Postnatal Expression Profile of MicroRNAs Associated with Cardiovascular Diseases in 3- to 11-Year-Old Preterm-Born Children

. 2021 Jun 24 ; 9 (7) : . [epub] 20210624

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34202871

Grantová podpora
AZV 16-27761A Agency of Medical Research, Ministry of Health, Prague, Czech Republic
260529/SVV/2021 Charles University, Prague, Czech Republic
PROGRES Q34 Charles University, Prague, Czech Republic

Odkazy

PubMed 34202871
PubMed Central PMC8301298
DOI 10.3390/biomedicines9070727
PII: biomedicines9070727
Knihovny.cz E-zdroje

(1) Background: Preterm-born children have an increased cardiovascular risk with the first clinical manifestation during childhood and/or adolescence. (2) Methods: The occurrence of overweight/obesity, prehypertension/hypertension, valve problems or heart defects, and postnatal microRNA expression profiles were examined in preterm-born children at the age of 3 to 11 years descending from preterm prelabor rupture of membranes (PPROM) and spontaneous preterm birth (PTB) pregnancies. The whole peripheral blood gene expression of 29 selected microRNAs associated with cardiovascular diseases was the subject of our interest. (3) Results: Nearly one-third of preterm-born children (32.43%) had valve problems and/or heart defects. The occurrence of systolic and diastolic prehypertension/hypertension was also inconsiderable in a group of preterm-born children (27.03% and 18.92%). The vast majority of children descending from either PPROM (85.45%) or PTB pregnancies (85.71%) had also significantly altered microRNA expression profiles at 90.0% specificity. (4) Conclusions: Postnatal microRNA expression profiles were significantly influenced by antenatal and early postnatal factors (gestational age at delivery, birth weight of newborns, and condition of newborns at the moment of birth). These findings may contribute to the explanation of increased cardiovascular risk in preterm-born children. These findings strongly support the belief that preterm-born children should be dispensarized for a long time to have access to specialized medical care.

Zobrazit více v PubMed

Kistner A., Jacobson L., Jacobson S.H., Svensson E., Hellstrom A. Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women. Pediatr. Res. 2002;51:675–680. doi: 10.1203/00006450-200206000-00003. PubMed DOI

Johansson S., Iliadou A., Bergvall N., Tuvemo T., Norman M., Cnattingius S. Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation. 2005;112:3430–3436. doi: 10.1161/CIRCULATIONAHA.105.540906. PubMed DOI

Kistner A., Celsi G., Vanpée M., Jacobson S.H. Increased systolic daily ambulatory blood pressure in adult women born preterm. Pediatr. Nephrol. 2005;20:232–233. doi: 10.1007/s00467-004-1717-4. PubMed DOI

Bonamy A.K., Martin H., Jörneskog G., Norman M. Lower skin capillary density, normal endothelial function and higher blood pressure in children born preterm. J. Intern. Med. 2007;262:635–642. doi: 10.1111/j.1365-2796.2007.01868.x. PubMed DOI

Keijzer-Veen M.G., Dülger A., Dekker F.W., Nauta J., van der Heijden B.J. Very preterm birth is a risk factor for increased systolic blood pressure at a young adult age. Pediatr. Nephrol. 2010;25:509–516. doi: 10.1007/s00467-009-1373-9. PubMed DOI PMC

de Jong F., Monuteaux M.C., van Elburg R.M., Gillman M.W., Belfort M.B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59:226–234. doi: 10.1161/HYPERTENSIONAHA.111.181784. PubMed DOI PMC

Edwards M.O., Watkins W.J., Kotecha S.J., Halcox J.P., Dunstan F.D., Henderson A.J., Kotecha S. Higher systolic blood pressure with normal vascular function measurements in preterm-born children. Acta Paediatr. 2014;103:904–912. doi: 10.1111/apa.12699. PubMed DOI

Steen E., Bonamy A.K., Norman M., Hellström-Westas L. Preterm birth may be a larger risk factor for increased blood pressure than intrauterine growth restriction. Acta Paediatr. 2015;104:1098–1103. doi: 10.1111/apa.13095. PubMed DOI

Kowalski R.R., Beare R., Doyle L.W., Smolich J.J., Cheung M.M., Victorian Infant Collaborative Study Group Elevated Blood Pressure with Reduced Left Ventricular and Aortic Dimensions in Adolescents Born Extremely Preterm. J. Pediatr. 2016;172:75–80.e2. doi: 10.1016/j.jpeds.2016.01.020. PubMed DOI

Posod A., Odri Komazec I., Kager K., Pupp Peglow U., Griesmaier E., Schermer E., Würtinger P., Baumgartner D., Kiechl-Kohlendorfer U. Former Very Preterm Infants Show an Unfavorable Cardiovascular Risk Profile at a Preschool Age. PLoS ONE. 2016;11:e0168162. doi: 10.1371/journal.pone.0168162. PubMed DOI PMC

Edstedt Bonamy A.K., Mohlkert L.A., Hallberg J., Liuba P., Fellman V., Domellöf M., Norman M. Blood Pressure in 6-Year-Old Children Born Extremely Preterm. J. Am. Heart Assoc. 2017;6:e005858. doi: 10.1161/JAHA.117.005858. PubMed DOI PMC

Mohlkert L.A., Hallberg J., Broberg O., Rydberg A., Halvorsen C.P., Liuba P., Fellman V., Domellöf M., Sjöberg G., Norman M. The Preterm Heart in Childhood: Left Ventricular Structure, Geometry, and Function Assessed by Echocardiography in 6-Year-Old Survivors of Periviable Births. J. Am. Heart Assoc. 2018;7:e007742. doi: 10.1161/JAHA.117.007742. PubMed DOI PMC

Chehade H., Simeoni U., Guignard J.P., Boubred F. Preterm Birth: Long Term Cardiovascular and Renal Consequences. Curr. Pediatr. Rev. 2018;14:219–226. doi: 10.2174/1573396314666180813121652. PubMed DOI PMC

Kowalski R.R., Beare R., Mynard J.P., Cheong J.L.Y., Doyle L.W., Smolich J.J., Cheung M.M.H. Increased aortic wave reflection contributes to higher systolic blood pressure in adolescents born preterm. J. Hypertens. 2018;36:1514–1523. doi: 10.1097/HJH.0000000000001719. PubMed DOI

Stock K., Schmid A., Griesmaier E., Gande N., Hochmayr C., Knoflach M., Kiechl-Kohlendorfer U., Early Vascular Aging (EVA) Study Group The Impact of Being Born Preterm or Small for Gestational Age on Early Vascular Aging in Adolescents. J. Pediatr. 2018;201:49–54.e1. doi: 10.1016/j.jpeds.2018.05.056. PubMed DOI

Skudder-Hill L., Ahlsson F., Lundgren M., Cutfield W.S., Derraik J.G.B. Preterm Birth is Associated with Increased Blood Pressure in Young Adult Women. J. Am. Heart Assoc. 2019;8:e012274. doi: 10.1161/JAHA.119.012274. PubMed DOI PMC

Wei F.F., Raaijmakers A., Melgarejo J.D., Cauwenberghs N., Thijs L., Zhang Z.Y., Yu C.G., Levtchenko E., Struijker-Boudier H.A.J., Yang W.Y., et al. Retinal and Renal Microvasculature in Relation to Central Hemodynamics in 11-Year-Old Children Born Preterm or At Term. J. Am. Heart Assoc. 2020;9:e014305. doi: 10.1161/JAHA.119.014305. PubMed DOI PMC

Flahault A., Oliveira Fernandes R., De Meulemeester J., Ravizzoni Dartora D., Cloutier A., Gyger G., El-Jalbout R., Bigras J.L., Luu T.M., Nuyt A.M. Arterial Structure and Stiffness Are Altered in Young Adults Born Preterm. Arter. Thromb Vasc. Biol. 2020;40:2548–2556. doi: 10.1161/ATVBAHA.120.315099. PubMed DOI

Hurst J.R., Beckmann J., Ni Y., Bolton C.E., McEniery C.M., Cockcroft J.R., Marlow N. Respiratory and Cardiovascular Outcomes in Survivors of Extremely Preterm Birth at 19 Years. Am. J. Respir. Crit. Care Med. 2020;202:422–432. doi: 10.1164/rccm.202001-0016OC. PubMed DOI PMC

