Evaluation of Vascular Endothelial Function in Young and Middle-Aged Women with Respect to a History of Pregnancy, Pregnancy-Related Complications, Classical Cardiovascular Risk Factors, and Epigenetics

. 2020 Jan 09 ; 21 (2) : . [epub] 20200109

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31936594

Grantová podpora
AZV 16-27761A Agency of Medical Research, Ministry of Health, Czech Republic
PROGRES Q34 Charles University, Czech Republic

The aim of the study was to examine the effect of previous pregnancies and classical cardiovascular risk factors on vascular endothelial function in a group of 264 young and middle-aged women 3 to 11 years postpartum. We examined microvascular functions by peripheral arterial tonometry and EndoPAT 2000 device with respect to a history of gestational hypertension, preeclampsia, fetal growth restriction, the severity of the disease with regard to the degree of clinical signs and delivery date. Besides, we compared Reactive Hyperemia Index (RHI) values and the prevalence of vascular endothelial dysfunction among the groups of women with normal and abnormal values of BMI, waist circumference, systolic and diastolic blood pressures, heart rate, total serum cholesterol levels, serum high-density lipoprotein cholesterol levels, serum low-density lipoprotein cholesterol levels, serum triglycerides levels, serum lipoprotein A levels, serum C-reactive protein levels, serum uric acid levels, and plasma homocysteine levels. Furthermore, we determined the effect of total number of pregnancies and total parity per woman, infertility and blood pressure treatment, presence of trombophilic gene mutations, current smoking of cigarettes, and current hormonal contraceptive use on the vascular endothelial function. We also examined the association between the vascular endothelial function and postpartum whole peripheral blood expression of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p). A proportion of overweight women (17.94% and 20.59%) and women with central obesity (18.64% and 21.19%) had significantly lower RHI values at 10.0% false positive rate (FPR) both before and after adjustment of the data for the age of patients. At 10.0% FPR, a proportion of women with vascular endothelial dysfunction (RHI ≤ 1.67) was identified to have up-regulated expression profile of miR-1-3p (11.76%), miR-23a-3p (17.65%), and miR-499a-5p (18.82%) in whole peripheral blood. RHI values also negatively correlated with expression of miR-1-3p, miR-23a-3p, and miR-499a-5p in whole peripheral blood. Otherwise, no significant impact of other studied factors on vascular endothelial function was found. We suppose that screening of these particular microRNAs associated with vascular endothelial dysfunction may help to stratify a highly risky group of young and middle-aged women that would benefit from early implementation of primary prevention strategies. Nevertheless, it is obvious, that vascular endothelial dysfunction is just one out of multiple cardiovascular risk factors which has only a partial impact on abnormal expression of cardiovascular and cerebrovascular disease associated microRNAs in whole peripheral blood of young and middle-aged women.

Zobrazit více v PubMed

Ray J.G., Vermeulen M.J., Schull M.J., Redelmeier D.A. Cardiovascular health after maternal placental syndromes (CHAMPS): Population-based retrospective cohort study. Lancet. 2005;366:1797–1803. doi: 10.1016/S0140-6736(05)67726-4. PubMed DOI

Libby G., Murphy D.J., McEwan N.F., Greene S.A., Forsyth J.S., Chien P.W., Morris A.D., DARTS/MEMO Collaboration Pre-eclampsia and the later development of type 2 diabetes in mothers and their children: An intergenerational study from the Walker cohort. Diabetologia. 2007;50:523–530. doi: 10.1007/s00125-006-0558-z. PubMed DOI

Lykke J.A., Langhoff-Roos J., Sibai B.M., Funai E.F., Triche E.W., Paidas M.J. Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension. 2009;53:944–951. doi: 10.1161/HYPERTENSIONAHA.109.130765. PubMed DOI

Männistö T., Mendla P., Vääräsmäki M., Järvelin M.R., Hartikainen A.L., Pouta A., Suvanto E. Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation. 2013;127:681–690. doi: 10.1161/CIRCULATIONAHA.112.128751. PubMed DOI PMC

Thilaganathan B. Association of Higher Maternal Blood Pressure With Lower Infant Birthweight: Placental Cause or Cardiovascular Effect? Hypertension. 2016;67:499–500. doi: 10.1161/HYPERTENSIONAHA.115.06880. PubMed DOI

Thilaganathan B. Placental syndromes: Getting to the heart of the matter. Ultrasound Obstet. Gynecol. 2017;49:7–9. doi: 10.1002/uog.17378. PubMed DOI

