First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SVV no. 260386
Charles University
PROGRES Q34
Charles University
PubMed
35409311
PubMed Central
PMC8999783
DOI
10.3390/ijms23073951
PII: ijms23073951
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular microRNAs, early gestation, expression, prediction, preterm delivery, preterm prelabor rupture of membranes, screening, spontaneous preterm birth, whole peripheral venous blood,
- MeSH
- biologické markery MeSH
- cerebrovaskulární poruchy * diagnóza MeSH
- kardiovaskulární nemoci * genetika MeSH
- komplikace těhotenství * genetika MeSH
- lidé MeSH
- mikro RNA * metabolismus MeSH
- novorozenec MeSH
- předčasný odtok plodové vody MeSH
- předčasný porod * genetika MeSH
- první trimestr těhotenství MeSH
- retrospektivní studie MeSH
- růstová retardace plodu genetika MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA * MeSH
- MIRN145 microRNA, human MeSH Prohlížeč
The aim of the study was to determine if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict within 10 to 13 weeks of gestation preterm delivery such as spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM) in the absence of other pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age). In addition, we assessed if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict preterm delivery before and after 34 weeks of gestation. The retrospective study was performed within the period November 2012 to March 2020. Whole peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group, 80 singleton term pregnancies, was selected on the base of equal sample storage time. Gene expression of 29 selected cardiovascular disease associated microRNAs was studied using real-time RT-PCR. Downregulation of miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-126-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, miR-221-3p and miR-342-3p was observed in pregnancies with preterm delivery before 37 (≤36 + 6/7) weeks of gestation. Majority of downregulated microRNAs (miR-16-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p) was associated with preterm delivery occurring before 37 (≤36 + 6/7) weeks of gestation. The only miR-210-3p was downregulated in pregnancies with preterm delivery before 34 (≤33 + 6/7) weeks of gestation. The type of preterm delivery also had impact on microRNA gene expression profile. Downregulation of miR-24-3p, miR-92a-3p, miR-155-5p, and miR-210-3p was a common feature of PTB and PPROM pregnancies. Downregulation of miR-16-5p, miR-20b-5p, miR-26a-5p, miR-126-3p, miR-133a-3p, miR-146a-5p, miR-221-3p, and miR-342-3p appeared just in PTB pregnancies. No microRNA was uniquely dysregulated in PPROM pregnancies. The combination of 12 microRNAs (miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p, AUC 0.818, p < 0.001, 74.53% sensitivity, 75.00% specificity, cut off > 0.634) equally as the combination of 6 microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p, AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut off > 0.652) can predict preterm delivery before 37 weeks of gestation in early stages of gestation in 52.83% pregnancies at 10.0% FPR. Cardiovascular disease associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current routine first trimester screening programme to predict preterm delivery.
Zobrazit více v PubMed
Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI
Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2021;22:4033. doi: 10.3390/ijms22084033. PubMed DOI PMC
