First-Trimester Screening for HELLP Syndrome-Prediction Model Based on MicroRNA Biomarkers and Maternal Clinical Characteristics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio - Mother and Childhood Care no. 207035
Charles University
SVV no. 260529
Charles University
PubMed
36982251
PubMed Central
PMC10049724
DOI
10.3390/ijms24065177
PII: ijms24065177
Knihovny.cz E-zdroje
- Klíčová slova
- HELLP syndrome, cardiovascular diseases, first-trimester screening, gene expression, microRNAs, prediction, whole peripheral venous blood,
- MeSH
- biologické markery MeSH
- HELLP syndrom * diagnóza genetika MeSH
- kardiovaskulární nemoci * genetika MeSH
- lidé MeSH
- mikro RNA * genetika metabolismus MeSH
- preeklampsie * diagnóza genetika MeSH
- první trimestr těhotenství MeSH
- retrospektivní studie MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA * MeSH
We evaluated the potential of cardiovascular-disease-associated microRNAs for early prediction of HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Gene expression profiling of 29 microRNAs was performed on whole peripheral venous blood samples collected between 10 and 13 weeks of gestation using real-time RT-PCR. The retrospective study involved singleton pregnancies of Caucasian descent only diagnosed with HELLP syndrome (n = 14) and 80 normal-term pregnancies. Upregulation of six microRNAs (miR-1-3p, miR-17-5p, miR-143-3p, miR-146a-5p, miR-181a-5p, and miR-499a-5p) was observed in pregnancies destined to develop HELLP syndrome. The combination of all six microRNAs showed a relatively high accuracy for the early identification of pregnancies destined to develop HELLP syndrome (AUC 0.903, p < 0.001, 78.57% sensitivity, 93.75% specificity, cut-off > 0.1622). It revealed 78.57% of HELLP pregnancies at a 10.0% false-positive rate (FPR). The predictive model for HELLP syndrome based on whole peripheral venous blood microRNA biomarkers was further extended to maternal clinical characteristics, most of which were identified as risk factors for the development of HELLP syndrome (maternal age and BMI values at early stages of gestation, the presence of any kind of autoimmune disease, the necessity to undergo an infertility treatment by assisted reproductive technology, a history of HELLP syndrome and/or pre-eclampsia in a previous gestation, and the presence of trombophilic gene mutations). Then, 85.71% of cases were identified at a 10.0% FPR. When another clinical variable (the positivity of the first-trimester screening for pre-eclampsia and/or fetal growth restriction by the Fetal Medicine Foundation algorithm) was implemented in the HELLP prediction model, the predictive power was increased further to 92.86% at a 10.0% FPR. The model based on the combination of selected cardiovascular-disease-associated microRNAs and maternal clinical characteristics has a very high predictive potential for HELLP syndrome and may be implemented in routine first-trimester screening programs.
Zobrazit více v PubMed
Weinstein L. Syndrome of hemolysis, elevated liver enzymes and low platelet count; a severe consequence of hypertension in pregnancy. Am. J. Obstet. Gynecol. 1982;142:159–167. doi: 10.1016/S0002-9378(16)32330-4. PubMed DOI
Kirkpatrick C.A. The HELLP syndrome. Acta. Clin. Belg. 2010;65:91–97. doi: 10.1179/acb.2010.020. PubMed DOI
Haram K., Svendsen E., Abildgaard U. The HELLP syndrome: Clinical issues and management. A Review. BMC Pregnancy Childbirth. 2009;26:8. doi: 10.1186/1471-2393-9-8. PubMed DOI PMC
Waterstone M., Bewley S., Wolfe C. Incidence and predictors of severe obstetrics morbidity: Case-control study. BJM. 2001;322:1089–1093. doi: 10.1136/bmj.322.7294.1089. PubMed DOI PMC
Martin J.N., Jr., Rinehart B.K., May W.L., Magann E.F., Terrone D.A., Blake P.G. The spectrum of severe preeclampsia: Comparative analysis by HELLP (hemolysis, elevated liver enzyme levels, and low platelet count) syndrome classification. Am. J. Obstet. Gynecol. 1999;180:1373–1384. doi: 10.1016/S0002-9378(99)70022-0. PubMed DOI
Gasem T., Al Jama F.E., Burshaid S., Rahman J., Al Suleiman S.A., Rahman M.S. Maternal and fetal outcome of pregnancy complicated by HELLP syndrome. J. Matern. Fetal. Neonatal. Med. 2009;22:1140–1143. doi: 10.3109/14767050903019627. PubMed DOI
Isler C.M., Rinehart B.K., Terrone D.A., May W.L., Magann E.F., Martin J.N., Jr. The importance of parity to major maternal morbidity in the eclamptic mother with HELLP syndrome. Hypertens. Preganncy. 2003;22:287–294. doi: 10.1081/PRG-120024032. PubMed DOI
Barton J.R., Sibai B.M. Care of pregnancy complicated by HELLP syndrome. Obstet. Gynecol. Clin. N. Am. 1991;18:165–179. doi: 10.1016/S0889-8545(21)00266-7. PubMed DOI
Sibai B.M. Maternal morbidity and mortality in 442 pregnancy with hemolysis, elevated liver enzymes, and low platelets (HELLP syndrome) Am. J. Obstet. Gynecol. 1993;169:1000–1006. doi: 10.1016/0002-9378(93)90043-I. PubMed DOI
Khumsat R., Wongwananurak T., Boriboonhirunsarn D. Incidence and risk factors of HELLP syndrome in Thai pregnant women with severe pre-eclampsia. Thai J. Obstet. Gynaecol. 2008;16:192–198.
Abraham K.A., Connolly G., Farrell J., Walshe J.J. The HELLP syndrome, a prospective study. Ren. Fail. 2001;23:705–713. doi: 10.1081/JDI-100107367. PubMed DOI
Wolf J.L. Liver disease in pregnancy. Med. Clin. N. Am. 1996;80:1167–1187. doi: 10.1016/S0025-7125(05)70484-3. PubMed DOI
Abildgaard U., Heimdal K. Pathogenesis of the syndrome of hemolysis, elevated liver enzymes, and low platelet count (HELLP): A review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013;166:117–123. doi: 10.1016/j.ejogrb.2012.09.026. PubMed DOI
Raval D.S., Co S., Reid M.A., Pildes R. Maternal and neonatal outcome of pregnancies complicated with maternal HELLP syndrome. J. Perinatol. 1997;17:266–269. PubMed
Visser W., Wallenburg H.C.S. Temporising management of severe pre-eclampsia with and without the HELLP syndrome. Br. J. Obstet. Gynaecol. 1995;102:111–117. doi: 10.1111/j.1471-0528.1995.tb09062.x. PubMed DOI
Harms K., Rath W., Herting E., Kuhn W. Maternal hemolysis, elevated liver enzymes, low platelet count, and neonatal outcome. Am. J. Perinatol. 1995;12:1–7. doi: 10.1055/s-2007-994387. PubMed DOI
Audibert F., Friedman S.A., Frangieh A.Y., Sibai B.M. Clinical utility of strict diagnostic criteria for the HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets) syndrome. Am. J. Obstet. Gynecol. 1996;175:460–464. doi: 10.1016/S0002-9378(96)70162-X. PubMed DOI
Van Pampus M.G., Wolf H., Westenberg S.M., van der Post J.A.M., Bonsel G.J., Treffers P.E. Maternal and perinatal outcome after expectant management of the HELLP syndrome compared with preeclampsia without HELLP syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 1998;76:31–36. doi: 10.1016/S0301-2115(97)00146-2. PubMed DOI