Yang J.J., Lee S.A., Choi J.Y., Song M., Han S., Yoon H.S., Lee Y., Oh J., Lee J.K., Kang D. Subsequent risk of metabolic syndrome in women with a history of preeclampsia: Data from the Health Examinees Study. J. Epidemiol. 2015;25:281–288. doi: 10.2188/jea.JE20140136. PubMed DOI PMC

Udenze I.C. Association of pre-eclampsia with metabolic syndrome and increased risk of cardiovascular disease in women: A systemic review. Niger. J. Clin. Pract. 2016;19:431–435. doi: 10.4103/1119-3077.180055. PubMed DOI

Bellamy L., Casas J.P., Hingorani A.D., Williams D.J. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: Systematic review and meta-analysis. BMJ. 2007;335:974. doi: 10.1136/bmj.39335.385301.BE. PubMed DOI PMC

Craici I.M., Wagner S.J., Hayman S.R., Garovic V.D. Pre-eclamptic pregnancies: An opportunity to identify women at risk for future cardiovascular disease. Womens Health. 2008;4:133–135. doi: 10.2217/17455057.4.2.133. PubMed DOI

American College of Obstetricians and Gynecologists. Task Force on Hypertension in Pregnancy Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists’ Task Force on Hypertension in Pregnancy. Obstet. Gynecol. 2013;122:1122–1131. PubMed

Veerbeek J.H., Hermes W., Breimer A.Y., van Rijn B.B., Koenen S.V., Mol B.W., Franx A., de Groot C.J., Koster M.P. Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension. 2015;65:600–606. doi: 10.1161/HYPERTENSIONAHA.114.04850. PubMed DOI

Haukkamaa L., Moilanen L., Kattainen A., Luoto R., Kahonen M., Leinonen M., Jula A., Kesäniemi Y.A., Kaaja R. Pre-eclampsia is a risk factor of carotid artery atherosclerosis. Cerebrovasc. Dis. 2009;27:599–607. doi: 10.1159/000216834. PubMed DOI

McDonald S.D., Ray J., Teo K., Jung H., Salehian O., Yusuf S., Lonn E. Measures of cardiovascular risk and subclinical atherosclerosis in a cohort of women with a remote history of preeclampsia. Atherosclerosis. 2013;229:234–239. doi: 10.1016/j.atherosclerosis.2013.04.020. PubMed DOI

Irgens H.U., Reisaeter L., Irgens L.M., Lie R.T. Long term mortality of mothers and fathers after pre-eclampsia: Population based cohort study. BMJ. 2001;323:1213–1217. doi: 10.1136/bmj.323.7323.1213. PubMed DOI PMC

Garovic V.D., Hayman S.R. Hypertension in pregnancy: An emerging risk factor for cardiovascular disease. Nat. Clin. Pract. Nephrol. 2007;3:613–622. doi: 10.1038/ncpneph0623. PubMed DOI

Mongraw-Chaffin M.L., Cirillo P.M., John B.A. Preeclampsia and cardiovascular disease death: Prospective evidence from the child health and development studies cohort. Hypertension. 2010;56:166–171. doi: 10.1161/HYPERTENSIONAHA.110.150078. PubMed DOI PMC

Borna S., Neamatipoor E., Radman N. Risk of coronary artery disease in women with history of pregnancies complicated by preeclampsia and LBW. J. Matern. Fetal Neonatal Med. 2012;25:1114–1116. doi: 10.3109/14767058.2011.624218. PubMed DOI

Berks D., Hoedjes M., Raat H., Duvekot J.J., Steegers E.A., Habbema J.D. Risk of cardiovascular disease after pre-eclampsia and the effect of lifestyle interventions: A literature-based study. BJOG. 2013;120:924–931. doi: 10.1111/1471-0528.12191. PubMed DOI

Carty D.M., Anderson L.A., Duncan C.N., Baird D.P., Rooney L.K., Dominiczak A.F., Delles C. Peripheral arterial tone: Assessment of microcirculatory function in pregnancy. J. Hypertens. 2012;30:117–123. doi: 10.1097/HJH.0b013e32834d76fb. PubMed DOI

Orabona R., Sciatti E., Vizzardi E., Bonadei I., Valcamonico A., Metra M., Frusca T. Endothelial dysfunction and vascular stiffness in women with previous pregnancy complicated by early or late pre-eclampsia. Ultrasound Obstet. Gynecol. 2017;49:116–123. doi: 10.1002/uog.15893. PubMed DOI

