Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
260386/SVV/2021
Charles University
PROGRES Q34
Charles University
PubMed
35203467
PubMed Central
PMC8869238
DOI
10.3390/biomedicines10020256
PII: biomedicines10020256
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular microRNAs, chronic hypertension, early gestation, expression, gestational hypertension, prediction, preeclampsia, screening, whole peripheral venous blood,
- Publikační typ
- časopisecké články MeSH
The aim of the study was to assess if cardiovascular disease-associated microRNAs would be able to predict during the early stages of gestation (within 10 to 13 weeks) subsequent onset of hypertensive pregnancy-related complications: gestational hypertension (GH) or preeclampsia (PE). Secondly, the goal of the study was to assess if cardiovascular disease-associated microRNAs would be able to detect the presence of chronic hypertension in early pregnancies. The retrospective study was performed on whole peripheral blood samples collected from singleton Caucasian pregnancies within the period November 2012 to March 2020. The case control study, nested in a cohort, involved all women with chronic hypertension (n = 29), all normotensive women that later developed GH (n = 83) or PE with or without fetal growth restriction (FGR) (n = 66), and 80 controls selected on the base of equal sample storage time. Whole peripheral blood profiling was performed with the selection of 29 cardiovascular disease-associated microRNAs using real-time RT-PCR. Upregulation of miR-1-3p (51.72% at 10.0% FPR) was observed in patients with chronic hypertension only. Upregulation of miR-20a-5p (44.83% and 33.33% at 10.0% FPR) and miR-146a-5p (65.52% and 42.42% at 10.0% FPR) was observed in patients with chronic hypertension and normotensive women with later occurrence of PE. Upregulation of miR-181a-5p was detected in normotensive women subsequently developing GH (22.89% at 10.0% FPR) or PE (40.91% at 10.0% FPR). In a part of women with subsequent onset of PE, upregulation of miR-143-3p (24.24% at 10.0% FPR), miR-145-5p (21.21% at 10.0% FPR), and miR-574-3p (27.27% at 10.0% FPR) was also present. The combination of microRNA biomarkers (miR-20a-5p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, and miR-574-3p) can predict the later occurrence of PE in 48.48% of pregnancies at 10.0% FPR in early stages of gestation. The combination of upregulated microRNA biomarkers (miR-1-3p, miR-20a-5p, and miR-146a-5p) is able to identify 72.41% of pregnancies with chronic hypertension at 10.0% FPR in early stages of gestation. Cardiovascular disease-associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current first trimester screening program to predict later occurrence of PE with or without FGR. The comparison of the predictive results of the routine first trimester screening for PE and/or FGR based on the criteria of the Fetal Medicine Foundation and the first trimester screening for PE wo/w FGR using a panel of six cardiovascular disease-associated microRNAs only revealed that the detection rate of PE increased 1.45-fold (48.48% vs. 33.33%).
Zobrazit více v PubMed
ACOG Committee Opinion No. 743. Low-Dose Aspirin Use During Pregnancy. Obstet. Gynecol. 2018;132:e44–e52. PubMed
National Institute for Health and Care Excellence Hypertension in Pregnancy: Diagnosis and Management. [(accessed on 4 October 2021)]. Available online: www.nice.org.uk/guidance/ng133.
Tong S., Mol B.W., Walker S.P. Preventing preeclampsia with aspirin: Does dose or timing matter? Am. J. Obstet. Gynecol. 2017;216:95–97. doi: 10.1016/j.ajog.2016.12.003. PubMed DOI
Peres G.M., Mariana M., Cairrão E. Pre-Eclampsia and Eclampsia: An Update on the Pharmacological Treatment Applied in Portugal. J. Cardiovasc. Dev. Dis. 2018;5:3. doi: 10.3390/jcdd5010003. PubMed DOI PMC
Meher S., Duley L., Hunter K., Askie L. Antiplatelet therapy before or after 16 weeks’ gestation for preventing preeclampsia: An individual participant data meta-analysis. Am. J. Obstet. Gynecol. 2017;216:121–128.e2. doi: 10.1016/j.ajog.2016.10.016. PubMed DOI
National Collaborating Centre for Women’s and Children’s Health . Hypertension in Pregnancy: The Management of Hypertensive Disorders during Pregnancy—NICE Clinical Guideline. Royal College of Obstetricans and Gynaecologist; London, UK: 2010.
Giannakou K. Prediction of pre-eclampsia. Obstet. Med. 2021;14:220–224. doi: 10.1177/1753495X20984015. PubMed DOI PMC
O’Gorman N., Wright D., Poon L.C., Rolnik D.L., Syngelaki A., de Alvarado M., Carbone I.F., Dutemeyer V., Fiolna M., Frick A., et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: Comparison with NICE guidelines and ACOG recommendations. Ultrasound Obstet. Gynecol. 2017;49:756–760. doi: 10.1002/uog.17455. PubMed DOI
O’Gorman N., Wright D., Syngelaki A., Akolekar R., Wright A., Poon L.C., Nicolaides K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 2016;214:103.e1–103.e12. doi: 10.1016/j.ajog.2015.08.034. PubMed DOI
The Fetal Medicine Foundation Stratification of Pregnancy Management 11–13 Weeks’ Gestation. [(accessed on 4 October 2021)]. Available online: www.courses.fetalmedicine.com/fmf/show/861?locale=en.
Mazer Zumaeta A., Wright A., Syngelaki A., Maritsa V.A., Da Silva A.B., Nicolaides K.H. Screening for pre-eclampsia at 11–13 weeks’ gestation: Use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound Obstet. Gynecol. 2020;56:400–407. doi: 10.1002/uog.22093. PubMed DOI
Tan M.Y., Syngelaki A., Poon L.C., Rolnik D.L., O’Gorman N., Delgado J.L., Akolekar R., Konstantinidou L., Tsavdaridou M., Galeva S., et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018;52:186–195. doi: 10.1002/uog.19112. PubMed DOI
Rolnik D.L., Wright D., Poon L.C., O’Gorman N., Syngelaki A., de Paco Matallana C., Akolekar R., Cicero S., Janga D., Singh M., et al. Aspirin versus Placebo in Pregnancies at High Risk for Preterm Preeclampsia. N. Engl. J. Med. 2017;377:613–622. doi: 10.1056/NEJMoa1704559. PubMed DOI
Wright D., Poon L.C., Rolnik D.L., Syngelaki A., Delgado J.L., Vojtassakova D., de Alvarado M., Kapeti E., Rehal A., Pazos A., et al. Aspirin for Evidence-Based Preeclampsia Prevention trial: Influence of compliance on beneficial effect of aspirin in prevention of preterm preeclampsia. Am. J. Obstet. Gynecol. 2017;217:685.e1–685.e5. doi: 10.1016/j.ajog.2017.08.110. PubMed DOI
Chen Y., Xie Z., Wang X., Xiao Q., Lu X., Lu S., Shi Y., Lv S. A risk model of prenatal screening markers in first trimester for predicting hypertensive disorders of pregnancy. EPMA J. 2020;11:343–353. doi: 10.1007/s13167-020-00212-3. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings. J. Pers. Med. 2021;11:39. doi: 10.3390/jpm11010039. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019;291:158–167. doi: 10.1016/j.ijcard.2019.05.036. PubMed DOI
Winger E.E., Reed J.L., Ji X. First trimester PBMC microRNA predicts adverse pregnancy outcome. Am. J. Reprod. Immunol. 2014;72:515–526. doi: 10.1111/aji.12287. PubMed DOI
Winger E.E., Reed J.L., Ji X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for predicting adverse pregnancy outcome. J. Reprod. Immunol. 2015;110:22–35. doi: 10.1016/j.jri.2015.03.005. PubMed DOI
Winger E.E., Reed J.L., Ji X., Nicolaides K. Peripheral blood cell microRNA quantification during the first trimester predicts preeclampsia: Proof of concept. PLoS ONE. 2018;13:e0190654. PubMed PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Haynes W. Benjamini–Hochberg Method. In: Dubitzky W., Wolkenhauer O., Cho K.H., Yokota H., editors. Encyclopedia of Systems Biology. Springer; New York, NY, USA: 2013.
Ura B., Feriotto G., Monasta L., Bilel S., Zweyer M., Celeghini C. Potential role of circulating microRNAs as early markers of preeclampsia. Taiwan J. Obstet. Gynecol. 2014;53:232–234. doi: 10.1016/j.tjog.2014.03.001. PubMed DOI
Jiang L., Long A., Tan L., Hong M., Wu J., Cai L., Li Q. Elevated microRNA-520g in pre-eclampsia inhibits migration and invasion of trophoblasts. Placenta. 2017;51:70–75. doi: 10.1016/j.placenta.2017.02.001. PubMed DOI
Zhang Y., Huang G., Zhang Y., Yang H., Long Y., Liang Q., Zheng Z. MiR-942 decreased before 20 weeks gestation in women with preeclampsia and was associated with the pathophysiology of preeclampsia in vitro. Clin. Exp. Hypertens. 2017;39:108–113. doi: 10.1080/10641963.2016.1210619. PubMed DOI
Hromadnikova I., Kotlabova K., Ivankova K., Krofta L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS ONE. 2017;12:e0171756. doi: 10.1371/journal.pone.0171756. PubMed DOI PMC
Timofeeva A.V., Gusar V.A., Kan N.E., Prozorovskaya K.N., Karapetyan A.O., Bayev O.R., Chagovets V.V., Kliver S.F., Iakovishina D.Y., Frankevich V.E., et al. Identification of potential early biomarkers of preeclampsia. Placenta. 2018;61:61–71. doi: 10.1016/j.placenta.2017.11.011. PubMed DOI
Yoffe L., Gilam A., Yaron O., Polsky A., Farberov L., Syngelaki A., Nicolaides K., Hod M., Shomron N. Early Detection of Preeclampsia Using Circulating Small non-coding RNA. Sci. Rep. 2018;8:3401. doi: 10.1038/s41598-018-21604-6. PubMed DOI PMC
Mavreli D., Lykoudi A., Lambrou G., Papaioannou G., Vrachnis N., Kalantaridou S., Papantoniou N., Kolialexi A. Deep Sequencing Identified Dysregulated Circulating MicroRNAs in Late Onset Preeclampsia. In Vivo. 2020;34:2317–2324. doi: 10.21873/invivo.12044. PubMed DOI PMC
Licini C., Avellini C., Picchiassi E., Mensà E., Fantone S., Ramini D., Tersigni C., Tossetta G., Castellucci C., Tarquini F., et al. Pre-eclampsia predictive ability of maternal miR-125b: A clinical and experimental study. Transl. Res. 2021;228:13–27. doi: 10.1016/j.trsl.2020.07.011. PubMed DOI
Hromadnikova I., Dvorakova L., Kotlabova K., Krofta L. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs. Int. J. Mol. Sci. 2019;20:2972. doi: 10.3390/ijms20122972. PubMed DOI PMC
Kontaraki J.E., Marketou M.E., Zacharis E.A., Parthenakis F.I., Vardas P.E. Differential expression of vascular smooth muscle-modulating microRNAs in human peripheral blood mononuclear cells: Novel targets in essential hypertension. J. Hum. Hypertens. 2014;28:510–516. doi: 10.1038/jhh.2013.117. PubMed DOI
Kontaraki J.E., Marketou M.E., Parthenakis F.I., Maragkoudakis S., Zacharis E.A., Petousis S., Kochiadakis G.E., Vardas P.E. Hypertrophic and antihypertrophic microRNA levels in peripheral blood mononuclear cells and their relationship to left ventricular hypertrophy in patients with essential hypertension. J. Am. Soc. Hypertens. 2015;9:802–810. doi: 10.1016/j.jash.2015.07.013. PubMed DOI
Dluzen D.F., Noren Hooten N., Zhang Y., Kim Y., Glover F.E., Tajuddin S.M., Jacob K.D., Zonderman A.B., Evans M.K. Racial differences in microRNA and gene expression in hypertensive women. Sci. Rep. 2016;6:35815. doi: 10.1038/srep35815. PubMed DOI PMC
Kriegel A.J., Baker M.A., Liu Y., Liu P., Cowley A.W., Jr., Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 2015;66:793–799. doi: 10.1161/HYPERTENSIONAHA.115.05645. PubMed DOI PMC
Hijmans J.G., Diehl K.J., Bammert T.D., Kavlich P.J., Lincenberg G.M., Greiner J.J., Stauffer B.L., DeSouza C.A. Association between hypertension and circulating vascular-related microRNAs. J. Hum. Hypertens. 2018;32:440–447. doi: 10.1038/s41371-018-0061-2. PubMed DOI PMC
Roganović J. Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19. Med. Hypotheses. 2021;146:110448. doi: 10.1016/j.mehy.2020.110448. PubMed DOI PMC
Klimczak D., Kuch M., Pilecki T., Żochowska D., Wirkowska A., Pączek L. Plasma microRNA-155-5p is increased among patients with chronic kidney disease and nocturnal hypertension. J. Am. Soc. Hypertens. 2017;11:831–841.e4. doi: 10.1016/j.jash.2017.10.008. PubMed DOI
Hu Y., Li Q., Zhang L., Zhong L., Gu M., He B., Qu Q., Lao Y., Gu K., Zheng B., et al. Serum miR-195-5p Exhibits Clinical Significance in the Diagnosis of Essential Hypertension with Type 2 Diabetes Mellitus by Targeting DRD1. Clinics (Sao Paulo) 2021;76:e2502. doi: 10.6061/clinics/2021/e2502. PubMed DOI PMC
Salem M.A.A., Ammar I.M.M. First-Trimester Uterine Artery Pulsatility Index and Maternal Serum PAPP-A and PlGF in Prediction of Preeclampsia in Primigravida. J. Obstet. Gynaecol. India. 2018;68:192–196. doi: 10.1007/s13224-017-1012-5. PubMed DOI PMC
Park H.J., Shim S.S., Cha D.H. Combined Screening for Early Detection of Pre-Eclampsia. Int. J. Mol. Sci. 2015;16:17952–17974. doi: 10.3390/ijms160817952. PubMed DOI PMC