Biodistribution and Cellular Internalization of Inactivated SARS-CoV-2 in Wild-Type Mice
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
807015
Innovative Medicines Initiative
863214
European Union
2017-2.3.6-TÉT-CN-2018-00023
National Research, Development and Innovation Office
2020-1.1.6-JÖVŐ-2021-00012
National Research, Development and Innovation Office
PubMed
35886958
PubMed Central
PMC9316427
DOI
10.3390/ijms23147609
PII: ijms23147609
Knihovny.cz E-zdroje
- Klíčová slova
- SARS-CoV-2, cellular uptake, heparan sulfate proteoglycans, mouse, syndecans,
- MeSH
- angiotensin konvertující enzym 2 metabolismus MeSH
- COVID-19 * metabolismus virologie MeSH
- heparansulfát proteoglykany metabolismus MeSH
- internalizace viru * MeSH
- lidé MeSH
- myši MeSH
- SARS-CoV-2 * metabolismus MeSH
- savci metabolismus MeSH
- syndekany metabolismus MeSH
- tkáňová distribuce * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- angiotensin konvertující enzym 2 MeSH
- heparansulfát proteoglykany MeSH
- syndekany MeSH
Despite the growing list of identified SARS-CoV-2 receptors, the human angiotensin-converting enzyme 2 (ACE2) is still viewed as the main cell entry receptor mediating SARS-CoV-2 internalization. It has been reported that wild-type mice, like other rodent species of the Muridae family, cannot be infected with SARS-CoV-2 due to differences in their ACE2 receptors. On the other hand, the consensus heparin-binding motif of SARS-CoV-2's spike protein, PRRAR, enables the attachment to rodent heparan sulfate proteoglycans (HSPGs), including syndecans, a transmembrane HSPG family with a well-established role in clathrin- and caveolin-independent endocytosis. As mammalian syndecans possess a relatively conserved structure, we analyzed the cellular uptake of inactivated SARS-CoV-2 particles in in vitro and in vivo mice models. Cellular studies revealed efficient uptake into murine cell lines with established syndecan-4 expression. After intravenous administration, inactivated SARS-CoV-2 was taken up by several organs in vivo and could also be detected in the brain. Internalized by various tissues, inactivated SARS-CoV-2 raised tissue TNF-α levels, especially in the heart, reflecting the onset of inflammation. Our studies on in vitro and in vivo mice models thus shed light on unknown details of SARS-CoV-2 internalization and help broaden the understanding of the molecular interactions of SARS-CoV-2.
Boeckeler Instruments Inc Tucson AZ 85714 USA
Delong Instruments a s 612 00 Brno Czech Republic
Institute of Biochemistry Biological Research Centre H 6726 Szeged Hungary
Institute of Biophysics Biological Research Centre H 6726 Szeged Hungary
Laboratory of Proteomics Research Biological Research Centre H 6726 Szeged Hungary
Pharmacoidea Ltd H 6726 Szeged Hungary
Theoretical Medicine Doctoral School Faculty of Medicine University of Szeged H 6720 Szeged Hungary
Zobrazit více v PubMed
Lai C.C., Shih T.P., Ko W.C., Tang H.J., Hsueh P.R. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int. J. Antimicrob. Agents. 2020;55:105924. doi: 10.1016/j.ijantimicag.2020.105924. PubMed DOI PMC
Israfil S.M.H., Sarker M.M.R., Rashid P.T., Talukder A.A., Kawsar K.A., Khan F., Akhter S., Poh C.L., Mohamed I.N., Ming L.C. Clinical characteristics and diagnostic challenges of COVID-19: An update from the global perspective. Front. Public Health. 2020;8:567395. doi: 10.3389/fpubh.2020.567395. PubMed DOI PMC
Goyal M., Tewatia N., Vashisht H., Jain R., Kumar S. Novel corona virus (COVID-19); Global efforts and effective investigational medicines: A review. J. Infect. Public Health. 2021;14:910–921. doi: 10.1016/j.jiph.2021.04.011. PubMed DOI PMC
Wen W., Chen C., Tang J., Wang C., Zhou M., Cheng Y., Zhou X., Wu Q., Zhang X., Feng Z., et al. Efficacy and safety of three new oral antiviral treatment (molnupiravir, fluvoxamine and Paxlovid) for COVID-19: A meta-analysis. Ann. Med. 2022;54:516–523. doi: 10.1080/07853890.2022.2034936. PubMed DOI PMC
Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052. PubMed DOI PMC
Scialo F., Daniele A., Amato F., Pastore L., Matera M.G., Cazzola M., Castaldo G., Bianco A. ACE2: The major cell entry receptor for SARS-CoV-2. Lung. 2020;198:867–877. doi: 10.1007/s00408-020-00408-4. PubMed DOI PMC
Shen X.R., Geng R., Li Q., Chen Y., Li S.F., Wang Q., Min J., Yang Y., Li B., Jiang R.D., et al. ACE2-independent infection of T lymphocytes by SARS-CoV-2. Signal Transduct. Target. Ther. 2022;7:83. doi: 10.1038/s41392-022-00919-x. PubMed DOI PMC
Karthika T., Joseph J., Das V.R.A., Nair N., Charulekha P., Roji M.D., Raj V.S. SARS-CoV-2 cellular entry is independent of the ACE2 cytoplasmic domain signaling. Cells. 2021;10:1814. doi: 10.3390/cells10071814. PubMed DOI PMC
Liu J., Lu F., Chen Y., Plow E., Qin J. Integrin mediates cell entry of the SARS-CoV-2 virus independent of cellular receptor ACE2. J. Biol. Chem. 2022;298:101710. doi: 10.1016/j.jbc.2022.101710. PubMed DOI PMC
Wan Y., Shang J., Graham R., Baric R.S., Li F. Receptor recognition by the novel Coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS Coronavirus. J. Virol. 2020;94:e00127-20. doi: 10.1128/JVI.00127-20. PubMed DOI PMC
Shou S., Liu M., Yang Y., Kang N., Song Y., Tan D., Liu N., Wang F., Liu J., Xie Y. Animal models for COVID-19: Hamsters, mouse, ferret, mink, tree shrew, and non-human primates. Front. Microbiol. 2021;12:626553. doi: 10.3389/fmicb.2021.626553. PubMed DOI PMC
Schuurs Z.P., Hammond E., Elli S., Rudd T.R., Mycroft-West C.J., Lima M.A., Skidmore M.A., Karlsson R., Chen Y.H., Bagdonaite I., et al. Evidence of a putative glycosaminoglycan binding site on the glycosylated SARS-CoV-2 spike protein N-terminal domain. Comput. Struct. Biotechnol. J. 2021;19:2806–2818. doi: 10.1016/j.csbj.2021.05.002. PubMed DOI PMC
Kim S.Y., Jin W., Sood A., Montgomery D.W., Grant O.C., Fuster M.M., Fu L., Dordick J.S., Woods R.J., Zhang F., et al. Characterization of heparin and severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) spike glycoprotein binding interactions. Antiviral Res. 2020;181:104873. doi: 10.1016/j.antiviral.2020.104873. PubMed DOI PMC
Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D., Narayanan A., Majowicz S.A., Kwong E.M., McVicar R.N., et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell. 2020;183:1043–1057. doi: 10.1016/j.cell.2020.09.033. PubMed DOI PMC
De Pasquale V., Quiccione M.S., Tafuri S., Avallone L., Pavone L.M. Heparan sulfate proteoglycans in viral infection and treatment: A special focus on SARS-CoV-2. Int. J. Mol. Sci. 2021;22:6574. doi: 10.3390/ijms22126574. PubMed DOI PMC
Paiardi G., Richter S., Oreste P., Urbinati C., Rusnati M., Wade R.C. The binding of heparin to spike glycoprotein inhibits SARS-CoV-2 infection by three mechanisms. J. Biol. Chem. 2022;298:101507. doi: 10.1016/j.jbc.2021.101507. PubMed DOI PMC
Tumova S., Woods A., Couchman J.R. Heparan sulfate chains from glypican and syndecans bind the Hep II domain of fibronectin similarly despite minor structural differences. J. Biol. Chem. 2000;275:9410–9417. doi: 10.1074/jbc.275.13.9410. PubMed DOI
Hudak A., Letoha A., Szilak L., Letoha T. Contribution of syndecans to the cellular entry of SARS-CoV-2. Int. J. Mol. Sci. 2021;22:5336. doi: 10.3390/ijms22105336. PubMed DOI PMC
Letoha T., Keller-Pinter A., Kusz E., Kolozsi C., Bozso Z., Toth G., Vizler C., Olah Z., Szilak L. Cell-penetrating peptide exploited syndecans. Biochim. Biophys. Acta. 2010;1798:2258–2265. doi: 10.1016/j.bbamem.2010.01.022. PubMed DOI
Hudak A., Kusz E., Domonkos I., Josvay K., Kodamullil A.T., Szilak L., Hofmann-Apitius M., Letoha T. Contribution of syndecans to cellular uptake and fibrillation of alpha-synuclein and tau. Sci. Rep. 2019;9:16543. doi: 10.1038/s41598-019-53038-z. PubMed DOI PMC
Fuki I.V., Meyer M.E., Williams K.J. Transmembrane and cytoplasmic domains of syndecan mediate a multi-step endocytic pathway involving detergent-insoluble membrane rafts. Pt 3Biochem. J. 2000;351:607–612. doi: 10.1042/bj3510607. PubMed DOI PMC
Tkachenko E., Rhodes J.M., Simons M. Syndecans: New kids on the signaling block. Circ. Res. 2005;96:488–500. doi: 10.1161/01.RES.0000159708.71142.c8. PubMed DOI
Couchman J.R., Gopal S., Lim H.C., Norgaard S., Multhaupt H.A. Fell-Muir Lecture: Syndecans: From peripheral coreceptors to mainstream regulators of cell behaviour. Int. J. Exp. Pathol. 2015;96:1–10. doi: 10.1111/iep.12112. PubMed DOI PMC
Hudak A., Veres G., Letoha A., Szilak L., Letoha T. Syndecan-4 is a key facilitator of the SARS-CoV-2 delta variant’s superior transmission. Int. J. Mol. Sci. 2022;23:796. doi: 10.3390/ijms23020796. PubMed DOI PMC
Sarrazin S., Lamanna W.C., Esko J.D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 2011;3:a004952. doi: 10.1101/cshperspect.a004952. PubMed DOI PMC
Capila I., Linhardt R.J. Heparin-protein interactions. Angew. Chem. Int. Ed. Engl. 2002;41:391–412. doi: 10.1002/1521-3773(20020201)41:3<390::AID-ANIE390>3.0.CO;2-B. PubMed DOI
Hileman R.E., Fromm J.R., Weiler J.M., Linhardt R.J. Glycosaminoglycan-protein interactions: Definition of consensus sites in glycosaminoglycan binding proteins. Bioessays. 1998;20:156–167. doi: 10.1002/(SICI)1521-1878(199802)20:2<156::AID-BIES8>3.0.CO;2-R. PubMed DOI
Vallet S.D., Clerc O., Ricard-Blum S. Glycosaminoglycan-protein interactions: The first draft of the glycosaminoglycan interactome. J. Histochem. Cytochem. 2021;69:93–104. doi: 10.1369/0022155420946403. PubMed DOI PMC
Raman R., Sasisekharan V., Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem. Biol. 2005;12:267–277. doi: 10.1016/j.chembiol.2004.11.020. PubMed DOI
Simon Davis D.A., Parish C.R. Heparan sulfate: A ubiquitous glycosaminoglycan with multiple roles in immunity. Front. Immunol. 2013;4:470. doi: 10.3389/fimmu.2013.00470. PubMed DOI PMC
Cardin A.D., Weintraub H.J. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis. 1989;9:21–32. doi: 10.1161/01.ATV.9.1.21. PubMed DOI
Mali M., Jaakkola P., Arvilommi A.M., Jalkanen M. Sequence of human syndecan indicates a novel gene family of integral membrane proteoglycans. J. Biol. Chem. 1990;265:6884–6889. doi: 10.1016/S0021-9258(19)39232-4. PubMed DOI
Billings P.C., Pacifici M. Interactions of signaling proteins, growth factors and other proteins with heparan sulfate: Mechanisms and mysteries. Connect. Tissue Res. 2015;56:272–280. doi: 10.3109/03008207.2015.1045066. PubMed DOI PMC
Christianson H.C., Belting M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 2014;35:51–55. doi: 10.1016/j.matbio.2013.10.004. PubMed DOI
Letoha T., Hudak A., Kusz E., Pettko-Szandtner A., Domonkos I., Josvay K., Hofmann-Apitius M., Szilak L. Contribution of syndecans to cellular internalization and fibrillation of amyloid-beta(1-42) Sci. Rep. 2019;9:1393. doi: 10.1038/s41598-018-37476-9. PubMed DOI PMC
Parolini I., Sargiacomo M., Galbiati F., Rizzo G., Grignani F., Engelman J.A., Okamoto T., Ikezu T., Scherer P.E., Mora R., et al. Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the golgi complex. J. Biol. Chem. 1999;274:25718–25725. doi: 10.1074/jbc.274.36.25718. PubMed DOI
Saphire A.C., Bobardt M.D., Zhang Z., David G., Gallay P.A. Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J. Virol. 2001;75:9187–9200. doi: 10.1128/JVI.75.19.9187-9200.2001. PubMed DOI PMC
Steinfeld R., Van Den Berghe H., David G. Stimulation of fibroblast growth factor receptor-1 occupancy and signaling by cell surface-associated syndecans and glypican. J. Cell Biol. 1996;133:405–416. doi: 10.1083/jcb.133.2.405. PubMed DOI PMC
Uhlen M., Bjorling E., Agaton C., Szigyarto C.A., Amini B., Andersen E., Andersson A.C., Angelidou P., Asplund A., Asplund C., et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell Proteomics. 2005;4:1920–1932. doi: 10.1074/mcp.M500279-MCP200. PubMed DOI
Uhlen M., Fagerberg L., Hallstrom B.M., Lindskog C., Oksvold P., Mardinoglu A., Sivertsson A., Kampf C., Sjostedt E., Asplund A., et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419. doi: 10.1126/science.1260419. PubMed DOI
Sjostedt E., Zhong W., Fagerberg L., Karlsson M., Mitsios N., Adori C., Oksvold P., Edfors F., Limiszewska A., Hikmet F., et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science. 2020;367:eaay5947. doi: 10.1126/science.aay5947. PubMed DOI
Maggi E., Canonica G.W., Moretta L. COVID-19: Unanswered questions on immune response and pathogenesis. J. Allergy Clin. Immunol. 2020;146:18–22. doi: 10.1016/j.jaci.2020.05.001. PubMed DOI PMC
Sharun K., Dhama K., Pawde A.M., Gortazar C., Tiwari R., Bonilla-Aldana D.K., Rodriguez-Morales A.J., de la Fuente J., Michalak I., Attia Y.A. SARS-CoV-2 in animals: Potential for unknown reservoir hosts and public health implications. Vet. Q. 2021;41:181–201. doi: 10.1080/01652176.2021.1921311. PubMed DOI PMC
Jackson C.B., Farzan M., Chen B., Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 2022;23:3–20. doi: 10.1038/s41580-021-00418-x. PubMed DOI PMC
Colombo V.C., Sluydts V., Marien J., Vanden Broecke B., Van Houtte N., Leirs W., Jacobs L., Iserbyt A., Hubert M., Heyndrickx L., et al. SARS-CoV-2 surveillance in Norway rats (Rattus norvegicus) from Antwerp sewer system, Belgium. Transbound. Emerg. Dis. 2021 doi: 10.1111/tbed.14219. PubMed DOI PMC
Bartlett A.H., Park P.W. Heparan sulfate proteoglycans in infection. In: Pavão M.S.G., editor. Glycans in Diseases and Therapeutics. Springer; Berlin/Heidelberg, Germany: 2011. pp. 31–62.
Cagno V., Tseligka E.D., Jones S.T., Tapparel C. Heparan sulfate proteoglycans and viral attachment: True receptors or adaptation bias? Viruses. 2019;11:596. doi: 10.3390/v11070596. PubMed DOI PMC
Bobardt M.D., Salmon P., Wang L., Esko J.D., Gabuzda D., Fiala M., Trono D., Van der Schueren B., David G., Gallay P.A. Contribution of proteoglycans to human immunodeficiency virus type 1 brain invasion. J. Virol. 2004;78:6567–6584. doi: 10.1128/JVI.78.12.6567-6584.2004. PubMed DOI PMC
Pizzato M., Baraldi C., Boscato Sopetto G., Finozzi D., Gentile C., Gentile M.D., Marconi R., Paladino D., Raoss A., Riedmiller I., et al. SARS-CoV-2 and the host cell: A tale of interactions. Front. Virol. 2022;1:815388. doi: 10.3389/fviro.2021.815388. DOI
Gadanec L.K., McSweeney K.R., Qaradakhi T., Ali B., Zulli A., Apostolopoulos V. Can SARS-CoV-2 virus use multiple receptors to enter host cells? Int. J. Mol. Sci. 2021;22:992. doi: 10.3390/ijms22030992. PubMed DOI PMC
Bayati A., Kumar R., Francis V., McPherson P.S. SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis. J. Biol. Chem. 2021;296:100306. doi: 10.1016/j.jbc.2021.100306. PubMed DOI PMC
Ghosh S., Dellibovi-Ragheb T.A., Kerviel A., Pak E., Qiu Q., Fisher M., Takvorian P.M., Bleck C., Hsu V.W., Fehr A.R., et al. beta-Coronaviruses use lysosomes for egress instead of the biosynthetic secretory pathway. Cell. 2020;183:1520–1535. doi: 10.1016/j.cell.2020.10.039. PubMed DOI PMC
Prydz K., Saraste J. The life cycle and enigmatic egress of coronaviruses. Mol. Microbiol. 2022;117:1308–1316. doi: 10.1111/mmi.14907. PubMed DOI PMC
Cesar-Silva D., Pereira-Dutra F.S., Moraes Giannini A.L., Jacques G.d.A.C. The endolysosomal system: The acid test for SARS-CoV-2. Int. J. Mol. Sci. 2022;23:4576. doi: 10.3390/ijms23094576. PubMed DOI PMC
Bareford L.M., Swaan P.W. Endocytic mechanisms for targeted drug delivery. Adv. Drug Deliv. Rev. 2007;59:748–758. doi: 10.1016/j.addr.2007.06.008. PubMed DOI PMC
Zimmermann P., Tomatis D., Rosas M., Grootjans J., Leenaerts I., Degeest G., Reekmans G., Coomans C., David G. Characterization of syntenin, a syndecan-binding PDZ protein, as a component of cell adhesion sites and microfilaments. Mol. Biol. Cell. 2001;12:339–350. doi: 10.1091/mbc.12.2.339. PubMed DOI PMC
Chen K., Williams K.J. Molecular mediators for raft-dependent endocytosis of syndecan-1, a highly conserved, multifunctional receptor. J. Biol. Chem. 2013;288:13988–13999. doi: 10.1074/jbc.M112.444737. PubMed DOI PMC
Karnovsky M.J., Karnovsky M.J., Karnovsky M.J., Karnovsky M.L., Karnovsky M.J. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy. J. Cell Biol. 1965;27:137.
Zsiros O., Nagy G., Patai R., Solymosi K., Gasser U., Polgar T.F., Garab G., Kovacs L., Horcsik Z.T. Similarities and Differences in the Effects of toxic concentrations of cadmium and chromium on the structure and functions of thylakoid membranes in Chlorella variabilis. Front. Plant Sci. 2020;11:1006. doi: 10.3389/fpls.2020.01006. PubMed DOI PMC
Millonig G. A modified procedure for lead staining of thin sections. J. Biophys. Biochem. Cytol. 1961;11:736–739. doi: 10.1083/jcb.11.3.736. PubMed DOI PMC
Nakase I., Niwa M., Takeuchi T., Sonomura K., Kawabata N., Koike Y., Takehashi M., Tanaka S., Ueda K., Simpson J.C., et al. Cellular uptake of arginine-rich peptides: Roles for macropinocytosis and actin rearrangement. Mol. Ther. 2004;10:1011–1022. doi: 10.1016/j.ymthe.2004.08.010. PubMed DOI
Nakase I., Tadokoro A., Kawabata N., Takeuchi T., Katoh H., Hiramoto K., Negishi M., Nomizu M., Sugiura Y., Futaki S. Interaction of arginine-rich peptides with membrane-associated proteoglycans is crucial for induction of actin organization and macropinocytosis. Biochemistry. 2007;46:492–501. doi: 10.1021/bi0612824. PubMed DOI