Aloizos S., Seretis C., Liakos N., Aravosita P., Mystakelli C., Kanna E., Gourgiotis S. HELLP syndrome: Understanding and management of a pregnancy-specific disease. J. Obstet. Gynaecol. 2013;33:331–337. doi: 10.3109/01443615.2013.775231. PubMed DOI
Backes C.H., Markham K., Moorehead P., Cordero L., Nankervis C.A., Giannone P.J. Maternal preeclampsia and neonatal outcomes. J. Pregnancy. 2011;2011:214365. doi: 10.1155/2011/214365. PubMed DOI PMC
Ganzevoort W., Rep A., de Vries J.I., Bonsel G.J., Wolf H., PETRA-investigators Prediction of maternal complications and adverse infant outcome at admission for temporizing management of early-onset severe hypertensive disorders of pregnancy. Am. J. Obstet. Gynecol. 2006;195:495–503. doi: 10.1016/j.ajog.2006.02.012. PubMed DOI
Van Lieshout L.C.E.W., Koek G.H., Spaanderman M.A., van Runnard Heimel P.J. Placenta derived factors involved in the pathogenesis of the liver in the syndrome of haemolysis, elevated liver enzymes and low platelets (HELLP): A review. Pregnancy Hypertens. 2019;18:42–48. doi: 10.1016/j.preghy.2019.08.004. PubMed DOI
Liu Q., Ling G.J., Zhang S.Q., Zhai W.Q., Chen Y.J. Effect of HELLP syndrome on acute kidney injury in pregnancy and pregnancy outcomes: A systematic review and meta-analysis. BMC Pregnancy Childbirth. 2020;20:657. doi: 10.1186/s12884-020-03346-4. PubMed DOI PMC
Pavlis T., Aloizos S., Aravosita P., Mystakelli C., Petrochilou D., Dimopoulos N., Gourgiotis S. Diagnosis and surgical management of spontaneous hepatic rupture associated with HELLP syndrome. J. Surg. Educ. 2009;66:163–167. doi: 10.1016/j.jsurg.2009.04.001. PubMed DOI
Sibai B.M. The HELLP syndrome (hemolysis, elevated liver enzymes, and low platelets): Much ado about nothing? Am. J. Obstet. Gynecol. 1990;162:311–316. doi: 10.1016/0002-9378(90)90376-I. PubMed DOI
Sibai B.M. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet. Gynecol. 2004;103:981–991. doi: 10.1097/01.AOG.0000126245.35811.2a. PubMed DOI
Sibai B.M. Imitators of severe pre-eclampsia/eclampsia. Clin. Perinatol. 2004;31:835–852. doi: 10.1016/j.clp.2004.06.007. PubMed DOI
Martin J.N., Jr., Blake P.G., Perry K.G., Jr., McCaul J.F., Hess L.W., Martin R.W. The natural history of HELLP syndrome: Patterns of disease progression and regression. Am. J. Obstet. Gynecol. 1991;164:1500–1509. doi: 10.1016/0002-9378(91)91429-Z. PubMed DOI
Martin J.N., Jr., Rose C.H., Briery C.M. Understanding and managing HELLP syndrome: The integral role of aggressive glucocorticoids for mother and child. Am. J. Obstet. Gynecol. 2006;195:914–934. doi: 10.1016/j.ajog.2005.08.044. PubMed DOI
Malmström O., Morken N.H. HELLP syndrome, risk factors in first and second pregnancy: A population-based cohort study. Acta. Obstet. Gynecol. Scand. 2018;97:709–716. doi: 10.1111/aogs.13322. PubMed DOI
Leeners B., Neumaier-Wagner P.M., Kuse S., Mütze S., Rudnik-Schöneborn S., Zerres K., Rath W. Recurrence risks of hypertensive diseases in pregnancy after HELLP syndrome. J. Perinat. Med. 2011;39:673–678. doi: 10.1515/jpm.2011.081. PubMed DOI
Habli M., Eftekhari N., Wiebracht E., Bombrys A., Khabbaz M., How H., Sibai B. Long-term maternal and subsequent pregnancy outcomes 5 years after hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome. Am. J. Obstet. Gynecol. 2009;201:e1–e5. doi: 10.1016/j.ajog.2009.06.033. PubMed DOI