Orabona R., Sciatti E., Vizzardi E., Bonadei I., Prefumo F., Valcamonico A., Metra M., Frusca T. Maternal endothelial function and vascular stiffness after HELLP syndrome: A case-control study. Ultrasound Obstet. Gynecol. 2017;50:596–602. doi: 10.1002/uog.17394. PubMed DOI

Namugowa A., Iputo J., Wandabwa J., Meeme A., Buga G.A.B., Abura S., Stofile Y.Y. Arterial stiffness in women previously with preeclampsia from a semi-rural region of South Africa. Clin. Exp. Hypertens. 2019;41:36–43. doi: 10.1080/10641963.2018.1441858. PubMed DOI

Kuvin J.T., Patel A.R., Sliney K.A., Pandian N.G., Sheffy J., Schnall R.P., Karas R.H., Udelson J.E. Assessment of peripheral vascular endothelial function with finger arterial pulse wave amplitude. Am. Heart J. 2003;146:168–174. doi: 10.1016/S0002-8703(03)00094-2. PubMed DOI

Bonetti P.O., Pumper G.M., Higano S.T., Holmes D.R., Jr., Kuvin J.T., Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 2004;44:2137–2141. doi: 10.1016/j.jacc.2004.08.062. PubMed DOI

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Maternal Cardiovascular Risk Assessment 3-to-11 Years Postpartum in Relation to Previous Occurrence of Pregnancy-Related Complications. J. Clin. Med. 2019;8:544. doi: 10.3390/jcm8040544. PubMed DOI PMC

Llauradó G., Ceperuelo-Mallafré V., Vilardell C., Simó R., Albert L., Berlanga E., Vendrell J., González-Clemente J.M. Impaired endothelial function is not associated with arterial stiffness in adults with type 1 diabetes. Diabetes Metab. 2013;39:355–362. doi: 10.1016/j.diabet.2013.03.006. PubMed DOI

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019;291:158–167. doi: 10.1016/j.ijcard.2019.05.036. PubMed DOI

Elmén J., Lindow M., Silahtaroglu A., Bak M., Christensen M., Lind-Thomsen A., Hedtjärn M., Hansen J.B., Hansen H.F., Straarup E.M., et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res. 2008;36:1153–1162. doi: 10.1093/nar/gkm1113. PubMed DOI PMC

Yang K., He Y.S., Wang X.Q., Lu L., Chen Q.J., Liu J., Sun Z., Shen W.F. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585:854–860. doi: 10.1016/j.febslet.2011.02.009. PubMed DOI

Thum T., Gross C., Fiedler J., Fischer T., Kissler S., Bussen M., Galuppo P., Just S., Rottbauer W., Frantz S., et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature. 2008;456:980–984. doi: 10.1038/nature07511. PubMed DOI

Xin M., Small E.M., Sutherland L.B., Qi X., McAnally J., Plato C.F., Richardson J.A., Bassel-Duby R., Olson E.N. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23:2166–2178. doi: 10.1101/gad.1842409. PubMed DOI PMC

Li S., Zhu J., Zhang W., Chen Y., Zhang K., Popescu L.M., Ma X., Lau W.B., Rong R., Yu X., et al. Signature microRNA expression profile of essential hypertension and its novel link to human cytomegalovirus infection. Circulation. 2011;124:175–184. doi: 10.1161/CIRCULATIONAHA.110.012237. PubMed DOI

Harris T.A., Yamakuchi M., Ferlito M., Mendell J.T., Lowenstein C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA. 2008;105:1516–1521. doi: 10.1073/pnas.0707493105. PubMed DOI PMC

Wang Y.S., Wang H.Y., Liao Y.C., Tsai P.C., Chen K.C., Cheng H.Y., Lin R.T., Juo S.H. MicroRNA-195 regulates vascular smooth muscle cell phenotype and prevents neointimal formation. Cardiovasc. Res. 2012;95:517–526. doi: 10.1093/cvr/cvs223. PubMed DOI

Kong L., Zhu J., Han W., Jiang X., Xu M., Zhao Y., Dong Q., Pang Z., Guan Q., Gao L., et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: A clinical study. Acta Diabetol. 2011;48:61–69. doi: 10.1007/s00592-010-0226-0. PubMed DOI

Ji R., Cheng Y., Yue J., Yang J., Liu X., Chen H., Dean D.B., Zhang C. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ. Res. 2007;100:1579–1588. doi: 10.1161/CIRCRESAHA.106.141986. PubMed DOI