Tanz L.J., Stuart J.J., Williams P.L., Rimm E.B., Missmer S.A., Rexrode K.M., Mukamal K.J., Rich-Edwards J.W. Preterm Delivery and Maternal Cardiovascular Disease in Young and Middle-Aged Adult Women. Circulation. 2017;135:578–589. doi: 10.1161/CIRCULATIONAHA.116.025954. PubMed DOI PMC
Catov J.M., Dodge R., Barinas-Mitchell E., Sutton-Tyrrell K., Yamal J.M., Piller L.B., Ness R.B. Prior preterm birth and maternal subclinical cardiovascular disease 4 to 12 years after pregnancy. J. Womens Health. 2013;22:835–843. doi: 10.1089/jwh.2013.4248. PubMed DOI PMC
Catov J.M., Lewis C.E., Lee M., Wellons M.F., Gunderson E.P. Preterm birth and future maternal blood pressure, inflam-mation, and intimal-medial thickness: The CARDIA study. Hypertension. 2013;61:641–646. doi: 10.1161/HYPERTENSIONAHA.111.00143. PubMed DOI PMC
Perng W., Stuart J., Rifas-Shiman S.L., Rich-Edwards J.W., Stuebe A., Oken E. Preterm birth and long-term maternal car-diovascular health. Ann. Epidemiol. 2015;25:40–45. doi: 10.1016/j.annepidem.2014.10.012. PubMed DOI PMC
Shi L., An S., Niu J., Zhao H., Wang Y., Wu S., Yang X. Effect of premature birth on long-term systolic blood pressure variability in women. Anatol. J. Cardiol. 2018;20:347–353. doi: 10.14744/AnatolJCardiol.2018.97415. PubMed DOI PMC
Haas D.M., Parker C.B., Marsh D.J., Grobman W.A., Ehrenthal D.B., Greenland P., Bairey Merz C.N., Pemberton V.L., Silver R.M., Barnes S., et al. NHLBI nuMoM2b Heart Health Study. Association of Adverse Pregnancy Outcomes with Hypertension 2 to 7 Years Postpartum. J. Am. Heart Assoc. 2019;8:e013092. doi: 10.1161/JAHA.119.013092. PubMed DOI PMC
Tanz L.J., Stuart J.J., Williams P.L., Missmer S.A., Rimm E.B., James-Todd T.M., Rich-Edwards J.W. Preterm Delivery and Maternal Cardiovascular Disease Risk Factors: The Nurses’ Health Study II. J. Womens Health. 2019;28:677–685. doi: 10.1089/jwh.2018.7150. PubMed DOI PMC
Catov J.M., Snyder G.G., Fraser A., Lewis C.E., Liu K., Althouse A.D., Bertolet M., Gunderson E.P. Blood Pressure Patterns and Subsequent Coronary Artery Calcification in Women Who Delivered Preterm Births. Hypertension. 2018;72:159–166. doi: 10.1161/HYPERTENSIONAHA.117.10693. PubMed DOI PMC
James-Todd T.M., Karumanchi S.A., Hibert E.L., Mason S.M., Vadnais M.A., Hu F.B., Rich-Edwards J.W. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: Nurses’ Health Study II. Prev. Chronic Dis. 2013;10:E156. doi: 10.5888/pcd10.120336. PubMed DOI PMC
Lykke J.A., Paidas M.J., Damm P., Triche E.W., Kuczynski E., Langhoff-Roos J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-II diabetes in the mother. BJOG. 2010;117:274–281. doi: 10.1111/j.1471-0528.2009.02448.x. PubMed DOI
James-Todd T., Wise L., Boggs D., Rich-Edwards J., Rosenberg L., Palmer J. Preterm birth and subsequent risk of type 2 diabetes in black women. Epidemiology. 2014;25:805–810. doi: 10.1097/EDE.0000000000000167. PubMed DOI PMC
Catov J.M., Snyder G.G., Bullen B.L., Barinas-Mitchell E.J.M., Holzman C. Women with Preterm Birth Have Evidence of Subclinical Atherosclerosis a Decade after Delivery. J. Womens Health. 2019;28:621–627. doi: 10.1089/jwh.2018.7148. PubMed DOI PMC
Bonamy A.K., Parikh N.I., Cnattingius S., Ludvigsson J.F., Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: Effects of gestational age and fetal growth. Circulation. 2011;124:2839–2846. doi: 10.1161/CIRCULATIONAHA.111.034884. PubMed DOI
Ngo A.D., Chen J.S., Figtree G., Morris J.M., Roberts C.L. Preterm birth and future risk of maternal cardiovascular disease—Is the association independent of smoking during pregnancy? BMC Pregnancy Childbirth. 2015;15:144. doi: 10.1186/s12884-015-0571-7. PubMed DOI PMC
Nardi O., Zureik M., Courbon D., Ducimetière P., Clavel-Chapelon F. Preterm delivery of a first child and subsequent mothers’ risk of ischaemic heart disease: A nested case-control study. Eur. J. Cardiovasc. Prev. Rehabil. 2006;13:281–283. doi: 10.1097/01.hjr.0000183917.35978.a6. PubMed DOI PMC
Crump C., Sundquist J., Howell E.A., McLaughlin M.A., Stroustrup A., Sundquist K. Pre-Term Delivery and Risk of Is-chemic Heart Disease in Women. J. Am. Coll. Cardiol. 2020;76:57–67. doi: 10.1016/j.jacc.2020.04.072. PubMed DOI PMC
Smith G.C., Pell J.P., Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–2006. doi: 10.1016/S0140-6736(00)05112-6. PubMed DOI
Catov J.M., Wu C.S., Olsen J., Sutton-Tyrrell K., Li J., Nohr E.A. Early or recurrent preterm birth and maternal cardio-vascular disease risk. Ann. Epidemiol. 2010;20:604–609. doi: 10.1016/j.annepidem.2010.05.007. PubMed DOI PMC
Lykke J.A., Langhoff-Roos J., Lockwood C.J., Triche E.W., Paidas M.J. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. Paediatr. Perinat. Epidemiol. 2010;24:323–330. doi: 10.1111/j.1365-3016.2010.01120.x. PubMed DOI
Rich-Edwards J.W., Klungsoyr K., Wilcox A.J., Skjaerven R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: A population-based study. Am. J. Obstet. Gynecol. 2015;213:e1–e8. doi: 10.1016/j.ajog.2015.06.001. PubMed DOI PMC
Crump C., Sundquist J., Sundquist K. Preterm delivery and long term mortality in women: National cohort and co-sibling study. BMJ. 2020;370:m2533. doi: 10.1136/bmj.m2533. PubMed DOI PMC
Hastie C.E., Smith G.C., Mackay D.F., Pell J.P. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: Retrospective cohort study of 750 350 singleton pregnancies. Int. J. Epidemiol. 2011;40:914–919. doi: 10.1093/ije/dyq270. PubMed DOI
Wu P., Gulati M., Kwok C.S., Wong C.W., Narain A., O’Brien S., Chew-Graham C.A., Verma G., Kadam U.T., Mamas M.A. Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018;7:e007809. doi: 10.1161/JAHA.117.007809. PubMed DOI PMC
Winger E.E., Reed J.L., Ji X. Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept. PLoS ONE. 2017;12:e0180124. doi: 10.1371/journal.pone.0180124. PubMed DOI PMC
Winger E.E., Reed J.L., Ji X., Gomez-Lopez N., Pacora P., Romero R. MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth. PLoS ONE. 2020;15:e0236805. doi: 10.1371/journal.pone.0236805. PubMed DOI PMC
Beta J., Akolekar R., Ventura W., Syngelaki A., Nicolaides K.H. Prediction of spontaneous preterm delivery from maternal factors, obstetric history and placental perfusion and function at 11–13 weeks. Prenat. Diagn. 2011;31:75–83. doi: 10.1002/pd.2662. PubMed DOI
O’Gorman N., Wright D., Poon L.C., Rolnik D.L., Syngelaki A., de Alvarado M., Carbone I.F., Dutemeyer V., Fiolna M., Frick A., et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: Comparison with NI-CE guidelines and ACOG recommendations. Ultrasound Obstet. Gynecol. 2017;49:756–760. doi: 10.1002/uog.17455. PubMed DOI
O’Gorman N., Wright D., Syngelaki A., Akolekar R., Wright A., Poon L.C., Nicolaides K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 2016;214:e1–e103. doi: 10.1016/j.ajog.2015.08.034. PubMed DOI
The Fetal Medicine Foundation Stratification of Pregnancy Management 11–13 Weeks’ Gestation. [(accessed on 6 January 2022)]. Available online: www.courses.fetalmedicine.com/fmf/show/861?locale=en.