Sanderson K.R., Chang E., Bjornstad E., Hogan S.L., Hu Y., Askenazi D., Fry R.C., O’Shea T.M. Albuminuria, Hypertension, and Reduced Kidney Volumes in Adolescents Born Extremely Premature. Front. Pediatr. 2020;8:230. doi: 10.3389/fped.2020.00230. PubMed DOI PMC

Markopoulou P., Papanikolaou E., Analytis A., Zoumakis E., Siahanidou T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019;210:69–80. doi: 10.1016/j.jpeds.2019.02.041. PubMed DOI

Johansson S., Norman M., Legnevall L., Dalmaz Y., Lagercrantz H., Vanpée M. Increased catecholamines and heart rate in children with low birth weight: Perinatal contributions to sympathoadrenal overactivity. J. Intern. Med. 2007;261:480–487. doi: 10.1111/j.1365-2796.2007.01776.x. PubMed DOI

Yiallourou S.R., Wallace E.M., Whatley C., Odoi A., Hollis S., Weichard A.J., Muthusamy J.S., Varma S., Cameron J., Narayan O., et al. Sleep: A Window Into Autonomic Control in Children Born Preterm and Growth Restricted. Sleep. 2017;40 doi: 10.1093/sleep/zsx048. PubMed DOI

Bonamy A.K., Bendito A., Martin H., Andolf E., Sedin G., Norman M. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr. Res. 2005;58:845–849. doi: 10.1203/01.PDR.0000181373.29290.80. PubMed DOI

Crisafulli A., Bassareo P.P., Kelleher S., Calcaterra G., Mercuro G. Factors Predisposing to Hypertension in Subjects Formerly Born Preterm: Renal Impairment, Arterial Stiffness, Endothelial Dysfunction or Something Else? Curr. Hypertens. Rev. 2020;16:82–90. doi: 10.2174/1573402115666190627140523. PubMed DOI PMC

Vollsæter M., Halvorsen T., Markestad T., Øymar K., Ueland P.M., Meyer K., Midttun Ø., Bjørke-Monsen A.L. Renal function and blood pressure in 11 year old children born extremely preterm or small for gestational age. PLoS ONE. 2018;13:e0205558. doi: 10.1371/journal.pone.0205558. PubMed DOI PMC

Rakow A., Laestadius Å., Liliemark U., Backheden M., Legnevall L., Kaiser S., Vanpée M. Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatr. Nephrol. 2019;34:1765–1776. doi: 10.1007/s00467-019-04293-9. PubMed DOI PMC

Bassareo P.P., Fanos V., Mussap M., Flore G., Noto A., Puddu M., Saba L., Mercuro G. Urinary NGAL and hematic ADMA levels: An early sign of cardio-renal syndrome in young adults born preterm? J. Matern. Fetal. Neonatal. Med. 2013;26(Suppl. 2):80–83. doi: 10.3109/14767058.2013.829698. PubMed DOI

Hadchouel A., Rousseau J., Rozé J.C., Arnaud C., Bellino A., Couderc L., Marret S., Mittaine M., Pinquier D., Verstraete M., et al. Association between asthma and lung function in adolescents born very preterm: Results of the EPIPAGE cohort study. Thorax. 2018;73:1174–1176. doi: 10.1136/thoraxjnl-2017-211115. PubMed DOI

Harris C., Lunt A., Bisquera A., Peacock J., Greenough A. Lung function and exercise capacity in prematurely born young people. Pediatr. Pulmonol. 2020;55:2289–2295. doi: 10.1002/ppul.24918. PubMed DOI

Chan P.Y., Morris J.M., Leslie G.I., Kelly P.J., Gallery E.D. The long-term effects of prematurity and intrauterine growth restriction on cardiovascular, renal, and metabolic function. Int. J. Pediatr. 2010;2010:280402. doi: 10.1155/2010/280402. PubMed DOI PMC

Hofman P.L., Regan F., Jackson W.E., Jefferies C., Knight D.B., Robinson E.M., Cutfield W.S. Premature birth and later insulin resistance. N. Engl. J. Med. 2004;351:2179–2186. doi: 10.1056/NEJMoa042275. PubMed DOI

Rotteveel J., van Weissenbruch M.M., Twisk J.W., Delemarre-Van de Waal H.A. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. 2008;122:313–332. doi: 10.1542/peds.2007-2012. PubMed DOI

Rerkasem K., Wongthanee A., Rerkasem A., Pruenglampoo S., Mangklabruks A., Hofman P.L., Cutfield W.S., Derraik J.G.B. Lower insulin sensitivity in young adults born preterm in Thailand. Pediatr. Diabetes. 2020;21:210–214. doi: 10.1111/pedi.12969. PubMed DOI

Chiavaroli V., Derraik J.G.B., Jayasinghe T.N., Rodrigues R.O., Biggs J.B., Battin M., Hofman P.L., O’Sullivan J.M., Cutfield W.S. Lower insulin sensitivity remains a feature of children born very preterm. Pediatr. Diabetes. 2021;22:161–167. doi: 10.1111/pedi.13140. PubMed DOI

Tinnion R., Gillone J., Cheetham T., Embleton N. Preterm birth and subsequent insulin sensitivity: A systematic review. Arch. Dis. Child. 2014;99:362–368. doi: 10.1136/archdischild-2013-304615. PubMed DOI

Juonala M., Cheung M.M., Sabin M.A., Burgner D., Skilton M.R., Kähönen M., Hutri-Kähönen N., Lehtimäki T., Jula A., Laitinen T., et al. Effect of birth weight on life-course blood pressure levels among children born premature: The Cardiovascular Risk in Young Finns Study. J. Hypertens. 2015;33:1542–1548. doi: 10.1097/HJH.0000000000000612. PubMed DOI

Raju T.N.K., Buist A.S., Blaisdell C.J., Moxey-Mims M., Saigal S. Adults born preterm: A review of general health and system-specific outcomes. Acta Paediatr. 2017;106:1409–1437. doi: 10.1111/apa.13880. PubMed DOI

Huang Y.T., Lin H.Y., Wang C.H., Su B.H., Lin C.C. Association of preterm birth and small for gestational age with metabolic outcomes in children and adolescents: A population-based cohort study from Taiwan. Pediatr. Neonatol. 2018;59:147–153. doi: 10.1016/j.pedneo.2017.07.007. PubMed DOI

Sullivan M.C., Winchester S.B., Msall M.E. Prematurity and cardiovascular risk at early adulthood. Child. Care Health Dev. 2019;45:71–78. doi: 10.1111/cch.12616. PubMed DOI PMC

Crump C., Sundquist J., Sundquist K. Association of preterm birth with lipid disorders in early adulthood: A Swedish cohort study. PLoS Med. 2019;16:e1002947. doi: 10.1371/journal.pmed.1002947. PubMed DOI PMC

Haynes A., Bower C., Bulsara M.K., Finn J., Jones T.W., Davis E.A. Perinatal risk factors for childhood Type 1 diabetes in Western Australia—A population-based study (1980–2002) Diabet. Med. 2007;24:564–570. doi: 10.1111/j.1464-5491.2007.02149.x. PubMed DOI

Khashan A.S., Kenny L.C., Lundholm C., Kearney P.M., Gong T., McNamee R., Almqvist C. Gestational Age and Birth Weight and the Risk of Childhood Type 1 Diabetes: A Population-Based Cohort and Sibling Design Study. Diabetes Care. 2015;38:2308–2315. doi: 10.2337/dc15-0897. PubMed DOI

Goldacre R.R. Associations between birthweight, gestational age at birth and subsequent type 1 diabetes in children under 12: A retrospective cohort study in England, 1998–2012. Diabetologia. 2018;61:616–625. doi: 10.1007/s00125-017-4493-y. PubMed DOI PMC

Crump C., Sundquist J., Sundquist K. Preterm birth and risk of type 1 and type 2 diabetes: A national cohort study. Diabetologia. 2020;63:508–518. doi: 10.1007/s00125-019-05044-z. PubMed DOI PMC

Li S., Zhang M., Tian H., Liu Z., Yin X., Xi B. Preterm birth and risk of type 1 and type 2 diabetes: Systematic review and meta-analysis. Obes. Rev. 2014;15:804–811. doi: 10.1111/obr.12214. PubMed DOI

Zhang J., Ma C., Yang A., Zhang R., Gong J., Mo F. Is preterm birth associated with asthma among children from birth to 17 years old?—A study based on 2011–2012 US National Survey of Children’s Health. Ital. J. Pediatr. 2018;44:151. doi: 10.1186/s13052-018-0583-9. PubMed DOI PMC

