Postnatal Expression Profile of MicroRNAs Associated with Cardiovascular Diseases in 3- to 11-Year-Old Preterm-Born Children
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 16-27761A
Agency of Medical Research, Ministry of Health, Prague, Czech Republic
260529/SVV/2021
Charles University, Prague, Czech Republic
PROGRES Q34
Charles University, Prague, Czech Republic
PubMed
34202871
PubMed Central
PMC8301298
DOI
10.3390/biomedicines9070727
PII: biomedicines9070727
Knihovny.cz E-zdroje
- Klíčová slova
- birth weight of newborns, cardiovascular risk, children, condition of newborns at the moment of birth, expression, gestational age at delivery, microRNA, preterm prelabor rupture of membranes, spontaneous preterm birth, whole peripheral blood,
- Publikační typ
- časopisecké články MeSH
(1) Background: Preterm-born children have an increased cardiovascular risk with the first clinical manifestation during childhood and/or adolescence. (2) Methods: The occurrence of overweight/obesity, prehypertension/hypertension, valve problems or heart defects, and postnatal microRNA expression profiles were examined in preterm-born children at the age of 3 to 11 years descending from preterm prelabor rupture of membranes (PPROM) and spontaneous preterm birth (PTB) pregnancies. The whole peripheral blood gene expression of 29 selected microRNAs associated with cardiovascular diseases was the subject of our interest. (3) Results: Nearly one-third of preterm-born children (32.43%) had valve problems and/or heart defects. The occurrence of systolic and diastolic prehypertension/hypertension was also inconsiderable in a group of preterm-born children (27.03% and 18.92%). The vast majority of children descending from either PPROM (85.45%) or PTB pregnancies (85.71%) had also significantly altered microRNA expression profiles at 90.0% specificity. (4) Conclusions: Postnatal microRNA expression profiles were significantly influenced by antenatal and early postnatal factors (gestational age at delivery, birth weight of newborns, and condition of newborns at the moment of birth). These findings may contribute to the explanation of increased cardiovascular risk in preterm-born children. These findings strongly support the belief that preterm-born children should be dispensarized for a long time to have access to specialized medical care.
Zobrazit více v PubMed
Kistner A., Jacobson L., Jacobson S.H., Svensson E., Hellstrom A. Low gestational age associated with abnormal retinal vascularization and increased blood pressure in adult women. Pediatr. Res. 2002;51:675–680. doi: 10.1203/00006450-200206000-00003. PubMed DOI
Johansson S., Iliadou A., Bergvall N., Tuvemo T., Norman M., Cnattingius S. Risk of high blood pressure among young men increases with the degree of immaturity at birth. Circulation. 2005;112:3430–3436. doi: 10.1161/CIRCULATIONAHA.105.540906. PubMed DOI
Kistner A., Celsi G., Vanpée M., Jacobson S.H. Increased systolic daily ambulatory blood pressure in adult women born preterm. Pediatr. Nephrol. 2005;20:232–233. doi: 10.1007/s00467-004-1717-4. PubMed DOI
Bonamy A.K., Martin H., Jörneskog G., Norman M. Lower skin capillary density, normal endothelial function and higher blood pressure in children born preterm. J. Intern. Med. 2007;262:635–642. doi: 10.1111/j.1365-2796.2007.01868.x. PubMed DOI
Keijzer-Veen M.G., Dülger A., Dekker F.W., Nauta J., van der Heijden B.J. Very preterm birth is a risk factor for increased systolic blood pressure at a young adult age. Pediatr. Nephrol. 2010;25:509–516. doi: 10.1007/s00467-009-1373-9. PubMed DOI PMC
de Jong F., Monuteaux M.C., van Elburg R.M., Gillman M.W., Belfort M.B. Systematic review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension. 2012;59:226–234. doi: 10.1161/HYPERTENSIONAHA.111.181784. PubMed DOI PMC
Edwards M.O., Watkins W.J., Kotecha S.J., Halcox J.P., Dunstan F.D., Henderson A.J., Kotecha S. Higher systolic blood pressure with normal vascular function measurements in preterm-born children. Acta Paediatr. 2014;103:904–912. doi: 10.1111/apa.12699. PubMed DOI
Steen E., Bonamy A.K., Norman M., Hellström-Westas L. Preterm birth may be a larger risk factor for increased blood pressure than intrauterine growth restriction. Acta Paediatr. 2015;104:1098–1103. doi: 10.1111/apa.13095. PubMed DOI
Kowalski R.R., Beare R., Doyle L.W., Smolich J.J., Cheung M.M., Victorian Infant Collaborative Study Group Elevated Blood Pressure with Reduced Left Ventricular and Aortic Dimensions in Adolescents Born Extremely Preterm. J. Pediatr. 2016;172:75–80.e2. doi: 10.1016/j.jpeds.2016.01.020. PubMed DOI
Posod A., Odri Komazec I., Kager K., Pupp Peglow U., Griesmaier E., Schermer E., Würtinger P., Baumgartner D., Kiechl-Kohlendorfer U. Former Very Preterm Infants Show an Unfavorable Cardiovascular Risk Profile at a Preschool Age. PLoS ONE. 2016;11:e0168162. doi: 10.1371/journal.pone.0168162. PubMed DOI PMC
Edstedt Bonamy A.K., Mohlkert L.A., Hallberg J., Liuba P., Fellman V., Domellöf M., Norman M. Blood Pressure in 6-Year-Old Children Born Extremely Preterm. J. Am. Heart Assoc. 2017;6:e005858. doi: 10.1161/JAHA.117.005858. PubMed DOI PMC
Mohlkert L.A., Hallberg J., Broberg O., Rydberg A., Halvorsen C.P., Liuba P., Fellman V., Domellöf M., Sjöberg G., Norman M. The Preterm Heart in Childhood: Left Ventricular Structure, Geometry, and Function Assessed by Echocardiography in 6-Year-Old Survivors of Periviable Births. J. Am. Heart Assoc. 2018;7:e007742. doi: 10.1161/JAHA.117.007742. PubMed DOI PMC
Chehade H., Simeoni U., Guignard J.P., Boubred F. Preterm Birth: Long Term Cardiovascular and Renal Consequences. Curr. Pediatr. Rev. 2018;14:219–226. doi: 10.2174/1573396314666180813121652. PubMed DOI PMC
Kowalski R.R., Beare R., Mynard J.P., Cheong J.L.Y., Doyle L.W., Smolich J.J., Cheung M.M.H. Increased aortic wave reflection contributes to higher systolic blood pressure in adolescents born preterm. J. Hypertens. 2018;36:1514–1523. doi: 10.1097/HJH.0000000000001719. PubMed DOI
Stock K., Schmid A., Griesmaier E., Gande N., Hochmayr C., Knoflach M., Kiechl-Kohlendorfer U., Early Vascular Aging (EVA) Study Group The Impact of Being Born Preterm or Small for Gestational Age on Early Vascular Aging in Adolescents. J. Pediatr. 2018;201:49–54.e1. doi: 10.1016/j.jpeds.2018.05.056. PubMed DOI
Skudder-Hill L., Ahlsson F., Lundgren M., Cutfield W.S., Derraik J.G.B. Preterm Birth is Associated with Increased Blood Pressure in Young Adult Women. J. Am. Heart Assoc. 2019;8:e012274. doi: 10.1161/JAHA.119.012274. PubMed DOI PMC
Wei F.F., Raaijmakers A., Melgarejo J.D., Cauwenberghs N., Thijs L., Zhang Z.Y., Yu C.G., Levtchenko E., Struijker-Boudier H.A.J., Yang W.Y., et al. Retinal and Renal Microvasculature in Relation to Central Hemodynamics in 11-Year-Old Children Born Preterm or At Term. J. Am. Heart Assoc. 2020;9:e014305. doi: 10.1161/JAHA.119.014305. PubMed DOI PMC
Flahault A., Oliveira Fernandes R., De Meulemeester J., Ravizzoni Dartora D., Cloutier A., Gyger G., El-Jalbout R., Bigras J.L., Luu T.M., Nuyt A.M. Arterial Structure and Stiffness Are Altered in Young Adults Born Preterm. Arter. Thromb Vasc. Biol. 2020;40:2548–2556. doi: 10.1161/ATVBAHA.120.315099. PubMed DOI
Hurst J.R., Beckmann J., Ni Y., Bolton C.E., McEniery C.M., Cockcroft J.R., Marlow N. Respiratory and Cardiovascular Outcomes in Survivors of Extremely Preterm Birth at 19 Years. Am. J. Respir. Crit. Care Med. 2020;202:422–432. doi: 10.1164/rccm.202001-0016OC. PubMed DOI PMC
Sanderson K.R., Chang E., Bjornstad E., Hogan S.L., Hu Y., Askenazi D., Fry R.C., O’Shea T.M. Albuminuria, Hypertension, and Reduced Kidney Volumes in Adolescents Born Extremely Premature. Front. Pediatr. 2020;8:230. doi: 10.3389/fped.2020.00230. PubMed DOI PMC
Markopoulou P., Papanikolaou E., Analytis A., Zoumakis E., Siahanidou T. Preterm Birth as a Risk Factor for Metabolic Syndrome and Cardiovascular Disease in Adult Life: A Systematic Review and Meta-Analysis. J. Pediatr. 2019;210:69–80. doi: 10.1016/j.jpeds.2019.02.041. PubMed DOI
Johansson S., Norman M., Legnevall L., Dalmaz Y., Lagercrantz H., Vanpée M. Increased catecholamines and heart rate in children with low birth weight: Perinatal contributions to sympathoadrenal overactivity. J. Intern. Med. 2007;261:480–487. doi: 10.1111/j.1365-2796.2007.01776.x. PubMed DOI
Yiallourou S.R., Wallace E.M., Whatley C., Odoi A., Hollis S., Weichard A.J., Muthusamy J.S., Varma S., Cameron J., Narayan O., et al. Sleep: A Window Into Autonomic Control in Children Born Preterm and Growth Restricted. Sleep. 2017;40 doi: 10.1093/sleep/zsx048. PubMed DOI
Bonamy A.K., Bendito A., Martin H., Andolf E., Sedin G., Norman M. Preterm birth contributes to increased vascular resistance and higher blood pressure in adolescent girls. Pediatr. Res. 2005;58:845–849. doi: 10.1203/01.PDR.0000181373.29290.80. PubMed DOI
Crisafulli A., Bassareo P.P., Kelleher S., Calcaterra G., Mercuro G. Factors Predisposing to Hypertension in Subjects Formerly Born Preterm: Renal Impairment, Arterial Stiffness, Endothelial Dysfunction or Something Else? Curr. Hypertens. Rev. 2020;16:82–90. doi: 10.2174/1573402115666190627140523. PubMed DOI PMC
Vollsæter M., Halvorsen T., Markestad T., Øymar K., Ueland P.M., Meyer K., Midttun Ø., Bjørke-Monsen A.L. Renal function and blood pressure in 11 year old children born extremely preterm or small for gestational age. PLoS ONE. 2018;13:e0205558. doi: 10.1371/journal.pone.0205558. PubMed DOI PMC
Rakow A., Laestadius Å., Liliemark U., Backheden M., Legnevall L., Kaiser S., Vanpée M. Kidney volume, kidney function, and ambulatory blood pressure in children born extremely preterm with and without nephrocalcinosis. Pediatr. Nephrol. 2019;34:1765–1776. doi: 10.1007/s00467-019-04293-9. PubMed DOI PMC
Bassareo P.P., Fanos V., Mussap M., Flore G., Noto A., Puddu M., Saba L., Mercuro G. Urinary NGAL and hematic ADMA levels: An early sign of cardio-renal syndrome in young adults born preterm? J. Matern. Fetal. Neonatal. Med. 2013;26(Suppl. 2):80–83. doi: 10.3109/14767058.2013.829698. PubMed DOI
Hadchouel A., Rousseau J., Rozé J.C., Arnaud C., Bellino A., Couderc L., Marret S., Mittaine M., Pinquier D., Verstraete M., et al. Association between asthma and lung function in adolescents born very preterm: Results of the EPIPAGE cohort study. Thorax. 2018;73:1174–1176. doi: 10.1136/thoraxjnl-2017-211115. PubMed DOI
Harris C., Lunt A., Bisquera A., Peacock J., Greenough A. Lung function and exercise capacity in prematurely born young people. Pediatr. Pulmonol. 2020;55:2289–2295. doi: 10.1002/ppul.24918. PubMed DOI
Chan P.Y., Morris J.M., Leslie G.I., Kelly P.J., Gallery E.D. The long-term effects of prematurity and intrauterine growth restriction on cardiovascular, renal, and metabolic function. Int. J. Pediatr. 2010;2010:280402. doi: 10.1155/2010/280402. PubMed DOI PMC
Hofman P.L., Regan F., Jackson W.E., Jefferies C., Knight D.B., Robinson E.M., Cutfield W.S. Premature birth and later insulin resistance. N. Engl. J. Med. 2004;351:2179–2186. doi: 10.1056/NEJMoa042275. PubMed DOI
Rotteveel J., van Weissenbruch M.M., Twisk J.W., Delemarre-Van de Waal H.A. Infant and childhood growth patterns, insulin sensitivity, and blood pressure in prematurely born young adults. Pediatrics. 2008;122:313–332. doi: 10.1542/peds.2007-2012. PubMed DOI
Rerkasem K., Wongthanee A., Rerkasem A., Pruenglampoo S., Mangklabruks A., Hofman P.L., Cutfield W.S., Derraik J.G.B. Lower insulin sensitivity in young adults born preterm in Thailand. Pediatr. Diabetes. 2020;21:210–214. doi: 10.1111/pedi.12969. PubMed DOI
Chiavaroli V., Derraik J.G.B., Jayasinghe T.N., Rodrigues R.O., Biggs J.B., Battin M., Hofman P.L., O’Sullivan J.M., Cutfield W.S. Lower insulin sensitivity remains a feature of children born very preterm. Pediatr. Diabetes. 2021;22:161–167. doi: 10.1111/pedi.13140. PubMed DOI
Tinnion R., Gillone J., Cheetham T., Embleton N. Preterm birth and subsequent insulin sensitivity: A systematic review. Arch. Dis. Child. 2014;99:362–368. doi: 10.1136/archdischild-2013-304615. PubMed DOI
Juonala M., Cheung M.M., Sabin M.A., Burgner D., Skilton M.R., Kähönen M., Hutri-Kähönen N., Lehtimäki T., Jula A., Laitinen T., et al. Effect of birth weight on life-course blood pressure levels among children born premature: The Cardiovascular Risk in Young Finns Study. J. Hypertens. 2015;33:1542–1548. doi: 10.1097/HJH.0000000000000612. PubMed DOI
Raju T.N.K., Buist A.S., Blaisdell C.J., Moxey-Mims M., Saigal S. Adults born preterm: A review of general health and system-specific outcomes. Acta Paediatr. 2017;106:1409–1437. doi: 10.1111/apa.13880. PubMed DOI
Huang Y.T., Lin H.Y., Wang C.H., Su B.H., Lin C.C. Association of preterm birth and small for gestational age with metabolic outcomes in children and adolescents: A population-based cohort study from Taiwan. Pediatr. Neonatol. 2018;59:147–153. doi: 10.1016/j.pedneo.2017.07.007. PubMed DOI
Sullivan M.C., Winchester S.B., Msall M.E. Prematurity and cardiovascular risk at early adulthood. Child. Care Health Dev. 2019;45:71–78. doi: 10.1111/cch.12616. PubMed DOI PMC
Crump C., Sundquist J., Sundquist K. Association of preterm birth with lipid disorders in early adulthood: A Swedish cohort study. PLoS Med. 2019;16:e1002947. doi: 10.1371/journal.pmed.1002947. PubMed DOI PMC
Haynes A., Bower C., Bulsara M.K., Finn J., Jones T.W., Davis E.A. Perinatal risk factors for childhood Type 1 diabetes in Western Australia—A population-based study (1980–2002) Diabet. Med. 2007;24:564–570. doi: 10.1111/j.1464-5491.2007.02149.x. PubMed DOI
Khashan A.S., Kenny L.C., Lundholm C., Kearney P.M., Gong T., McNamee R., Almqvist C. Gestational Age and Birth Weight and the Risk of Childhood Type 1 Diabetes: A Population-Based Cohort and Sibling Design Study. Diabetes Care. 2015;38:2308–2315. doi: 10.2337/dc15-0897. PubMed DOI
Goldacre R.R. Associations between birthweight, gestational age at birth and subsequent type 1 diabetes in children under 12: A retrospective cohort study in England, 1998–2012. Diabetologia. 2018;61:616–625. doi: 10.1007/s00125-017-4493-y. PubMed DOI PMC
Crump C., Sundquist J., Sundquist K. Preterm birth and risk of type 1 and type 2 diabetes: A national cohort study. Diabetologia. 2020;63:508–518. doi: 10.1007/s00125-019-05044-z. PubMed DOI PMC
Li S., Zhang M., Tian H., Liu Z., Yin X., Xi B. Preterm birth and risk of type 1 and type 2 diabetes: Systematic review and meta-analysis. Obes. Rev. 2014;15:804–811. doi: 10.1111/obr.12214. PubMed DOI
Zhang J., Ma C., Yang A., Zhang R., Gong J., Mo F. Is preterm birth associated with asthma among children from birth to 17 years old?—A study based on 2011–2012 US National Survey of Children’s Health. Ital. J. Pediatr. 2018;44:151. doi: 10.1186/s13052-018-0583-9. PubMed DOI PMC
Arroyas M., Calvo C., Rueda S., Esquivias M., Gonzalez-Menchen C., Gonzalez-Carrasco E., Garcia-Garcia M.L. Asthma prevalence, lung and cardiovascular function in adolescents born preterm. Sci. Rep. 2020;10:19616. doi: 10.1038/s41598-020-76614-0. PubMed DOI PMC
Sanchez-Solis M., Parra-Carrillo M.S., Mondejar-Lopez P., Garcia-Marcos P.W., Garcia-Marcos L. Preschool Asthma Symptoms in Children Born Preterm: The Relevance of Lung Function in Infancy. J. Clin. Med. 2020;9:3345. doi: 10.3390/jcm9103345. PubMed DOI PMC
Lewandowski A.J., Augustine D., Lamata P., Davis E.F., Lazdam M., Francis J., McCormick K., Wilkinson A.R., Singhal A., Lucas A., et al. Preterm heart in adult life: Cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127:197–206. doi: 10.1161/CIRCULATIONAHA.112.126920. PubMed DOI
Mohlkert L.A., Hallberg J., Broberg O., Sjöberg G., Rydberg A., Liuba P., Fellman V., Domellöf M., Norman M., Halvorsen C.P. Right Heart Structure, Geometry and Function Assessed by Echocardiography in 6-Year-Old Children Born Extremely Preterm—A Population-Based Cohort Study. J. Clin. Med. 2020;10:122. doi: 10.3390/jcm10010122. PubMed DOI PMC
Lewandowski A.J., Bradlow W.M., Augustine D., Davis E.F., Francis J., Singhal A., Lucas A., Neubauer S., McCormick K., Leeson P. Right ventricular systolic dysfunction in young adults born preterm. Circulation. 2013;128:713–720. doi: 10.1161/CIRCULATIONAHA.113.002583. PubMed DOI
Carr H., Cnattingius S., Granath F., Ludvigsson J.F., Edstedt Bonamy A.K. Preterm Birth and Risk of Heart Failure Up to Early Adulthood. J. Am. Coll. Cardiol. 2017;69:2634–2642. doi: 10.1016/j.jacc.2017.03.572. PubMed DOI
Ueda P., Cnattingius S., Stephansson O., Ingelsson E., Ludvigsson J.F., Bonamy A.K. Cerebrovascular and ischemic heart disease in young adults born preterm: A population-based Swedish cohort study. Eur. J. Epidemiol. 2014;29:253–260. doi: 10.1007/s10654-014-9892-5. PubMed DOI
Zöller B., Li X., Sundquist J., Sundquist K., Crump C. Gestational age and risk of venous thromboembolism from birth through young adulthood. Pediatrics. 2014;134:e473–e480. doi: 10.1542/peds.2013-3856. PubMed DOI PMC
Zöller B., Sundquist J., Sundquist K., Crump C. Perinatal risk factors for premature ischaemic heart disease in a Swedish national cohort. BMJ Open. 2015;5:e007308. doi: 10.1136/bmjopen-2014-007308. PubMed DOI PMC
Allotey J., Zamora J., Cheong-See F., Kalidindi M., Arroyo-Manzano D., Asztalos E., van der Post J., Mol B.W., Moore D., Birtles D., et al. Cognitive, motor, behavioural and academic performances of children born preterm: A meta-analysis and systematic review involving 64,061 children. BJOG. 2018;125:16–25. doi: 10.1111/1471-0528.14832. PubMed DOI
O’Reilly H., Johnson S., Ni Y., Wolke D., Marlow N. Neuropsychological Outcomes at 19 Years of Age Following Extremely Preterm Birth. Pediatrics. 2020;145:e20192087. doi: 10.1542/peds.2019-2087. PubMed DOI
Persson M., Opdahl S., Risnes K., Gross R., Kajantie E., Reichenberg A., Gissler M., Sandin S. Gestational age and the risk of autism spectrum disorder in Sweden, Finland, and Norway: A cohort study. PLoS Med. 2020;17:e1003207. doi: 10.1371/journal.pmed.1003207. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L., Sirc J. Postnatal Expression Profile of microRNAs Associated with Cardiovascular and Cerebrovascular Diseases in Children at the Age of 3 to 11 Years in Relation to Previous Occurrence of Pregnancy-Related Complications. Int. J. Mol. Sci. 2019;20:654. doi: 10.3390/ijms20030654. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L., Sirc J. Substantially Altered Expression Profile of Diabetes/Cardiovascular/Cerebrovascular Disease Associated microRNAs in Children Descending from Pregnancy Complicated by Gestational Diabetes Mellitus-One of Several Possible Reasons for an Increased Cardiovascular Risk. Cells. 2020;9:1557. doi: 10.3390/cells9061557. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L., Sirc J. Association Analysis in Children Born from Normal and Complicated Pregnancies-Cardiovascular Disease Associated microRNAs and the Incidence of Prehypertension/Hypertension, Overweight/Obesity, Valve Problems and Heart Defects. Int. J. Mol. Sci. 2020;21:8413. doi: 10.3390/ijms21218413. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019;291:158–167. doi: 10.1016/j.ijcard.2019.05.036. PubMed DOI
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int. J. Mol. Sci. 2020;21:2437. doi: 10.3390/ijms21072437. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings. J. Pers. Med. 2021;11:39. doi: 10.3390/jpm11010039. PubMed DOI PMC
Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectiveness of current strategies. J. Soc. Obs. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI
Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC
Yoon B.H., Romero R., Moon J.B., Shim S.S., Kim M., Kim G., Jun J.K. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Obs. Gynecol. 2001;185:1130–1136. doi: 10.1067/mob.2001.117680. PubMed DOI
Committee on Obstetric Practice Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obs. Gynecol. 2017;130:e102–e109. doi: 10.1097/AOG.0000000000002237. PubMed DOI
Miracle X., Di Renzo G.C., Stark A., Fanaroff A., Carbonell-Estrany X., Saling E. Coordinators Of World Association of Perinatal Medicine Prematurity Working Group. Guideline for the use of antenatal corticosteroids for fetal maturation. J. Perinat. Med. 2008;36:191–196. doi: 10.1515/JPM.2008.032. PubMed DOI
Skoll A., Boutin A., Bujold E., Burrows J., Crane J., Geary M., Jain V., Lacaze-Masmonteil T., Liauw J., Mundle W., et al. No. 364-Antenatal Corticosteroid Therapy for Improving Neonatal Outcomes. J. Obs. Gynaecol. Can. 2018;40:1219–1239. doi: 10.1016/j.jogc.2018.04.018. PubMed DOI
WHO . Recommendations on Interventions to Improve Preterm Birth Outcomes. WHO Press; Geneva, Switzerland: 2015. PubMed
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics Practice Bulletin No. 171: Management of Preterm Labor. Obs. Gynecol. 2016;128:e155–e164. doi: 10.1097/AOG.0000000000001711. PubMed DOI
Miyazaki C., Moreno Garcia R., Ota E., Swa T., Oladapo O.T., Mori R. Tocolysis for inhibiting preterm birth in extremely preterm birth, multiple gestations and in growth-restricted fetuses: A systematic review and meta-analysis. Reprod. Health. 2016;13:4. doi: 10.1186/s12978-015-0115-7. PubMed DOI PMC
WHO Preterm Birth. [(accessed on 16 March 2021)]; Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth.html.
Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr. Res. Anesth. Analg. 1953;32:260–267. doi: 10.1213/00000539-195301000-00041. PubMed DOI
Apgar V., Holaday D.A., James L.S., Weisbrot I.M., Berrien C. Evaluation of the newborn infant; second report. J. Am. Med. Assoc. 1958;168:1985–1988. doi: 10.1001/jama.1958.03000150027007. PubMed DOI
American Academy of Pediatrics and American Heart Association . Textbook of Neonatal Resuscitation. 6th ed. American Academy of Pediatrics and American Heart Association; Elk Grove Village, IL, USA: 2011.
ACOG The Apgar Score. [(accessed on 16 March 2021)]; Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2015/10/the-apgar-score.html.
National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–576. doi: 10.1542/peds.114.2.S2.555. PubMed DOI
CDC Healthy Weight, Nutrition, and Physical Activity, About Child & Teen BMI. [(accessed on 16 March 2021)]; Available online: https://www.cdc.gov/healthyweight/assessing/bmi/childrens_bmi/about_childrens_bmi.html.
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., de Preter K., Pattyn F., Poppe B., Van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034.1. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI
Dweep H., Sticht C., Pandey P., Gretz N. miRWalk—Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. PubMed DOI
Han S., Wei C.Y., Hou Z.L., Li Y.X., Ding Y.C., Guang X.F., Huang D., Na Z.H., Chen W.M., Jian G.L.H. Prevalence of Congenital Heart Disease Amongst Schoolchildren in Southwest China. Indian Pediatr. 2020;57:138–141. doi: 10.1007/s13312-020-1731-z. PubMed DOI
Bassareo P.P., Fanos V., Puddu M., Cadeddu C., Cadeddu F., Saba L., Cugusi L., Mercuro G. High prevalence of interatrial septal aneurysm in young adults who were born preterm. J. Matern. Fetal Neonatal Med. 2014;27:1123–1128. doi: 10.3109/14767058.2013.850667. PubMed DOI
Guinn D.A., Goldenberg R.L., Hauth J.C., Andrews W.W., Thom E., Romero R. Risk factors for the development of preterm premature rupture of the membranes after arrest of preterm labor. Am. J. Obs. Gynecol. 1995;173:1310–1315. doi: 10.1016/0002-9378(95)91377-7. PubMed DOI
