictogenahexaboranes of the same shapes. All are the products of the one-pot procedure that consists in the reaction of the same carbenes with the parent closo-1,2-Pn2B4Br4 (Pn = As, P). Whereas in the case of phosphorus such a monocation appears to be a mixture of stable intermediates, and arsenahexaboranyl monocation has occurred as the final product, all of them without using any subsequent reaction. The well-established DFT/ZORA/NMR approach has unambiguously confirmed the existence of these species in solution, and computed electrostatic potentials have revealed the delocalization of the positive charge in these monocations and in the very first dication, namely within the octahedral shapes in both cases.
Department of Chemistry and Biochemistry Auburn University Auburn AL 36849 USA
Institut für Chemie Universität Hohenheim Garbenstrasse 30 D 70599 Stuttgart Germany
Zobrazit více v PubMed
Huynh H. A. Chem. Rev. 2018;118:9457. PubMed
For example Fleming I., Frontier Orbitals and Organic Chemical Reactions, John Wiley and Sons, Chichester, Sussex, UK, 1976
Hnyk D. and Wann D. A., Boron: the Fifth Element Challenges and Advances in Computational Chemistry and Physics, ed. D.Hnyk, M. L.McKee, 2016, vol. 20, ch. 2 and the extensive references therein
Melichar P. Hnyk D. Fanfrlík J. Phys. Chem. Chem. Phys. 2018;20:4666. PubMed
Schleyer P. v. R. Najafian K. Mebel A. M. Inorg. Chem. 1998;37:6765. PubMed
Hnyk D. Všetečka V. Drož L. Exner O. Collect. Czech. Chem. Commun. 2001;66:1375.
Hnyk D. Jayasree E. G. J. Comput. Chem. 2013;34:656. PubMed
Perumalla D. S. Ghorai S. Pal T. Hnyk D. Holub J. Jemmis E. D. J. Comput. Chem. 2023;44:256. PubMed
Willans C. E. Kilner C. A. Fox M. A. Chem.–Eur. J. 2010;16:10644. PubMed
Vrána J. Holub J. Růžičková Z. Fanfrlík J. Hnyk D. Růžička A. Inorg. Chem. 2019;58:2471. PubMed
Vrána J. Holub J. Samsonov M. A. Růžičková Z. Cvačka J. McKee M. L. Fanfrlík J. Hnyk D. Růžička A. Nat. Commun. 2021;12:4971. PubMed PMC
Keller W. Sneddon L. G. Einholz W. Gemmler A. Chem. Ber. 1992;125:2343.
Keller W. Einholz W. Rudolph D. Schleid T. Z. Anorg. Allg. Chem. 2017;643:664.
Keller W. Hofmann M. Anorg Z. Allg. J. Chem. 2017;643:729.
Keller W. Ballmann J. Sárosi M. B. Fanfrlík J. Hnyk D. Angew. Chem., Int. Ed. 2023;62:e2022119018. PubMed
Keller W. Hofmann M. Sárosi M. B. Fanfrlík J. Hnyk D. Inorg. Chem. 2022;61:16565. PubMed
Braunschweig H. Dewhurts R. D. Hammond K. Mies J. Radacki K. Vargas A. Science. 2012;336:1420. PubMed
Köppe R. Schnöckel H. Chem. Sci. 2015;6:1199. PubMed PMC
Fanfrlík J. Hnyk D. Crystals. 2018;8:390.
Waters J. P. Everitt T. A. Myers K. Goicoechea J. M. Chem. Sci. 2016;7:6981. PubMed PMC
Heřmánek S. Hnyk D. Havlas Z. J. Chem. Soc., Chem. Commun. 1989:1859.
Bühl M. Schleyer P. v. R. Havlas Z. Hnyk D. Heřmánek S. Inorg. Chem. 1991;30:3107.
Kruve A. Kaupmees K. J. Am. Soc. Mass Spectrom. 2017;28:887. PubMed
Xu C. Guo H. Breitbach Z. S. Armstrong D. W. Anal. Chem. 2014;86:2665. PubMed
Kruve A. Kaupmees K. J. Am. Soc. Mass Spectrom. 2017;28:887. PubMed
Nagy L. Nagy T. Deák G. Kuki Á. Purgel M. Narmandakh M. Iván B. Zsuga M. Kéki S. J. Am. Soc. Mass Spectrom. 2016;27:432. PubMed
Grimme S. Antony J. Ehrlich S. Krieg H. J. Chem. Phys. 2010;132:154104. PubMed
Maué D. Strebert P. H. Bernhard D. Rösel S. Schreiner P. R. Gerhards M. Angew. Chem., Int. Ed. 2021;60:11305. PubMed PMC
Baranac-Stojanovic M. RSC Adv. 2014;4:308.
See e.g.Wade K., Electron Deficient Compounds, Nelson, London, 1971
Morrison J. A. Chem. Rev. 1991;91:35.
Knizia G. J. Chem. Theory Comput. 2013;9:4834. PubMed
Gray M. Bowling P. E. Herbert J. M. J. Chem. Theory Comput. 2022;18:6742. PubMed
Kee M. L. J. Am. Chem. Soc. 1988;110:5317.