Hupuczi P., Rigó B., Sziller I., Szabó G., Szigeti Z., Papp Z. Follow-up analysis of pregnancies complicated by HELLP syndrome. Fetal. Diagn. Ther. 2006;21:519–522. doi: 10.1159/000095665. PubMed DOI
Fitzpatrick K.E., Hinshaw K., Kurinczuk J.J., Knight M. Risk factors, management, and outcomes of hemolysis, elevated liver enzymes, and low platelets syndrome and elevated liver enzymes, low platelets syndrome. Obstet. Gynecol. 2014;123:618–627. doi: 10.1097/AOG.0000000000000140. PubMed DOI
Oliveira N., Poon L.C., Nicolaides K.H., Baschat A.A. First trimester prediction of HELLP syndrome. Prenat. Diagn. 2016;36:29–33. doi: 10.1002/pd.4694. PubMed DOI
Pusl T., Beuers U. Intrahepatic cholestasis of pregnancy. Orphanet. J. Rare Dis. 2007;2:26. doi: 10.1186/1750-1172-2-26. PubMed DOI PMC
Haram K., Mortensen J.H., Nagy B. Genetic aspects of preeclampsia and the HELLP syndrome. J. Pregnancy. 2014;2014:910751. doi: 10.1155/2014/910751. PubMed DOI PMC
Stojanovska V., Zenclussen A.C. Innate and Adaptive Immune Responses in HELLP Syndrome. Front. Immunol. 2020;11:667. doi: 10.3389/fimmu.2020.00667. PubMed DOI PMC
Muetze S., Leeners B., Ortlepp J.R., Kuse S., Tag C.G., Weiskirchen R., Gressner A.M., Rudnik-Schoeneborn S., Zerres K., Rath W. Maternal factor V Leiden mutation is associated with HELLP syndrome in Caucasian women. Acta. Obstet. Gynecol. Scand. 2008;87:635–642. doi: 10.1080/00016340802112740. PubMed DOI
Yu H., Yang Z., Ding X., Wang Y., Han Y. Effects of serum from patients with early-onset pre-eclampsia, HELLP syndrome, and antiphospholipid syndrome on fatty acid oxidation in trophoblast cells. Arch. Gynecol. Obstet. 2015;292:559–567. doi: 10.1007/s00404-015-3669-2. PubMed DOI
Kongwattanakul K., Saksiriwuttho P., Chaiyarach S., Thepsuthammarat K. Incidence, characteristics, maternal complications, and perinatal outcomes associated with preeclampsia with severe features and HELLP syndrome. Int. J. Womens. Health. 2018;10:371–377. doi: 10.2147/IJWH.S168569. PubMed DOI PMC
Adorno M., Maher-Griffiths C., Grush Abadie H.R. HELLP Syndrome. Crit. Care. Nurs. Clin. N. Am. 2022;34:277–288. doi: 10.1016/j.cnc.2022.04.009. PubMed DOI
Wallace K., Harris S., Addison A., Bean C. HELLP Syndrome: Pathophysiology and Current Therapies. Curr. Pharm. Biotechnol. 2018;19:816–826. doi: 10.2174/1389201019666180712115215. PubMed DOI
Asadikalameh Z., Maddah R., Maleknia M., Nassaj Z.S., Ali N.S., Azizi S., Dastyar F. Bioinformatics analysis of microarray data to identify hub genes, as diagnostic biomarker of HELLP syndrome: System biology approach. J. Obstet. Gynaecol. Res. 2022;48:2493–2504. doi: 10.1111/jog.15363. PubMed DOI
Lam M.T.C., Dierking E. Intensive Care Unit issues in eclampsia and HELLP syndrome. Int. J. Crit. Illn. Inj. Sci. 2017;7:136–141. doi: 10.4103/IJCIIS.IJCIIS_33_17. PubMed DOI PMC
Gupta M., Feinberg B.B., Burwick R.M. Thrombotic microangiopathies of pregnancy: Differential diagnosis. Pregnancy Hypertens. 2018;12:29–34. doi: 10.1016/j.preghy.2018.02.007. PubMed DOI
Moreira M.W.L., Rodrigues J.J.P.C., Al-Muhtadi J., Korotaev V.V., de Albuquerque V.H.C. Neuro-fuzzy model for HELLP syndrome prediction in mobile cloud computing environments. Concurr. Comput. Pract. Exp. 2021;22:e4651. doi: 10.1002/cpe.4651. DOI
Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10:256. PubMed PMC
Hromadnikova I., Kotlabova K., Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines. 2022;10:718. doi: 10.3390/biomedicines10030718. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers. Int. J. Mol. Sci. 2022;23:3951. doi: 10.3390/ijms23073951. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2022;23:10635. doi: 10.3390/ijms231810635. PubMed DOI PMC
Hernández-Díaz S., Werler M.M., Mitchell A.A. Gestational hypertension in pregnancies supported by infertility treatments: Role of infertility, treatments, and multiple gestations. Fertil. Steril. 2007;88:438–445. doi: 10.1016/j.fertnstert.2006.11.131. PubMed DOI PMC
Almasi-Hashiani A., Omani-Samani R., Mohammadi M., Amini P., Navid B., Alizadeh A., Khedmati Morasae E., Maroufizadeh S. Assisted reproductive technology and the risk of preeclampsia: An updated systematic review and meta-analysis. BMC Pregnancy Childbirth. 2019;19:149. doi: 10.1186/s12884-019-2291-x. PubMed DOI PMC
Monseur B.C., Morris J.R., Hipp H.S., Berghella V. Hypertensive disorders of pregnancy and infertility treatment: A population-based survey among United States women. J. Assist. Reprod. Genet. 2019;36:1449–1456. doi: 10.1007/s10815-019-01490-1. PubMed DOI PMC
Zhu J.L., Obel C., Hammer Bech B., Olsen J., Basso O. Infertility, infertility treatment, and fetal growth restriction. Obstet. Gynecol. 2007;110:1326–1334. doi: 10.1097/01.AOG.0000290330.80256.97. PubMed DOI PMC
Qin J., Liu X., Sheng X., Wang H., Gao S. Assisted reproductive technology and the risk of pregnancy-related complications and adverse pregnancy outcomes in singleton pregnancies: A meta-analysis of cohort studies. Fertil. Steril. 2016;105:73.e1–85.e6. doi: 10.1016/j.fertnstert.2015.09.007. PubMed DOI
O’Gorman N., Wright D., Poon L.C., Rolnik D.L., Syngelaki A., de Alvarado M., Carbone I.F., Dutemeyer V., Fiolna M., Frick A., et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: Comparison with NI-CE guidelines and ACOG recommendations. Ultrasound Obs. Gynecol. 2017;49:756–760. doi: 10.1002/uog.17455. PubMed DOI
O’Gorman N., Wright D., Syngelaki A., Akolekar R., Wright A., Poon L.C., Nicolaides K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obs. Gynecol. 2016;214:103.e1–103.e12. doi: 10.1016/j.ajog.2015.08.034. PubMed DOI
The Fetal Medicine Foundation Stratification of Pregnancy Management 11–13 Weeks’ Gestation. [(accessed on 4 October 2021)]. Available online: https://courses.fetalmedicine.com/fmf/show/861?locale=en.
Mazer Zumaeta A., Wright A., Syngelaki A., Maritsa V.A., Da Silva A.B., Nicolaides K.H. Screening for pre-eclampsia at 11-13 weeks’ gestation: Use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound Obstet. Gynecol. 2020;56:400–407. doi: 10.1002/uog.22093. PubMed DOI
Stubert J., Koczan D., Richter D.U., Dieterich M., Ziems B., Thiesen H.J., Gerber B., Reimer T. miRNA expression profiles determined in maternal sera of patients with HELLP syndrome. Hypertens. Pregnancy. 2014;33:215–235. doi: 10.3109/10641955.2013.858743. PubMed DOI
Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet. Gynecol. 2020;135:e237–e260. doi: 10.1097/AOG.0000000000003891. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of re-al-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:1–2. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016;137:126–140. doi: 10.1016/j.thromres.2015.11.032. PubMed DOI
Special Issue of Pathogenesis of Pregnancy-Related Complications, 2023