Raitoharju E., Lyytikäinen L.P., Levula M., Oksala N., Mennander A., Tarkka M., Klopp N., Illig T., Kähönen M., Karhunen P.J., et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219:211–217. doi: 10.1016/j.atherosclerosis.2011.07.020. PubMed DOI

Poliseno L., Tuccoli A., Mariani L., Evangelista M., Citti L., Woods K., Mercatanti A., Hammond S., Rainaldi G. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068–3071. doi: 10.1182/blood-2006-01-012369. PubMed DOI

Doebele C., Bonauer A., Fischer A., Scholz A., Reiss Y., Urbich C., Hofmann W.K., Zeiher A.M., Dimmeler S. Members of the microRNA-17-92 cluster exhibit a cell-intrinsic antiangiogenic function in endothelial cells. Blood. 2010;115:4944–4950. doi: 10.1182/blood-2010-01-264812. PubMed DOI

Fichtlscherer S., De Rosa S., Fox H., Schwietz T., Fischer A., Liebetrau C., Weber M., Hamm C.W., Röxe T., Müller-Ardogan M., et al. Circulating microRNAs in patients with coronary artery disease. Circ. Res. 2010;107:677–684. doi: 10.1161/CIRCRESAHA.109.215566. PubMed DOI

van Rooij E., Sutherland L.B., Liu N., Williams A.H., McAnally J., Gerard R.D., Richardson J.A., Olson E.N. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. USA. 2006;103:18255–18260. doi: 10.1073/pnas.0608791103. PubMed DOI PMC

Ikeda S., Kong S.W., Lu J., Bisping E., Zhang H., Allen P.D., Golub T.R., Pieske B., Pu W.T. Altered microRNA expression in human heart disease. Physiol. Genom. 2007;31:367–373. doi: 10.1152/physiolgenomics.00144.2007. PubMed DOI

D’Alessandra Y., Devanna P., Limana F., Straino S., Di Carlo A., Brambilla P.G., Rubino M., Carena M.C., Spazzafumo L., De Simone M., et al. Circulating microRNAs are new and sensitive biomarkers of myocardial infarction. Eur. Heart J. 2010;31:2765–2773. doi: 10.1093/eurheartj/ehq167. PubMed DOI PMC

Beaumont J., López B., Hermida N., Schroen B., San José G., Heymans S., Valencia F., Gómez-Doblas J.J., De Teresa E., Díez J., et al. microRNA-122 down-regulation may play a role in severe myocardial fibrosis in human aortic stenosis through TGF-β1 up-regulation. Clin. Sci. (Lond.) 2014;126:497–506. doi: 10.1042/CS20130538. PubMed DOI

Maitrias P., Metzinger-Le Meuth V., Nader J., Reix T., Caus T., Metzinger L. The Involvement of miRNA in Carotid-Related Stroke. Arterioscler. Thromb. Vasc. Biol. 2017;37:1608–1617. doi: 10.1161/ATVBAHA.117.309233. PubMed DOI

Jiang Y., Zhang M., He H., Chen J., Zeng H., Li J., Duan R. MicroRNA/mRNA profiling and regulatory network of intracranial aneurysm. BMC Med. Genom. 2013;6:36. doi: 10.1186/1755-8794-6-36. PubMed DOI PMC

Bienertova-Vasku J., Novak J., Vasku A. MicroRNAs in pulmonary arterial hypertension: Pathogenesis, diagnosis and treatment. J. Am. Soc. Hypertens. 2015;9:221–234. doi: 10.1016/j.jash.2014.12.011. PubMed DOI

Halkein J., Tabruyn S.P., Ricke-Hoch M., Haghikia A., Nguyen N.Q., Scherr M., Castermans K., Malvaux L., Lambert V., Thiry M., et al. MicroRNA-146a is a therapeutic target and biomarker for peripartum cardiomyopathy. J. Clin. Investig. 2013;123:2143–2154. doi: 10.1172/JCI64365. PubMed DOI PMC

Namugowa A.V., Meeme A. PP017 Comparison of vascular function in preeclamptic and normotensive pregnant women in the rural eastern Cape province of South Africa. Pregnancy Hypertens. 2012;2:250–251. doi: 10.1016/j.preghy.2012.04.128. PubMed DOI

Meeme A., Buga G.A., Mammen M., Namugowa A. Endothelial dysfunction and arterial stiffness in pre-eclampsia demonstrated by the EndoPAT method. Cardiovasc. J. Afr. 2017;28:23–29. doi: 10.5830/CVJA-2016-047. PubMed DOI PMC

Mannaerts D., Faes E., Goovaerts I., Stoop T., Cornette J., Gyselaers W., Spaanderman M., Van Craenenbroeck E.M., Jacquemyn Y. Flow-mediated dilation and peripheral arterial tonometry are disturbed in preeclampsia and reflect different aspects of endothelial function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;313:R518–R525. doi: 10.1152/ajpregu.00514.2016. PubMed DOI

Mannaerts D., Faes E., Cos P., Briedé J.J., Gyselaers W., Cornette J., Gorbanev Y., Bogaerts A., Spaanderman M., Van Craenenbroeck E., et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS ONE. 2018;13:e0202919. doi: 10.1371/journal.pone.0202919. PubMed DOI PMC

Yinon D., Lowenstein L., Suraya S., Beloosesky R., Zmora O., Malhotra A., Pillar G. Pre-eclampsia is associated with sleep-disordered breathing and endothelial dysfunction. Eur. Respir. J. 2006;27:28–33. doi: 10.1183/09031936.06.00010905. PubMed DOI PMC

Pearce C.F., Lain K., Hansen W.F., Curry T., Jr., O’Brien J.M. The use of digital peripheral artery tonometry to detect endothelial dysfunction in pregnant women who smoke. Am. J. Perinatol. 2014;31:113–118. PubMed

Lobysheva I.I., Eeckhoudt S.V., Zotti F.D., Rifahi A., Pothen L., Beauloye C., Balligand J.L. Clinical and biochemical data of endothelial function in Women Consuming Combined Contraceptives. Data Brief. 2017;13:46–52. doi: 10.1016/j.dib.2017.05.019. PubMed DOI PMC

Lowenstein L., Damti A., Pillar G., Shott S., Blumenfeld Z. Evaluation of endothelial function in women with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol. 2007;134:208–212. doi: 10.1016/j.ejogrb.2007.02.011. PubMed DOI

Kuvin J.T., Mammen A., Mooney P., Alsheikh-Ali A.A., Karas R.H. Assessment of peripheral vascular endothelial function in the ambulatory setting. Vasc. Med. 2007;12:13–16. doi: 10.1177/1358863X06076227. PubMed DOI

Truschel E., Jarczok M.N., Fischer J.E., Terris D.D. High-throughput ambulatory assessment of digital reactive hyperemia: Concurrent validity with known cardiovascular risk factors and potential confounding. Prev. Med. 2009;49:468–472. doi: 10.1016/j.ypmed.2009.09.019. PubMed DOI

Ferré R., Aragonès G., Plana N., Merino J., Heras M., Buixadera C., Masana L. High-density lipoprotein cholesterol and apolipoprotein A1 levels strongly influence the reactivity of small peripheral arteries. Atherosclerosis. 2011;216:115–119. doi: 10.1016/j.atherosclerosis.2011.01.039. PubMed DOI

Hamburg N.M., Palmisano J., Larson M.G., Sullivan L.M., Lehman B.T., Vasan R.S., Levy D., Mitchell G.F., Vita J.A., Benjamin E.J. Relation of brachial and digital measures of vascular function in the community: The Framingham heart study. Hypertension. 2011;57:390–396. doi: 10.1161/HYPERTENSIONAHA.110.160812. PubMed DOI PMC

Gupta A.K., Ravussin E., Johannsen D.L., Stull A.J., Cefalu W.T., Johnson W.D. Endothelial Dysfunction: An Early Cardiovascular Risk Marker in Asymptomatic Obese Individuals with Prediabetes. Br. J. Med. Med. Res. 2012;2:413–423. doi: 10.9734/BJMMR/2012/1479. PubMed DOI PMC

Aversa A., Bruzziches R., Francomano D., Greco E.A., Violi F., Lenzi A., Donini L.M. Weight loss by multidisciplinary intervention improves endothelial and sexual function in obese fertile women. J. Sex. Med. 2013;10:1024–1033. doi: 10.1111/jsm.12069. PubMed DOI

Cioni G., Boddi M., Fatini C., Romagnuolo I., Casini A., Gensini G.F., Abbate R., Sofi F. Peripheral-arterial tonometry for assessing endothelial function in relation to dietary habits. J. Investig. Med. 2013;61:867–871. doi: 10.2310/JIM.0b013e318292fc7d. PubMed DOI

Cao C., Hu J., Dong Y., Zhan R., Li P., Su H., Peng Q., Wu T., Lei L., Huang X., et al. Gender differences in the risk factors for endothelial dysfunction in Chinese hypertensive patients: Homocysteine is an independent risk factor in females. PLoS ONE. 2015;10:e0118686. doi: 10.1371/journal.pone.0118686. PubMed DOI PMC

Michelsen M.M., Mygind N.D., Pena A., Aziz A., Frestad D., Høst N., Prescott E. Steering Committee of the iPOWER Study. Peripheral Reactive Hyperemia Index and Coronary Microvascular Function in Women With no Obstructive CAD: The iPOWER Study. JACC Cardiovasc. Imaging. 2016;9:411–417. doi: 10.1016/j.jcmg.2016.02.005. PubMed DOI

Kurozumi A., Okada Y., Arao T., Tanaka Y. Excess Visceral Adipose Tissue Worsens the Vascular Endothelial Function in Patients with Type 2 Diabetes Mellitus. Intern. Med. 2016;55:3091–3095. doi: 10.2169/internalmedicine.55.6940. PubMed DOI PMC

van der Heijden D.J., van Leeuwen M.A.H., Janssens G.N., Lenzen M.J., van de Ven P.M., Eringa E.C., van Royen N. Body Mass Index Is Associated With Microvascular Endothelial Dysfunction in Patients With Treated Metabolic Risk Factors and Suspected Coronary Artery Disease. J. Am. Heart Assoc. 2017;6:e006082. doi: 10.1161/JAHA.117.006082. PubMed DOI PMC

Kang J., Kim H.L., Seo J.B., Lee J.Y., Moon M.K., Chung W.Y. Endothelial function estimated by digital reactive hyperemia in patients with atherosclerotic risk factors or coronary artery disease. Heart Vessels. 2018;33:706–712. doi: 10.1007/s00380-018-1118-4. PubMed DOI

Mori H., Okada Y., Kawaguchi M., Iwata S., Yoshikawa M., Sonoda S., Sugai K., Tanaka K., Hajime M., Narisawa M., et al. A Study of the Vascular Endothelial Function in Patients with Type 2 Diabetes Mellitus and Rheumatoid Arthritis. Intern. Med. 2019;58:1383–1390. doi: 10.2169/internalmedicine.1564-18. PubMed DOI PMC

Owei I., Umekwe N., Mohamed H., Ebenibo S., Wan J., Dagogo-Jack S. Ethnic Disparities in Endothelial Function and Its Cardiometabolic Correlates: The Pathobiology of Prediabetes in A Biracial Cohort Study. Front. Endocrinol. 2018;9:94. doi: 10.3389/fendo.2018.00094. PubMed DOI PMC

Czippelova B., Turianikova Z., Krohova J., Wiszt R., Lazarova Z., Pozorciakova K., Ciljakova M., Javorka M. Arterial Stiffness and Endothelial Function in Young Obese Patients-Vascular Resistance Matters. J. Atheroscler. Thromb. 2019;26:1015–1025. doi: 10.5551/jat.47530. PubMed DOI PMC

Taher R., Sara J.D., Heidari B., Toya T., Lerman L.O., Lerman A. Metabolic syndrome is associated with peripheral endothelial dysfunction amongst men. Diabetes Metab. Syndr. Obes. 2019;12:1035–1045. doi: 10.2147/DMSO.S204666. PubMed DOI PMC

Ferreira T.D.S., Fernandes J.F.R., Araújo L.D.S., Nogueira L.P., Leal P.M., Antunes V.P., Rodrigues M.L.G., Valença D.C.T., Kaiser S.E., Klein M.R.S.T. Serum Uric Acid Levels are Associated with Cardiometabolic Risk Factors in Healthy Young and Middle-Aged Adults. Arq. Bras. Cardiol. 2018;111:833–840. doi: 10.5935/abc.20180197. PubMed DOI PMC

Konttinen J., Lindholm H., Sinisalo J., Kuosma E., Halonen J., Hopsu L., Uitti J. Association between lowered endothelial function measured by peripheral arterial tonometry and cardio-metabolic risk factors—A cross-sectional study of Finnish municipal workers at risk of diabetes and cardiovascular disease. BMC Cardiovasc. Disord. 2013;13:83. doi: 10.1186/1471-2261-13-83. PubMed DOI PMC

Williams M.J.A., Milne B.J., Ambler A., Theodore R., Ramrakha S., Caspi A., Moffitt T.E., Poulton R. Childhood body mass index and endothelial dysfunction evaluated by peripheral arterial tonometry in early midlife. Int. J. Obes. 2017;41:1355–1360. doi: 10.1038/ijo.2017.108. PubMed DOI PMC

