Novel First-Trimester Prediction Model for Any Type of Preterm Birth Occurring before 37 Gestational Weeks in the Absence of Other Pregnancy-Related Complications Based on Cardiovascular Disease-Associated MicroRNAs and Basic Maternal Clinical Characteristics

. 2022 Oct 15 ; 10 (10) : . [epub] 20221015

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36289853

Grantová podpora
Cooperatio - Mother and Childhood Care no. 207035 Charles University
SVV no. 260529 Charles University

Odkazy

PubMed 36289853
PubMed Central PMC9599357
DOI 10.3390/biomedicines10102591
PII: biomedicines10102591
Knihovny.cz E-zdroje

The goal of the study was to establish an efficient first-trimester predictive model for any type of preterm birth before 37 gestational weeks (spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM)) in the absence of other pregnancy-related complications, such as gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age. The retrospective study was performed in the period from 11/2012 to 3/2020. Peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group with 80 singleton term pregnancies was selected on the basis of equal sample-storage time. A combination of only six microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p; AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut-off > 0.652) could predict preterm delivery before 37 gestational weeks in early stages of gestation in 52.83% of pregnancies with a 10.0% FPR. This predictive model for preterm birth based on aberrant microRNA expression profile was further improved via implementation of maternal clinical characteristics (maternal age and BMI at early stages of gestation, infertility treatment with assisted reproductive technology, occurrence of preterm delivery before 37 gestational weeks in previous pregnancy(ies), and presence of any kind of autoimmune disease (rheumatoid arthritis, systemic lupus erythematosus, antiphospholipid syndrome, type 1 diabetes mellitus, or other autoimmune disease)). With this model, 69.81% of pregnancies destined to deliver before 37 gestational weeks were identified with a 10.0% FPR at early stages of gestation. When other clinical variables as well as those mentioned above—such as positive first-trimester screening for early preeclampsia with onset before 34 gestational weeks and/or fetal growth restriction with onset before 37 gestational weeks using the Fetal Medicine Foundation algorithm, as well as positive first-trimester screening for spontaneous preterm birth with onset before 34 gestational weeks using the Fetal Medicine Foundation algorithm—were added to the predictive model for preterm birth, the predictive power was even slightly increased to 71.70% with a 10.0% FPR. Nevertheless, we prefer to keep the first-trimester screening for any type of preterm birth occurring before 37 gestational weeks in the absence of other pregnancy-related complications as simple as possible.

Zobrazit více v PubMed

Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC

Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI

Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC

Beta J., Akolekar R., Ventura W., Syngelaki A., Nicolaides K.H. Prediction of spontaneous preterm delivery from maternal factors, obstetric history and placental perfusion and function at 11–13 weeks. Prenat. Diagn. 2011;31:75–83. doi: 10.1002/pd.2662. PubMed DOI

O’Gorman N., Wright D., Poon L.C., Rolnik D.L., Syngelaki A., de Alvarado M., Carbone I.F., Dutemeyer V., Fiolna M., Frick A., et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: Comparison with NI-CE guidelines and ACOG recommendations. Ultrasound Obstet. Gynecol. 2017;49:756–760. doi: 10.1002/uog.17455. PubMed DOI

O’Gorman N., Wright D., Syngelaki A., Akolekar R., Wright A., Poon L.C., Nicolaides K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11-13 weeks gestation. Am. J. Obstet. Gynecol. 2016;214:103.e1–103.e12. doi: 10.1016/j.ajog.2015.08.034. PubMed DOI

The Fetal Medicine Foundation Stratification of Pregnancy Management 11–13 Weeks’ Gestation. [(accessed on 6 January 2022)]. Available online: www.courses.fetalmedicine.com/fmf/show/861?locale=en.

Mazer Zumaeta A., Wright A., Syngelaki A., Maritsa V.A., Da Silva A.B., Nicolaides K.H. Screening for pre-eclampsia at 11–13 weeks’ gestation: Use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound Obstet. Gynecol. 2020;56:400–407. doi: 10.1002/uog.22093. PubMed DOI

Tan M.Y., Syngelaki A., Poon L.C., Rolnik D.L., O’Gorman N., Delgado J.L., Akolekar R., Konstantinidou L., Tsavdari-dou M., Galeva S., et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018;52:186–195. doi: 10.1002/uog.19112. PubMed DOI

Hromadnikova I., Kotlabova K., Krofta L. First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers. Int. J. Mol. Sci. 2022;23:3951. doi: 10.3390/ijms23073951. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10:256. doi: 10.3390/biomedicines10020256. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines. 2022;10:718. doi: 10.3390/biomedicines10030718. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2022;23:10635. doi: 10.3390/ijms231810635. PubMed DOI PMC

ACOG Committee Opinion No. 743. Low-Dose Aspirin Use During Pregnancy. Obstet. Gynecol. 2018;132:e44–e52. PubMed

National Institute for Health and Care Excellence Hypertension in Pregnancy: Diagnosis and Management. [(accessed on 6 January 2022)]. Available online: www.nice.org.uk/guidance/ng133.

Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016;137:126–140. doi: 10.1016/j.thromres.2015.11.032. PubMed DOI

Hromadnikova I., Kotlabova K., Krofta L. Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings. J. Pers Med. 2021;11:39. doi: 10.3390/jpm11010039. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019;291:158–167. doi: 10.1016/j.ijcard.2019.05.036. PubMed DOI

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int. J. Mol. Sci. 2020;21:2437. doi: 10.3390/ijms21072437. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Guinn D.A., Goldenberg R.L., Hauth J.C., Andrews W.W., Thom E., Romero R. Risk factors for the development of preterm premature rupture of the membranes after arrest of preterm labor. Am. J. Obstet. Gynecol. 1995;173:1310–1315. doi: 10.1016/0002-9378(95)91377-7. PubMed DOI

Challis J.R., Lockwood C.J., Myatt L., Norman J.E., Strauss J.F., Petraglia F. Inflammation and pregnancy. Reprod. Sci. 2009;16:206–215. doi: 10.1177/1933719108329095. PubMed DOI

Keelan J.A. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J. Reprod. Immunol. 2011;88:176–184. doi: 10.1016/j.jri.2010.11.003. PubMed DOI

Ekwo E.E., Gosselink C.A., Woolson R., Moawad A. Risks for premature rupture of amniotic membranes. Int. J. Epidemiol. 1993;22:495–503. doi: 10.1093/ije/22.3.495. PubMed DOI

Hadley C.B., Main D.M., Gabbe S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990;7:374–379. doi: 10.1055/s-2007-999527. PubMed DOI

Naeye R.L., Peters E.C. Causes and consequences of premature rupture of fetal membranes. Lancet. 1980;1:192–197. doi: 10.1016/S0140-6736(80)90674-1. PubMed DOI

Menon R., Boldogh I., Hawkins H.K., Woodson M., Polettini J., Syed T.A., Fortunato S.J., Saade G.R., Papaconstantinou J., Taylor R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014;184:1740–1751. doi: 10.1016/j.ajpath.2014.02.011. PubMed DOI

Menon R., Polettini J., Syed T.A., Saade G.R., Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am. J. Reprod. Immunol. 2014;72:75–84. doi: 10.1111/aji.12220. PubMed DOI

Menon R., Yu J., Basanta-Henry P., Brou L., Berga S.L., Fortunato S.J., Taylor R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE. 2013;7:e31136. doi: 10.1371/journal.pone.0031136. PubMed DOI PMC

Vora B., Wang A., Kosti I., Huang H., Paranjpe I., Woodruff T.J., MacKenzie T., Sirota M. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth. Front. Immunol. 2018;9:993. doi: 10.3389/fimmu.2018.00993. PubMed DOI PMC

Soloff M.S., Jeng Y.J., Izban M.G., Sinha M., Luxon B.A., Stamnes S.J., England S.K. Effects of progesterone treatment on expression of genes involved in uterine quiescence. Reprod. Sci. 2011;18:781–797. doi: 10.1177/1933719111398150. PubMed DOI PMC

MacDougall M.W., Europe-Finner G.N., Robson S.C. Human myometrial quiescence and activation during gestation and parturition involve dramatic changes in expression and activity of particulate type II (RII alpha) protein kinase A holoenzyme. J. Clin. Endocrinol. Metab. 2003;88:2194–2205. doi: 10.1210/jc.2002-021862. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace