The Telluraboranes closo-TeB5 Cl5 and closo-TeB11 Cl11 with Exceptionally Long Body Diagonals: Synthetic and Bonding Motifs for Innovative Octahedral and Icosahedral Geometries
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
19-17156S
Grantová Agentura České Republiky
- Keywords
- 4c-2e Bonding, DFT Calculations, Polyhedra, Solid-State Chemistry, Telluraboranes,
- Publication type
- Journal Article MeSH
Six-vertex closo-TeB5 Cl5 (1) and twelve-vertex closo-TeB11 Cl11 (2) telluraboranes have been prepared via co-pyrolysis of B2 Cl4 with TeCl4 in vacuo at temperatures between 360 °C and 400 °C. Both compounds are sublimable, off-white solids, and they have been characterized by one- and two-dimensional 11 B NMR and high-resolution mass spectroscopy. Both ab initio/GIAO/NMR and DFT/ZORA/NMR computations support octahedral and icosahedral geometries for 1 and 2, respectively, as expected due to their closo-electron counts. The octahedral structure of 1 has been confirmed by single-crystal X-ray diffraction on an incommensurately modulated crystal. The corresponding bonding properties have been analyzed in terms of the intrinsic bond orbital (IBO) approach. 1 is the first example of a polyhedral telluraborane with a cluster size smaller than 10 vertices.
Institut für Chemie Universität Hohenheim Garbenstrasse 30 70599 Stuttgart Germany
Institute of Inorganic Chemistry of the Czech Academy of Sciences 250 68 Husinec Řež Czech Republic
See more in PubMed
For selected surveys on polyhedral boranes, see:
W. N. Lipscomb, Boron Hydrides, W. A. Benjamin, New York, 1963;
E. L. Muetterties, Boron Hydride Chemistry, Academic Press, New York, 1975;
J. F. Liebman, A. Greenberg, R. E. Williams, Advances in Boron and the Boranes, VCH, Weinheim, 1988;
R. B. King, Chem. Rev. 2001, 101, 1119-1152.
For selected surveys on carboranes, see:
Electron Deficient Boron and Carbon Clusters (Eds.: G. A. Olah, K. Wade, R. E. Williams), Wiley, New York, 1991;
“Polyhedral Carbaboranes”: T. Onak in Comprehensive Organometallic Chemistry II, Vol. 1 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, 1995, chap. 6, pp. 217-255;
“Polyhedral Carboranes”: M. A. Fox in Comprehensive Organometallic Chemistry III, Vol. 3 (Ed.: R. H. Crabtree, D. M. P. Mingos), Elsevier, Amsterdam, 2007, chap. 2, pp. 49-112;
R. N. Grimes, Carboranes, 3rd ed., Elsevier, Amsterdam, 2016.
For selected surveys on heteroboranes containing p-block elements other than carbon, see:
“Heterocarboranes”: L. J. Todd in Comprehensive Organometallic Chemistry (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, Oxford, 1982, pp. 534-553;
L. J. Todd in Comprehensive Organometallic Chemistry II, Vol. 1 (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Elsevier Science, Oxford, 1995, chap. 7, pp. 257-273;
A. K. Saxena, J. A. Maguire, N. S. Hosmane, Chem. Rev. 1997, 97, 2421-2462;
K. Vyakaranam, J. A. Maguire, N. S. Hosmane, J. Organomet. Chem. 2002, 646, 21-38;
P. Paetzold in Molecular Clusters of the Main Group Elements (Eds.: M. Driess, H. Nöth), Wiley-VCH, Weinheim, 2004, pp. 322-356;
“s- and p-Block Heteroboranes and Carboranes”: L. Wesemann in Comprehensive Organometallic Chemistry III, Vol. 3 (Eds.: R. H. Crabtree, D. M. P. Mingos), Elsevier, Amsterdam, 2007, chap. 3, pp. 113-132.
P. v. R. Schleyer, K. Najafian, Inorg. Chem. 1998, 37, 3454-3470;
P. v. R. Schleyer, K. Najafian, A. M. Mebel, Inorg. Chem. 1998, 37, 6765-6772.
W. Haubold, W. Keller, J. Organomet. Chem. 1989, 361, C54-C56;
W. Haubold, W. Keller, G. Sawitzki, Angew. Chem. Int. Ed. Engl. 1988, 27, 925-926;
W. Keller, L. G. Sneddon, W. Einholz, A. Gemmler, Chem. Ber. 1992, 125, 2343-2346;
W. Keller, G. Sawitzki, W. Haubold, Inorg. Chem. 2000, 39, 1282-1287;
W. Keller, Z. Anorg. Allg. Chem. 2017, 643, 517-522;
R. Schäfer, W. Einholz, W. Keller, G. Eulenberger, W. Haubold, Chem. Ber. 1995, 128, 735-736;
W. Einholz, R. Schäfer, W. Keller, B. Vogler, Z. Naturforsch. 1997, ##52b, 221-226;
W. Keller, M. Hofmann, Z. Anorg. Allg. Chem. 2017, 643, 729-731.
J. L. Little, G. D. Friesen, L. J. Todd, Inorg. Chem. 1977, 16, 869-872;
G. D. Friesen, L. J. Todd, J. Chem. Soc. Chem. Commun. 1978, 8, 349-350;
G. D. Friesen, R. L. Kump, L. J. Todd, Inorg. Chem. 1980, 19, 1485-1488;
G. Ferguson, J. F. Gallagher, M. McGrath, J. P. Sheehan, T. R. Spalding, J. D. Kennedy, J. Chem. Soc. Dalton Trans. 1993, 27-34;
B. Joseph, S. K. Barik, R. Ramalakshmi, G. Kundu, T. Roisnel, V. Dorcet, S. Ghosh, Eur. J. Inorg. Chem. 2018, 2045-2053 and references therein as well as the references in 6d.
H. Binder, R. Kellner, K. Vaas, M. Hein, F. Baumann, M. Wanner, R. Winter, W. Kaim, W. Hönle, Y. Grin, U. Wedig, M. Schultheiss, R. K. Kremer, H. G. von Schnering, O. Groeger, G. Engelhardt, Z. Anorg. Allg. Chem. 1999, 625, 1059-1072.
S. Heřmánek, Chem. Rev. 1992, 92, 325-362;
F. Teixidor, C. Vinas, R. W. Rudolph, Inorg. Chem. 1986, 25, 3339-3346;
T. P. Fehlner, P. T. Czech, R. F. Fenske, Inorg. Chem. 1990, 29, 3103-3109;
S. Heřmánek, D. Hnyk, Z. Havlas, J. Chem. Soc. Chem. Commun. 1989, 23, 1859-1861;
M. Bühl, P. v. R. Schleyer, Z. Havlas, D. Hnyk, S. Heřmánek, Inorg. Chem. 1991, 30, 3107-3111.
J. L. Little, M. A. Whitesell, R. W. Chapman, J. G. Kester, J. C. Huffman, L. J. Todd, Inorg. Chem. 1993, 32, 3369-3372.
R. E. Williams, Inorg. Chem. 1971, 10, 210-214;
K. Wade, Adv. Inorg. Chem. Radiochem. 1976, 18, 1-66;
R. E. Williams, Adv. Inorg. Chem. Radiochem. 1976, 18, 67;
R. W. Rudolph, Acc. Chem. Res. 1976, 9, 446-452;
R. E. Williams in Electron Deficient Boron and Carbon Clusters (Eds.: G. A. Olah, K. Wade, R. E. Williams), Wiley, New York, 1991, pp. 11-93;
R. E. Williams, Chem. Rev. 1992, 92, 177-207.
Deposition Number 2224643 (for 1) contains the supplementary crystallographic data for this paper. These data are provided free of charge by the joint Cambridge Crystallographic Data Centre and Fachinformationszentrum Karlsruhe Access Structures service.
T. Baše, J. Holub, J. Fanfrlík, D. Hnyk, P. D. Lane, D. A. Wann, Y. V. Vishnevskiy, D. Tikhonov, C. G. Reuter, N. W. Mitzel, Chem. Eur. J. 2019, 25, 2313-2321, and references therein.
D. Hnyk, D. A. Wann, Boron: The Fifth Element, Vol. 20, Springer, Dordrecht, 2015, pp. 17-48.
GED structure of closo-SB11H11:
D. Hnyk, E. Vajda, M. Bühl, P. v. R. Schleyer, Inorg. Chem. 1992, 31, 2464-2467;
MW structure of closo-SB11H11: H. Møllendal, S. Samdal, J. Holub, D. Hnyk, Inorg. Chem. 2003, 42, 3043-3046;
for other structural aspects of closo-1-SB11H11, see J. Macháček, J. Plešek, J. Holub, D. Hnyk, V. Všetečka, I. Císařová, M. Kaupp, B. Štíbr, Dalton Trans. 2006, 8, 1024-1029.
D. Hnyk, D. A. Wann, J. Holub, M. Bühl, H. E. Robertson, D. W. H. Rankin, Dalton Trans. 2008, 96-100.
P. Melichar, D. Hnyk, J. Fanfrlík, Phys. Chem. Chem. Phys. 2018, 20, 4666-4675.
W. Keller, M. Hofmann, M. B. Sárosi, J. Fanfrlík, D. Hnyk, Inorg. Chem. 2022, 61, 16565-16572.
Such a value of Vs,max is responsible for the S⋅⋅⋅Ph contact (chalcogen bonding) in the crystal-see J. Fanfrlík, A. Přáda, Z. Padělková, A. Pecina, J. Macháček, M. Lepšík, J. Holub, A. Růžička, D. Hnyk, P. Hobza, Angew. Chem. Int. Ed. 2014, 53, 10139-10142.
This value of Vs,max is responsible for the P⋅⋅⋅toluene contact (pnictogen bonding) in the corresponding co-crystal of closo-1,7-P2B10Cl10 with toluene-see J. Fanfrlík, D. Hnyk, Crystals 2018, 8, 390-398.
J. Holub, P. Melichar, Z. Růžičková, J. Vrána, D. A. Wann, J. Fanfrlík, D. Hnyk, A. Růžička, Dalton Trans. 2017, 46, 13714-13719.
D. Dai, H. Xiang, M.-H. Whangbo, J. Comput. Chem. 2008, 29, 2187-2209.
M. Bühl, J. Gauss, M. Hofmann, P. v. R. Schleyer, J. Am. Chem. Soc. 1993, 115, 12385-12390.