Randby A., Namtvedt S.K., Hrubos-Strøm H., Einvik G., Somers V.K., Omland T. Sex-dependent impact of OSA on digital vascular function. Chest. 2013;144:915–922. doi: 10.1378/chest.12-2283. PubMed DOI

Ertek S., Akgül E., Cicero A.F., Kütük U., Demirtaş S., Cehreli S., Erdoğan G. 25-Hydroxy vitamin D levels and endothelial vasodilator function in normotensive women. Arch. Med. Sci. 2012;8:47–52. doi: 10.5114/aoms.2012.27280. PubMed DOI PMC

Tang D., Bai S., Li X., Yao M., Gong Y., Hou Y., Li J., Yang D. Improvement of microvascular endothelial dysfunction induced by exercise and diet is associated with microRNA-126 in obese adolescents. Microvasc. Res. 2019;123:86–91. PubMed

Zhao Y., Samal E., Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005;436:214–220. doi: 10.1038/nature03817. PubMed DOI

Chen J.F., Mandel E.M., Thomson J.M., Wu Q., Callis T.E., Hammond S.M., Conlon F.L., Wang D.Z. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet. 2006;38:228–233. doi: 10.1038/ng1725. PubMed DOI PMC

Rao P.K., Kumar R.M., Farkhondeh M., Baskerville S., Lodish H.F. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc. Natl. Acad. Sci. USA. 2006;103:8721–8726. doi: 10.1073/pnas.0602831103. PubMed DOI PMC

Li Y.Q., Zhang M.F., Wen H.Y., Hu C.L., Liu R., Wei H.Y., Ai C.M., Wang G., Liao X.X., Li X. Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics. 2013;68:75–80. doi: 10.6061/clinics/2013(01)OA12. PubMed DOI PMC

Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction) J. Mol. Cell. Cardiol. 2016;94:107–121. doi: 10.1016/j.yjmcc.2016.03.015. PubMed DOI

Tang Y., Zheng J., Sun Y., Wu Z., Liu Z., Huang G. MicroRNA-1 regulates cardiomyocyte apoptosis by targeting Bcl-2. Int. Heart J. 2009;50:377–387. doi: 10.1536/ihj.50.377. PubMed DOI

Terentyev D., Belevych A.E., Terentyeva R., Martin M.M., Malana G.E., Kuhn D.E., Abdellatif M., Feldman D.S., Elton T.S., Györke S. miR-1 overexpression enhances Ca(2+) release and promotes cardiac arrhythmogenesis by targeting PP2A regulatory subunit B56alpha and causing CaMKII-dependent hyperphosphorylation of RyR2. Circ. Res. 2009;104:514–521. doi: 10.1161/CIRCRESAHA.108.181651. PubMed DOI PMC

Wang S., Guo X., Long C.L., Li C., Zhang Y.F., Wang J., Wang H. SUR2B/Kir6.1 channel openers correct endothelial dysfunction in chronic heart failure via the miR-1-3p/ET-1 pathway. Biomed. Pharmacother. 2019;110:431–439. doi: 10.1016/j.biopha.2018.11.135. PubMed DOI

Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Cardiovascular and Cerebrovascular Disease Associated microRNAs Are Dysregulated in Placental Tissues Affected with Gestational Hypertension, Preeclampsia and Intrauterine Growth Restriction. PLoS ONE. 2015;10:e0138383. doi: 10.1371/journal.pone.0138383. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Ivankova K., Vedmetskaya Y., Krofta L. Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction. Int. J. Cardiol. 2017;249:402–409. doi: 10.1016/j.ijcard.2017.07.045. PubMed DOI

Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016;137:126–140. doi: 10.1016/j.thromres.2015.11.032. PubMed DOI

Long B., Gan T.Y., Zhang R.C., Zhang Y.H. miR-23a Regulates Cardiomyocyte Apoptosis by Targeting Manganese Superoxide Dismutase. Mol. Cells. 2017;40:542–549. doi: 10.14348/molcells.2017.0012. PubMed DOI PMC

Wang S., He W., Wang C. MiR-23a Regulates the Vasculogenesis of Coronary Artery Disease by Targeting Epidermal Growth Factor Receptor. Cardiovasc. Ther. 2016;34:199–208. doi: 10.1111/1755-5922.12187. PubMed DOI

Cong X., Li Y., Lu N., Dai Y., Zhang H., Zhao X., Liu Y. Resveratrol attenuates the inflammatory reaction induced by ischemia/reperfusion in the rat heart. Mol. Med. Rep. 2014;9:2528–2532. doi: 10.3892/mmr.2014.2090. PubMed DOI

Amin K.N., Umapathy D., Anandharaj A., Ravichandran J., Sasikumar C.S., Chandra S.K.R., Kesavan R., Kunka Mohanram R. miR-23c regulates wound healing by targeting stromal cell-derived factor-1α (SDF-1α/CXCL12) among patients with diabetic foot ulcer. Microvasc. Res. 2020;127:103924. doi: 10.1016/j.mvr.2019.103924. PubMed DOI

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L., Sirc J. Postnatal Expression Profile of microRNAs Associated with Cardiovascular and Cerebrovascular Diseases in Children at the Age of 3 to 11 Years in Relation to Previous Occurrence of Pregnancy-Related Complications. Int. J. Mol. Sci. 2019;20:654. doi: 10.3390/ijms20030654. PubMed DOI PMC

Wang J.X., Jiao J.Q., Li Q., Long B., Wang K., Liu J.P., Li Y.R., Li P.F. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med. 2011;17:71–78. doi: 10.1038/nm.2282. PubMed DOI

Van Rooij E., Olson E.N. MicroRNAs: Powerful new regulators of heart disease and provocative therapeutic targets. J. Clin. Investig. 2007;117:2369–2376. doi: 10.1172/JCI33099. PubMed DOI PMC

Devaux Y., Vausort M., Goretti E., Nazarov P.V., Azuaje F., Gilson G., Corsten M.F., Schroen B., Lair M.L., Heymans S., et al. Use of circulating microRNAs to diagnose acute myocardial infarction. Clin. Chem. 2012;58:559–567. doi: 10.1373/clinchem.2011.173823. PubMed DOI

Cheng C., Wang Q., You W., Chen M., Xia J. MiRNAs as biomarkers of myocardial infarction: A meta-analysis. PLoS ONE. 2014;9:e88566. doi: 10.1371/journal.pone.0088566. PubMed DOI PMC

Xiao J., Shen B., Li J., Lv D., Zhao Y., Wang F., Xu J. Serum microRNA-499 and microRNA-208a as biomarkers of acute myocardial infarction. Int. J. Clin. Exp. Med. 2014;7:136–141. PubMed PMC

Toraih E.A., Hussein M.H., Al Ageeli E., Riad E., AbdAllah N.B., Helal G.M., Fawzy M.S. Structure and functional impact of seed region variant in MIR-499 gene family in bronchial asthma. Respir. Res. 2017;18:169. doi: 10.1186/s12931-017-0648-0. PubMed DOI PMC

Program, National High Blood Pressure Education Report of the National High Blood Pressure Education Program Working Group on High Blood Pressure in Pregnancy. Am. J. Obstet. Gynecol. 2000;183:S1–S22. doi: 10.1067/mob.2000.107928. PubMed DOI

Diagnosis and Management of Preeclampsia and Eclampsia ACOG Practice Bulletin No. 33. American College of Obstetricians and Gynecologists. Obstet. Gynecol. 2002;99:159–167. PubMed

Espinoza J., Vidaeff A., Pettker C.M., Simhan H. ACOG Practice Bulletin No. 202: Gestational Hypertension and Preeclampsia. Obstet. Gynecol. 2019;133:e1–e25. PubMed

Vyas S., Nicolaides K.H., Bower S., Campbell S. Middle cerebral artery flow velocity waveforms in fetal hypoxaemia. Br. J. Obstet. Gynaecol. 1990;97:797–803. doi: 10.1111/j.1471-0528.1990.tb02573.x. PubMed DOI

Cohn H.E., Sacks E.J., Heymann M.A., Rudolph A.M. Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am. J. Obstet. Gynecol. 1974;120:817–824. doi: 10.1016/0002-9378(74)90587-0. PubMed DOI

Liz S. Practice Guidelines: New AHA Recommendations for Blood Pressure Measurement. Am. Fam. Physician. 2005;72:1391–1398.

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Vandesompele J., de Preter K., Pattyn F., Poppe B., Van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications

. 2022 Sep 13 ; 23 (18) : . [epub] 20220913

Pathogenesis of Pregnancy-Related Complications 1.0 and 2.0

. 2022 Mar 11 ; 23 (6) : . [epub] 20220311

Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings

. 2021 Jan 11 ; 11 (1) : . [epub] 20210111

Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk

. 2020 Jun 26 ; 9 (6) : . [epub] 20200626

Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases

. 2020 Mar 31 ; 21 (7) : . [epub] 20200331

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...