Challis J.R., Lockwood C.J., Myatt L., Norman J.E., Strauss J.F., 3rd, Petraglia F. Inflammation and pregnancy. Reprod. Sci. 2009;16:206–215. doi: 10.1177/1933719108329095. PubMed DOI
Keelan J.A. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J. Reprod. Immunol. 2011;88:176–184. doi: 10.1016/j.jri.2010.11.003. PubMed DOI
Ekwo E.E., Gosselink C.A., Woolson R., Moawad A. Risks for premature rupture of amniotic membranes. Int. J. Epidemiol. 1993;22:495–503. doi: 10.1093/ije/22.3.495. PubMed DOI
Hadley C.B., Main D.M., Gabbe S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990;7:374–379. doi: 10.1055/s-2007-999527. PubMed DOI
Naeye R.L., Peters E.C. Causes and consequences of premature rupture of fetal membranes. Lancet. 1980;1:192–197. doi: 10.1016/S0140-6736(80)90674-1. PubMed DOI
Menon R., Boldogh I., Hawkins H.K., Woodson M., Polettini J., Syed T.A., Fortunato S.J., Saade G.R., Papaconstantinou J., Taylor R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014;184:1740–1751. doi: 10.1016/j.ajpath.2014.02.011. PubMed DOI
Menon R., Polettini J., Syed T.A., Saade G.R., Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am. J. Reprod. Immunol. 2014;72:75–84. doi: 10.1111/aji.12220. PubMed DOI
Menon R., Yu J., Basanta-Henry P., Brou L., Berga S.L., Fortunato S.J., Taylor R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE. 2013;7:e31136. doi: 10.1371/journal.pone.0031136. PubMed DOI PMC
Wu J., Du K., Lu X. Elevated expressions of serum miR-15a, miR-16, and miR-17-5p are associated with acute ischemic stroke. Int. J. Clin. Exp. Med. 2015;8:21071–21079. PubMed PMC
Kriegel A.J., Baker M.A., Liu Y., Liu P., Cowley A.W., Jr., Liang M. Endogenous microRNAs in human microvascular endothelial cells regulate mRNAs encoded by hypertension-related genes. Hypertension. 2015;66:793–799. doi: 10.1161/HYPERTENSIONAHA.115.05645. PubMed DOI PMC
Huang L., Li L., Che X., Zhang H., Shi Z. MiR-103a targeting Piezo1 is involved in acute myocardial infarction through regulating endothelium function. Cardiol. J. 2016;23:556–562. doi: 10.5603/CJ.a2016.0056. PubMed DOI
Shi L., Tian C., Sun L., Cao F., Meng Z. The lncRNA TUG1/miR-145-5p/FGF10 regulates proliferation and migration in VSMCs of hypertension. Biochem. Biophys. Res. Commun. 2018;501:688–695. doi: 10.1016/j.bbrc.2018.05.049. PubMed DOI
Yang X., Niu X., Xiao Y., Lin K., Chen X. MiRNA expression profiles in healthy OSAHS and OSAHS with arterial hypertension: Potential diagnostic and early warning markers. Respir. Res. 2018;19:194. doi: 10.1186/s12931-018-0894-9. PubMed DOI PMC
Lynch S.M., Ward M., McNulty H., Angel C.Z., Horigan G., Strain J.J., Purvis J., Tackett M., McKenna D.J. Serum levels of miR-199a-5p correlates with blood pressure in premature cardiovascular disease patients homozygous for the MTHFR 677C > T polymorphism. Genomics. 2020;112:669–676. doi: 10.1016/j.ygeno.2019.04.019. PubMed DOI
Tian X., Yu C., Shi L., Li D., Chen X., Xia D., Zhou J., Xu W., Ma C., Gu L., et al. MicroRNA-199a-5p aggravates primary hypertension by damaging vascular endothelial cells through inhibition of autophagy and promotion of apoptosis. Exp. Ther. Med. 2018;16:595–602. doi: 10.3892/etm.2018.6252. PubMed DOI PMC