Mazer Zumaeta A., Wright A., Syngelaki A., Maritsa V.A., Da Silva A.B., Nicolaides K.H. Screening for pre-eclampsia at 11–13 weeks’ gestation: Use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound Obstet. Gynecol. 2020;56:400–407. doi: 10.1002/uog.22093. PubMed DOI
Tan M.Y., Syngelaki A., Poon L.C., Rolnik D.L., O’Gorman N., Delgado J.L., Akolekar R., Konstantinidou L., Tsavdari-dou M., Galeva S., et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018;52:186–195. doi: 10.1002/uog.19112. PubMed DOI
Vora B., Wang A., Kosti I., Huang H., Paranjpe I., Woodruff T.J., MacKenzie T., Sirota M. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth. Front. Immunol. 2018;9:993. doi: 10.3389/fimmu.2018.00993. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular-Disease Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10:256. PubMed PMC
Hromadnikova I., Kotlabova K., Krofta L. First Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia using Cardiovascular-Disease Associated MicroRNA Biomarkers. Biomedicines. 2022;10:718. doi: 10.3390/biomedicines10030718. PubMed DOI PMC
Guinn D.A., Goldenberg R.L., Hauth J.C., Andrews W.W., Thom E., Romero R. Risk factors for the development of pre-term premature rupture of the membranes after arrest of preterm labor. Am. J. Obstet. Gynecol. 1995;173:1310–1315. doi: 10.1016/0002-9378(95)91377-7. PubMed DOI
Challis J.R., Lockwood C.J., Myatt L., Norman J.E., Strauss J.F., 3rd, Petraglia F. Inflammation and pregnancy. Reprod. Sci. 2009;16:206–215. doi: 10.1177/1933719108329095. PubMed DOI
Keelan J.A. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J. Reprod. Immunol. 2011;88:176–184. doi: 10.1016/j.jri.2010.11.003. PubMed DOI
Ekwo E.E., Gosselink C.A., Woolson R., Moawad A. Risks for premature rupture of amniotic membranes. Int. J. Epidemiol. 1993;22:495–503. doi: 10.1093/ije/22.3.495. PubMed DOI
Hadley C.B., Main D.M., Gabbe S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990;7:374–379. doi: 10.1055/s-2007-999527. PubMed DOI
Naeye R.L., Peters E.C. Causes and consequences of premature rupture of fetal membranes. Lancet. 1980;1:192–197. doi: 10.1016/S0140-6736(80)90674-1. PubMed DOI
Menon R., Boldogh I., Hawkins H.K., Woodson M., Polettini J., Syed T.A., Fortunato S.J., Saade G.R., Papaconstantinou J., Taylor R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014;184:1740–1751. doi: 10.1016/j.ajpath.2014.02.011. PubMed DOI
Menon R., Polettini J., Syed T.A., Saade G.R., Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am. J. Reprod. Immunol. 2014;72:75–84. doi: 10.1111/aji.12220. PubMed DOI
Menon R., Yu J., Basanta-Henry P., Brou L., Berga S.L., Fortunato S.J., Taylor R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE. 2013;7:e31136. doi: 10.1371/journal.pone.0031136. PubMed DOI PMC
Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 2013;304:E836–E843. doi: 10.1152/ajpendo.00660.2012. PubMed DOI PMC
Addo K.A., Palakodety N., Hartwell H.J., Tingare A., Fry R.C. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol. Rep. 2020;7:1046–1056. doi: 10.1016/j.toxrep.2020.08.002. PubMed DOI PMC
Committee on Obstetric Practice. Society for Maternal-Fetal Medicine ACOG Committee Opinion No. 743. Low-Dose Aspirin Use during Pregnancy. Obstet. Gynecol. 2018;132:e44–e52. PubMed
National Institute for Health and Care Excellence Hypertension in Pregnancy: Diagnosis and Management. [(accessed on 6 January 2022)]. Available online: www.nice.org.uk/guidance/ng133.
Hromadnikova I., Kotlabova K., Krofta L. Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings. J. Pers. Med. 2021;11:39. doi: 10.3390/jpm11010039. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016;137:126–140. doi: 10.1016/j.thromres.2015.11.032. PubMed DOI
Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Cardiovascular and Cerebrovascular Disease Associated microRNAs Are Dysregulated in Placental Tissues Affected with Gestational Hypertension, Preeclampsia and Intrauterine Growth Restriction. PLoS ONE. 2015;10:e0138383. doi: 10.1371/journal.pone.0138383. PubMed DOI PMC
Dweep H., Sticht C., Pandey P., Gretz N. miRWalk—Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. PubMed DOI