Arroyas M., Calvo C., Rueda S., Esquivias M., Gonzalez-Menchen C., Gonzalez-Carrasco E., Garcia-Garcia M.L. Asthma prevalence, lung and cardiovascular function in adolescents born preterm. Sci. Rep. 2020;10:19616. doi: 10.1038/s41598-020-76614-0. PubMed DOI PMC

Sanchez-Solis M., Parra-Carrillo M.S., Mondejar-Lopez P., Garcia-Marcos P.W., Garcia-Marcos L. Preschool Asthma Symptoms in Children Born Preterm: The Relevance of Lung Function in Infancy. J. Clin. Med. 2020;9:3345. doi: 10.3390/jcm9103345. PubMed DOI PMC

Lewandowski A.J., Augustine D., Lamata P., Davis E.F., Lazdam M., Francis J., McCormick K., Wilkinson A.R., Singhal A., Lucas A., et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127:197–206. doi: 10.1161/CIRCULATIONAHA.112.126920. PubMed DOI

Mohlkert L.A., Hallberg J., Broberg O., Sjöberg G., Rydberg A., Liuba P., Fellman V., Domellöf M., Norman M., Halvorsen C.P. Right Heart Structure, Geometry and Function Assessed by Echocardiography in 6-Year-Old Children Born Extremely Preterm—A Population-Based Cohort Study. J. Clin. Med. 2020;10:122. doi: 10.3390/jcm10010122. PubMed DOI PMC

Lewandowski A.J., Bradlow W.M., Augustine D., Davis E.F., Francis J., Singhal A., Lucas A., Neubauer S., McCormick K., Leeson P. Right ventricular systolic dysfunction in young adults born preterm. Circulation. 2013;128:713–720. doi: 10.1161/CIRCULATIONAHA.113.002583. PubMed DOI

Carr H., Cnattingius S., Granath F., Ludvigsson J.F., Edstedt Bonamy A.K. Preterm Birth and Risk of Heart Failure Up to Early Adulthood. J. Am. Coll. Cardiol. 2017;69:2634–2642. doi: 10.1016/j.jacc.2017.03.572. PubMed DOI

Ueda P., Cnattingius S., Stephansson O., Ingelsson E., Ludvigsson J.F., Bonamy A.K. Cerebrovascular and ischemic heart disease in young adults born preterm: A population-based Swedish cohort study. Eur. J. Epidemiol. 2014;29:253–260. doi: 10.1007/s10654-014-9892-5. PubMed DOI

Zöller B., Li X., Sundquist J., Sundquist K., Crump C. Gestational age and risk of venous thromboembolism from birth through young adulthood. Pediatrics. 2014;134:e473–e480. doi: 10.1542/peds.2013-3856. PubMed DOI PMC

Zöller B., Sundquist J., Sundquist K., Crump C. Perinatal risk factors for premature ischaemic heart disease in a Swedish national cohort. BMJ Open. 2015;5:e007308. doi: 10.1136/bmjopen-2014-007308. PubMed DOI PMC

Allotey J., Zamora J., Cheong-See F., Kalidindi M., Arroyo-Manzano D., Asztalos E., van der Post J., Mol B.W., Moore D., Birtles D., et al. Cognitive, motor, behavioural and academic performances of children born preterm: A meta-analysis and systematic review involving 64,061 children. BJOG. 2018;125:16–25. doi: 10.1111/1471-0528.14832. PubMed DOI

O’Reilly H., Johnson S., Ni Y., Wolke D., Marlow N. Neuropsychological Outcomes at 19 Years of Age Following Extremely Preterm Birth. Pediatrics. 2020;145:e20192087. doi: 10.1542/peds.2019-2087. PubMed DOI

Persson M., Opdahl S., Risnes K., Gross R., Kajantie E., Reichenberg A., Gissler M., Sandin S. Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study. PLoS Med. 2020;17:e1003207. doi: 10.1371/journal.pmed.1003207. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L., Sirc J. Postnatal Expression Profile of microRNAs Associated with Cardiovascular and Cerebrovascular Diseases in Children at the Age of 3 to 11 Years in Relation to Previous Occurrence of Pregnancy-Related Complications. Int. J. Mol. Sci. 2019;20:654. doi: 10.3390/ijms20030654. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L., Sirc J. Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells. 2020;9:1557. doi: 10.3390/cells9061557. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Krofta L., Sirc J. Association Analysis in Children Born from Normal and Complicated Pregnancies-Cardiovascular Disease Associated microRNAs and the Incidence of Prehypertension/Hypertension, Overweight/Obesity, Valve Problems and Heart Defects. Int. J. Mol. Sci. 2020;21:8413. doi: 10.3390/ijms21218413. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019;291:158–167. doi: 10.1016/j.ijcard.2019.05.036. PubMed DOI

Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int. J. Mol. Sci. 2020;21:2437. doi: 10.3390/ijms21072437. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Krofta L. Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings. J. Pers. Med. 2021;11:39. doi: 10.3390/jpm11010039. PubMed DOI PMC

Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC

Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectiveness of current strategies. J. Soc. Obs. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI

Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC

Yoon B.H., Romero R., Moon J.B., Shim S.S., Kim M., Kim G., Jun J.K. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Obs. Gynecol. 2001;185:1130–1136. doi: 10.1067/mob.2001.117680. PubMed DOI

Committee on Obstetric Practice Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obs. Gynecol. 2017;130:e102–e109. doi: 10.1097/AOG.0000000000002237. PubMed DOI

Miracle X., Di Renzo G.C., Stark A., Fanaroff A., Carbonell-Estrany X., Saling E. Coordinators Of World Association of Perinatal Medicine Prematurity Working Group. Guideline for the use of antenatal corticosteroids for fetal maturation. J. Perinat. Med. 2008;36:191–196. doi: 10.1515/JPM.2008.032. PubMed DOI

Skoll A., Boutin A., Bujold E., Burrows J., Crane J., Geary M., Jain V., Lacaze-Masmonteil T., Liauw J., Mundle W., et al. No. 364-Antenatal Corticosteroid Therapy for Improving Neonatal Outcomes. J. Obs. Gynaecol. Can. 2018;40:1219–1239. doi: 10.1016/j.jogc.2018.04.018. PubMed DOI

WHO . Recommendations on Interventions to Improve Preterm Birth Outcomes. WHO Press; Geneva, Switzerland: 2015. PubMed

American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics Practice Bulletin No. 171: Management of Preterm Labor. Obs. Gynecol. 2016;128:e155–e164. doi: 10.1097/AOG.0000000000001711. PubMed DOI

Miyazaki C., Moreno Garcia R., Ota E., Swa T., Oladapo O.T., Mori R. Tocolysis for inhibiting preterm birth in extremely preterm birth, multiple gestations and in growth-restricted fetuses: A systematic review and meta-analysis. Reprod. Health. 2016;13:4. doi: 10.1186/s12978-015-0115-7. PubMed DOI PMC

WHO Preterm Birth. [(accessed on 16 March 2021)]; Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth.html.

Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr. Res. Anesth. Analg. 1953;32:260–267. doi: 10.1213/00000539-195301000-00041. PubMed DOI

Apgar V., Holaday D.A., James L.S., Weisbrot I.M., Berrien C. Evaluation of the newborn infant; second report. J. Am. Med. Assoc. 1958;168:1985–1988. doi: 10.1001/jama.1958.03000150027007. PubMed DOI

American Academy of Pediatrics and American Heart Association . Textbook of Neonatal Resuscitation. 6th ed. American Academy of Pediatrics and American Heart Association; Elk Grove Village, IL, USA: 2011.

ACOG The Apgar Score. [(accessed on 16 March 2021)]; Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2015/10/the-apgar-score.html.

National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–576. doi: 10.1542/peds.114.2.S2.555. PubMed DOI

CDC Healthy Weight, Nutrition, and Physical Activity, About Child & Teen BMI. [(accessed on 16 March 2021)]; Available online: https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html.

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Vandesompele J., de Preter K., Pattyn F., Poppe B., Van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI

Dweep H., Sticht C., Pandey P., Gretz N. miRWalk—Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. PubMed DOI

Han S., Wei C.Y., Hou Z.L., Li Y.X., Ding Y.C., Guang X.F., Huang D., Na Z.H., Chen W.M., Jian G.L.H. Prevalence of Congenital Heart Disease Amongst Schoolchildren in Southwest China. Indian Pediatr. 2020;57:138–141. doi: 10.1007/s13312-020-1731-z. PubMed DOI

Bassareo P.P., Fanos V., Puddu M., Cadeddu C., Cadeddu F., Saba L., Cugusi L., Mercuro G. High prevalence of interatrial septal aneurysm in young adults who were born preterm. J. Matern. Fetal Neonatal Med. 2014;27:1123–1128. doi: 10.3109/14767058.2013.850667. PubMed DOI

Guinn D.A., Goldenberg R.L., Hauth J.C., Andrews W.W., Thom E., Romero R. Risk factors for the development of preterm premature rupture of the membranes after arrest of preterm labor. Am. J. Obs. Gynecol. 1995;173:1310–1315. doi: 10.1016/0002-9378(95)91377-7. PubMed DOI

Challis J.R., Lockwood C.J., Myatt L., Norman J.E., Strauss J.F., 3rd, Petraglia F. Inflammation and pregnancy. Reprod. Sci. 2009;16:206–215. doi: 10.1177/1933719108329095. PubMed DOI

Keelan J.A. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J. Reprod. Immunol. 2011;88:176–184. doi: 10.1016/j.jri.2010.11.003. PubMed DOI

Ekwo E.E., Gosselink C.A., Woolson R., Moawad A. Risks for premature rupture of amniotic membranes. Int. J. Epidemiol. 1993;22:495–503. doi: 10.1093/ije/22.3.495. PubMed DOI

Hadley C.B., Main D.M., Gabbe S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990;7:374–379. doi: 10.1055/s-2007-999527. PubMed DOI

Naeye R.L., Peters E.C. Causes and consequences of premature rupture of fetal membranes. Lancet. 1980;1:192–197. doi: 10.1016/S0140-6736(80)90674-1. PubMed DOI

Menon R., Boldogh I., Hawkins H.K., Woodson M., Polettini J., Syed T.A., Fortunato S.J., Saade G.R., Papaconstantinou J., Taylor R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014;184:1740–1751. doi: 10.1016/j.ajpath.2014.02.011. PubMed DOI

Menon R., Polettini J., Syed T.A., Saade G.R., Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am. J. Reprod. Immunol. 2014;72:75–84. doi: 10.1111/aji.12220. PubMed DOI

Menon R., Yu J., Basanta-Henry P., Brou L., Berga S.L., Fortunato S.J., Taylor R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE. 2013;7:e31136. doi: 10.1371/journal.pone.0031136. PubMed DOI PMC

Wu J., Du K., Lu X. Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. Int. J. Clin. Exp. Med. 2015;8:21071–21079. PubMed PMC

Kriegel A.J., Baker M.A., Liu Y., Liu P., Cowley A.W., Jr., Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 2015;66:793–799. doi: 10.1161/HYPERTENSIONAHA.115.05645. PubMed DOI PMC

Huang L., Li L., Che X., Zhang H., Shi Z. MiR-103a targeting Piezo1 is involved in acute myocardial infarction through regulating endothelium function. Cardiol. J. 2016;23:556–562. doi: 10.5603/CJ.a2016.0056. PubMed DOI

Shi L., Tian C., Sun L., Cao F., Meng Z. The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem. Biophys. Res. Commun. 2018;501:688–695. doi: 10.1016/j.bbrc.2018.05.049. PubMed DOI

Yang X., Niu X., Xiao Y., Lin K., Chen X. MiRNA expression profiles in healthy OSAHS and OSAHS with arterial hypertension: Potential diagnostic and early warning markers. Respir. Res. 2018;19:194. doi: 10.1186/s12931-018-0894-9. PubMed DOI PMC

Lynch S.M., Ward M., McNulty H., Angel C.Z., Horigan G., Strain J.J., Purvis J., Tackett M., McKenna D.J. Serum levels of miR-199a-5p correlates with blood pressure in premature cardiovascular disease patients homozygous for the MTHFR 677C > T polymorphism. Genomics. 2020;112:669–676. doi: 10.1016/j.ygeno.2019.04.019. PubMed DOI

Tian X., Yu C., Shi L., Li D., Chen X., Xia D., Zhou J., Xu W., Ma C., Gu L., et al. MicroRNA-199a-5p aggravates primary hypertension by damaging vascular endothelial cells through inhibition of autophagy and promotion of apoptosis. Exp. Ther. Med. 2018;16:595–602. doi: 10.3892/etm.2018.6252. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace