Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 16-27761A
Agency of Medical Research, Ministry of Health, Prague, Czech Republic
260529/SVV/2020
Charles University, Prague, Czech Republic
PROGRES Q34
Charles University, Prague, Czech Republic
PubMed
33440716
PubMed Central
PMC7826744
DOI
10.3390/jpm11010039
PII: jpm11010039
Knihovny.cz E-zdroje
- Klíčová slova
- BMI, cardiovascular risk, central obesity, expression, fetal growth restriction, gestational diabetes mellitus, gestational hypertension, hypertension, hypertension on treatment, infertility treatment, microRNA, mothers, overweight/obesity, preeclampsia, preterm prelabor rupture of membranes, spontaneous preterm birth preterm birth, trombophilic gene mutations, whole peripheral blood,
- Publikační typ
- časopisecké články MeSH
The principal goal of the study was to map common postpartal alterations in gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases induced by most frequently occurring pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes, or spontaneous preterm birth). In addition, the association analyses between individual abnormal clinical findings (overweight/obesity, central obesity, hypertension, on blood pressure treatment, history of infertility treatment, actual hormonal contraceptive use, the presence of trombophilic gene mutations, actual smoking status, increased serum levels of total cholesterol, HDL (high density lipoprotein) cholesterol, LDL (low density lipoprotein) cholesterol, triglycerides, lipoprotein A, CRP (C-reactive protein), and uric acid, and increased plasma levels of homocysteine) and microRNA expression levels were performed in mothers with respect/regardless to previous course of gestation. The prior exposure to gestational hypertension, preeclampsia, fetal growth restriction, gestational diabetes mellitus, preterm prelabor rupture of membranes, or spontaneous preterm birth caused that a significant proportion of mothers (52.42% at 90.0% specificity) had substantially altered microRNA expression profile, which might originate lifelong cardiovascular risk. 26 out of 29 tested microRNAs were up-regulated in mothers with a history of such complicated pregnancies. MicroRNA expression profiles were also able to differentiate between mothers with normal and abnormal clinical findings (BMI (body mass index), waist circumference, systolic blood pressure, on blood pressure treatment, history of infertility treatment, and the presence of trombophilic gene mutations) irrespective of previous course of gestation. The treatment of hypertension even intensified upregulation of some microRNAs (miR-24-3p, and miR-342-3p) already present in women after complicated pregnancies. Newly, the presence of overweight/obesity (miR-155-5p), systolic hypertension (miR-92a-3p, and miR-210-3p), treatment for infertility (miR-155-5p), and treatment for hypertension (miR-210-3p) induced upregulation of several microRNAs. In general, mothers after complicated pregnancies are at increased risk of development of cardiovascular complications. Especially those mothers indicated to have postpartally altered microRNA expression profiles might be considered as a highly risky group that would benefit from dispensarization and implementation of primary prevention strategies.
Zobrazit více v PubMed
Lykke J.A., Langhoff-Roos J., Sibai B.M., Funai E.F., Triche E.W., Paidas M.J. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–951. doi: 10.1161/HYPERTENSIONAHA.109.130765. PubMed DOI
Männistö T., Mendla P., Vääräsmäki M., Järvelin M.R., Hartikainen A.L., Pouta A., Suvanto E. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013;127:681–690. doi: 10.1161/CIRCULATIONAHA.112.128751. PubMed DOI PMC
Thilaganathan B. Association of Higher Maternal Blood Pressure with Lower Infant Birthweight: Placental Cause or Cardiovascular Effect? Hypertension. 2016;67:499–500. doi: 10.1161/HYPERTENSIONAHA.115.06880. PubMed DOI
Thilaganathan B. Placental syndromes: Getting to the heart of the matter. Ultrasound Obs. Gynecol. 2017;49:7–9. doi: 10.1002/uog.17378. PubMed DOI
Bellamy L., Casas J.P., Hingorani A.D., Williams D.J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: Systematic review and meta-analysis. BMJ. 2007;335:974. doi: 10.1136/bmj.39335.385301.BE. PubMed DOI PMC
Craici I.M., Wagner S.J., Hayman S.R., Garovic V.D. Pre-eclamptic pregnancies: An opportunity to identify women at risk for future cardiovascular disease. Womens Health. 2008;4:133–135. doi: 10.2217/17455057.4.2.133. PubMed DOI
American College of Obstetricians and Gynecologists. Task Force on Hypertension in Pregnancy Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013;122:1122–1131. PubMed
Veerbeek J.H., Hermes W., Breimer A.Y., van Rijn B.B., Koenen S.V., Mol B.W., Franx A., de Groot C.J., Koster M.P. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension. 2015;65:600–606. doi: 10.1161/HYPERTENSIONAHA.114.04850. PubMed DOI
Ray J.G., Vermeulen M.J., Schull M.J., Redelmeier D.A. Cardiovascular health after maternal placental syndromes (CHAMPS): Population-based retrospective cohort study. Lancet. 2005;366:1797–1803. doi: 10.1016/S0140-6736(05)67726-4. PubMed DOI
Libby G., Murphy D.J., McEwan N.F., Greene S.A., Forsyth J.S., Chien P.W., Morris A.D., DARTS/MEMO Collaboration Pre-eclampsia and the later development of type 2 diabetes in mothers and their children: An intergenerational study from the Walker cohort. Diabetologia. 2007;50:523–530. doi: 10.1007/s00125-006-0558-z. PubMed DOI
Yang J.J., Lee S.A., Choi J.Y., Song M., Han S., Yoon H.S., Lee Y., Oh J., Lee J.K., Kang D. Subsequent risk of metabolic syndrome in women with a history of preeclampsia: Data from the Health Examinees Study. J. Epidemiol. 2015;25:281–288. doi: 10.2188/jea.JE20140136. PubMed DOI PMC
Udenze I.C. Association of pre-eclampsia with metabolic syndrome and increased risk of cardiovascular disease in women: A systemic review. Niger J. Clin. Pract. 2016;19:431–435. doi: 10.4103/1119-3077.180055. PubMed DOI
Haukkamaa L., Moilanen L., Kattainen A., Luoto R., Kahonen M., Leinonen M., Jula A., Kesäniemi Y.A., Kaaja R. Pre-eclampsia is a risk factor of carotid artery atherosclerosis. Cereb. Dis. 2009;27:599–607. doi: 10.1159/000216834. PubMed DOI
McDonald S.D., Ray J., Teo K., Jung H., Salehian O., Yusuf S., Lonn E. Measures of cardiovascular risk and subclinical atherosclerosis in a cohort of women with a remote history of preeclampsia. Atherosclerosis. 2013;229:234–239. doi: 10.1016/j.atherosclerosis.2013.04.020. PubMed DOI
Irgens H.U., Reisaeter L., Irgens L.M., Lie R.T. Long term mortality of mothers and fathers after pre-eclampsia: Population based cohort study. BMJ. 2001;323:1213–1217. doi: 10.1136/bmj.323.7323.1213. PubMed DOI PMC
Garovic V.D., Hayman S.R. Hypertension in pregnancy: An emerging risk factor for cardiovascular disease. Nat. Clin. Pr. Nephrol. 2007;3:613–622. doi: 10.1038/ncpneph0623. PubMed DOI
Mongraw-Chaffin M.L., Cirillo P.M., John B.A. Preeclampsia and cardiovascular disease death: Prospective evidence from the child health and development studies cohort. Hypertension. 2010;56:166–171. doi: 10.1161/HYPERTENSIONAHA.110.150078. PubMed DOI PMC
Borna S., Neamatipoor E., Radman N. Risk of coronary artery disease in women with history of pregnancies complicated by preeclampsia and LBW. J. Matern Fetal Neonatal Med. 2012;25:1114–1116. doi: 10.3109/14767058.2011.624218. PubMed DOI
Berks D., Hoedjes M., Raat H., Duvekot J.J., Steegers E.A., Habbema J.D. Risk of cardiovascular disease after pre-eclampsia and the effect of lifestyle interventions: A literature-based study. BJOG. 2013;120:924–931. doi: 10.1111/1471-0528.12191. PubMed DOI
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019;291:158–167. doi: 10.1016/j.ijcard.2019.05.036. PubMed DOI
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int. J. Mol. Sci. 2020;21:2437. doi: 10.3390/ijms21072437. PubMed DOI PMC
International Association of Diabetes and Pregnancy Study Groups Consensus Panel. Metzger B.E., Gabbe S.G., Persson B., Buchanan T.A., Catalano P.A., Damm P., Dyer A.R., Leiva A.D., Hod M., et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes Care. 2010;33:676–682. doi: 10.2337/dc10-0719. PubMed DOI PMC
ACOG Practice Bulletin Diagnosis and management of preeclampsia and eclampsia. Obstet. Gynecol. 2002;99:159–167. PubMed
Figueras F., Gratacos E. Stage-based approach to the management of fetal growth restriction. Prenat. Diagn. 2014;34:655–659. doi: 10.1002/pd.4412. PubMed DOI
Baschat A.A. Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol. 2011;37:501–514. doi: 10.1002/uog.9008. PubMed DOI
Nardozza L.M., Caetano A.C., Zamarian A.C., Mazzola J.B., Silva C.P., Marçal V.M., Lobo T.F., Peixoto A.B., Araujo Júnior E. Fetal growth restriction: Current knowledge. Arch. Gynecol. Obstet. 2017;295:1061–1077. doi: 10.1007/s00404-017-4341-9. PubMed DOI
Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI
Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Maternal Cardiovascular Risk Assessment 3-to-11 Years Postpartum in Relation to Previous Occurrence of Pregnancy-Related Complications. J. Clin. Med. 2019;8:E544. doi: 10.3390/jcm8040544. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Evaluation of Vascular Endothelial Function in Young and Middle-Aged Women with Respect to a History of Pregnancy, Pregnancy-Related Complications, Classical Cardiovascular Risk Factors, and Epigenetics. Int. J. Mol. Sci. 2020;21:E430. doi: 10.3390/ijms21020430. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., de Preter K., Pattyn F., Poppe B., Van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI