First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers

. 2022 Apr 01 ; 23 (7) : . [epub] 20220401

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35409311

Grantová podpora
SVV no. 260386 Charles University
PROGRES Q34 Charles University

The aim of the study was to determine if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict within 10 to 13 weeks of gestation preterm delivery such as spontaneous preterm birth (PTB) or preterm prelabor rupture of membranes (PPROM) in the absence of other pregnancy-related complications (gestational hypertension, preeclampsia, fetal growth restriction, or small for gestational age). In addition, we assessed if aberrant expression profile of cardiovascular disease associated microRNAs would be able to predict preterm delivery before and after 34 weeks of gestation. The retrospective study was performed within the period November 2012 to March 2020. Whole peripheral blood samples were collected from 6440 Caucasian individuals involving 41 PTB and 65 PPROM singleton pregnancies. A control group, 80 singleton term pregnancies, was selected on the base of equal sample storage time. Gene expression of 29 selected cardiovascular disease associated microRNAs was studied using real-time RT-PCR. Downregulation of miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-126-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, miR-221-3p and miR-342-3p was observed in pregnancies with preterm delivery before 37 (≤36 + 6/7) weeks of gestation. Majority of downregulated microRNAs (miR-16-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p) was associated with preterm delivery occurring before 37 (≤36 + 6/7) weeks of gestation. The only miR-210-3p was downregulated in pregnancies with preterm delivery before 34 (≤33 + 6/7) weeks of gestation. The type of preterm delivery also had impact on microRNA gene expression profile. Downregulation of miR-24-3p, miR-92a-3p, miR-155-5p, and miR-210-3p was a common feature of PTB and PPROM pregnancies. Downregulation of miR-16-5p, miR-20b-5p, miR-26a-5p, miR-126-3p, miR-133a-3p, miR-146a-5p, miR-221-3p, and miR-342-3p appeared just in PTB pregnancies. No microRNA was uniquely dysregulated in PPROM pregnancies. The combination of 12 microRNAs (miR-16-5p, miR-20b-5p, miR-21-5p, miR-24-3p, miR-26a-5p, miR-92a-3p, miR-133a-3p, miR-145-5p, miR-146a-5p, miR-155-5p, miR-210-3p, and miR-342-3p, AUC 0.818, p < 0.001, 74.53% sensitivity, 75.00% specificity, cut off > 0.634) equally as the combination of 6 microRNAs (miR-16-5p, miR-21-5p, miR-24-3p, miR-133a-3p, miR-155-5p, and miR-210-3p, AUC 0.812, p < 0.001, 70.75% sensitivity, 78.75% specificity, cut off > 0.652) can predict preterm delivery before 37 weeks of gestation in early stages of gestation in 52.83% pregnancies at 10.0% FPR. Cardiovascular disease associated microRNAs represent promising biomarkers with very good diagnostical potential to be implemented into the current routine first trimester screening programme to predict preterm delivery.

Zobrazit více v PubMed

Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC

Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI

Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Krofta L. A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2021;22:4033. doi: 10.3390/ijms22084033. PubMed DOI PMC

Tanz L.J., Stuart J.J., Williams P.L., Rimm E.B., Missmer S.A., Rexrode K.M., Mukamal K.J., Rich-Edwards J.W. Preterm Delivery and Maternal Cardiovascular Disease in Young and Middle-Aged Adult Women. Circulation. 2017;135:578–589. doi: 10.1161/CIRCULATIONAHA.116.025954. PubMed DOI PMC

Catov J.M., Dodge R., Barinas-Mitchell E., Sutton-Tyrrell K., Yamal J.M., Piller L.B., Ness R.B. Prior preterm birth and maternal subclinical cardiovascular disease 4 to 12 years after pregnancy. J. Womens Health. 2013;22:835–843. doi: 10.1089/jwh.2013.4248. PubMed DOI PMC

Catov J.M., Lewis C.E., Lee M., Wellons M.F., Gunderson E.P. Preterm birth and future maternal blood pressure, inflam-mation, and intimal-medial thickness: The CARDIA study. Hypertension. 2013;61:641–646. doi: 10.1161/HYPERTENSIONAHA.111.00143. PubMed DOI PMC

Perng W., Stuart J., Rifas-Shiman S.L., Rich-Edwards J.W., Stuebe A., Oken E. Preterm birth and long-term maternal car-diovascular health. Ann. Epidemiol. 2015;25:40–45. doi: 10.1016/j.annepidem.2014.10.012. PubMed DOI PMC

Shi L., An S., Niu J., Zhao H., Wang Y., Wu S., Yang X. Effect of premature birth on long-term systolic blood pressure variability in women. Anatol. J. Cardiol. 2018;20:347–353. doi: 10.14744/AnatolJCardiol.2018.97415. PubMed DOI PMC

Haas D.M., Parker C.B., Marsh D.J., Grobman W.A., Ehrenthal D.B., Greenland P., Bairey Merz C.N., Pemberton V.L., Silver R.M., Barnes S., et al. NHLBI nuMoM2b Heart Health Study. Association of Adverse Pregnancy Outcomes with Hypertension 2 to 7 Years Postpartum. J. Am. Heart Assoc. 2019;8:e013092. doi: 10.1161/JAHA.119.013092. PubMed DOI PMC

Tanz L.J., Stuart J.J., Williams P.L., Missmer S.A., Rimm E.B., James-Todd T.M., Rich-Edwards J.W. Preterm Delivery and Maternal Cardiovascular Disease Risk Factors: The Nurses’ Health Study II. J. Womens Health. 2019;28:677–685. doi: 10.1089/jwh.2018.7150. PubMed DOI PMC

Catov J.M., Snyder G.G., Fraser A., Lewis C.E., Liu K., Althouse A.D., Bertolet M., Gunderson E.P. Blood Pressure Patterns and Subsequent Coronary Artery Calcification in Women Who Delivered Preterm Births. Hypertension. 2018;72:159–166. doi: 10.1161/HYPERTENSIONAHA.117.10693. PubMed DOI PMC

James-Todd T.M., Karumanchi S.A., Hibert E.L., Mason S.M., Vadnais M.A., Hu F.B., Rich-Edwards J.W. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: Nurses’ Health Study II. Prev. Chronic Dis. 2013;10:E156. doi: 10.5888/pcd10.120336. PubMed DOI PMC

Lykke J.A., Paidas M.J., Damm P., Triche E.W., Kuczynski E., Langhoff-Roos J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-II diabetes in the mother. BJOG. 2010;117:274–281. doi: 10.1111/j.1471-0528.2009.02448.x. PubMed DOI

James-Todd T., Wise L., Boggs D., Rich-Edwards J., Rosenberg L., Palmer J. Preterm birth and subsequent risk of type 2 diabetes in black women. Epidemiology. 2014;25:805–810. doi: 10.1097/EDE.0000000000000167. PubMed DOI PMC

Catov J.M., Snyder G.G., Bullen B.L., Barinas-Mitchell E.J.M., Holzman C. Women with Preterm Birth Have Evidence of Subclinical Atherosclerosis a Decade after Delivery. J. Womens Health. 2019;28:621–627. doi: 10.1089/jwh.2018.7148. PubMed DOI PMC

Bonamy A.K., Parikh N.I., Cnattingius S., Ludvigsson J.F., Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: Effects of gestational age and fetal growth. Circulation. 2011;124:2839–2846. doi: 10.1161/CIRCULATIONAHA.111.034884. PubMed DOI

Ngo A.D., Chen J.S., Figtree G., Morris J.M., Roberts C.L. Preterm birth and future risk of maternal cardiovascular disease—Is the association independent of smoking during pregnancy? BMC Pregnancy Childbirth. 2015;15:144. doi: 10.1186/s12884-015-0571-7. PubMed DOI PMC

Nardi O., Zureik M., Courbon D., Ducimetière P., Clavel-Chapelon F. Preterm delivery of a first child and subsequent mothers’ risk of ischaemic heart disease: A nested case-control study. Eur. J. Cardiovasc. Prev. Rehabil. 2006;13:281–283. doi: 10.1097/01.hjr.0000183917.35978.a6. PubMed DOI PMC

Crump C., Sundquist J., Howell E.A., McLaughlin M.A., Stroustrup A., Sundquist K. Pre-Term Delivery and Risk of Is-chemic Heart Disease in Women. J. Am. Coll. Cardiol. 2020;76:57–67. doi: 10.1016/j.jacc.2020.04.072. PubMed DOI PMC

Smith G.C., Pell J.P., Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–2006. doi: 10.1016/S0140-6736(00)05112-6. PubMed DOI

Catov J.M., Wu C.S., Olsen J., Sutton-Tyrrell K., Li J., Nohr E.A. Early or recurrent preterm birth and maternal cardio-vascular disease risk. Ann. Epidemiol. 2010;20:604–609. doi: 10.1016/j.annepidem.2010.05.007. PubMed DOI PMC

Lykke J.A., Langhoff-Roos J., Lockwood C.J., Triche E.W., Paidas M.J. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. Paediatr. Perinat. Epidemiol. 2010;24:323–330. doi: 10.1111/j.1365-3016.2010.01120.x. PubMed DOI

Rich-Edwards J.W., Klungsoyr K., Wilcox A.J., Skjaerven R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: A population-based study. Am. J. Obstet. Gynecol. 2015;213:e1–e8. doi: 10.1016/j.ajog.2015.06.001. PubMed DOI PMC

Crump C., Sundquist J., Sundquist K. Preterm delivery and long term mortality in women: National cohort and co-sibling study. BMJ. 2020;370:m2533. doi: 10.1136/bmj.m2533. PubMed DOI PMC

Hastie C.E., Smith G.C., Mackay D.F., Pell J.P. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: Retrospective cohort study of 750 350 singleton pregnancies. Int. J. Epidemiol. 2011;40:914–919. doi: 10.1093/ije/dyq270. PubMed DOI

Wu P., Gulati M., Kwok C.S., Wong C.W., Narain A., O’Brien S., Chew-Graham C.A., Verma G., Kadam U.T., Mamas M.A. Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018;7:e007809. doi: 10.1161/JAHA.117.007809. PubMed DOI PMC

Winger E.E., Reed J.L., Ji X. Early first trimester peripheral blood cell microRNA predicts risk of preterm delivery in pregnant women: Proof of concept. PLoS ONE. 2017;12:e0180124. doi: 10.1371/journal.pone.0180124. PubMed DOI PMC

Winger E.E., Reed J.L., Ji X., Gomez-Lopez N., Pacora P., Romero R. MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth. PLoS ONE. 2020;15:e0236805. doi: 10.1371/journal.pone.0236805. PubMed DOI PMC

Beta J., Akolekar R., Ventura W., Syngelaki A., Nicolaides K.H. Prediction of spontaneous preterm delivery from maternal factors, obstetric history and placental perfusion and function at 11–13 weeks. Prenat. Diagn. 2011;31:75–83. doi: 10.1002/pd.2662. PubMed DOI

O’Gorman N., Wright D., Poon L.C., Rolnik D.L., Syngelaki A., de Alvarado M., Carbone I.F., Dutemeyer V., Fiolna M., Frick A., et al. Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: Comparison with NI-CE guidelines and ACOG recommendations. Ultrasound Obstet. Gynecol. 2017;49:756–760. doi: 10.1002/uog.17455. PubMed DOI

O’Gorman N., Wright D., Syngelaki A., Akolekar R., Wright A., Poon L.C., Nicolaides K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 2016;214:e1–e103. doi: 10.1016/j.ajog.2015.08.034. PubMed DOI

The Fetal Medicine Foundation Stratification of Pregnancy Management 11–13 Weeks’ Gestation. [(accessed on 6 January 2022)]. Available online: www.courses.fetalmedicine.com/fmf/show/861?locale=en.

Mazer Zumaeta A., Wright A., Syngelaki A., Maritsa V.A., Da Silva A.B., Nicolaides K.H. Screening for pre-eclampsia at 11–13 weeks’ gestation: Use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound Obstet. Gynecol. 2020;56:400–407. doi: 10.1002/uog.22093. PubMed DOI

Tan M.Y., Syngelaki A., Poon L.C., Rolnik D.L., O’Gorman N., Delgado J.L., Akolekar R., Konstantinidou L., Tsavdari-dou M., Galeva S., et al. Screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation. Ultrasound Obstet. Gynecol. 2018;52:186–195. doi: 10.1002/uog.19112. PubMed DOI

Vora B., Wang A., Kosti I., Huang H., Paranjpe I., Woodruff T.J., MacKenzie T., Sirota M. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth. Front. Immunol. 2018;9:993. doi: 10.3389/fimmu.2018.00993. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular-Disease Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10:256. PubMed PMC

Hromadnikova I., Kotlabova K., Krofta L. First Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia using Cardiovascular-Disease Associated MicroRNA Biomarkers. Biomedicines. 2022;10:718. doi: 10.3390/biomedicines10030718. PubMed DOI PMC

Guinn D.A., Goldenberg R.L., Hauth J.C., Andrews W.W., Thom E., Romero R. Risk factors for the development of pre-term premature rupture of the membranes after arrest of preterm labor. Am. J. Obstet. Gynecol. 1995;173:1310–1315. doi: 10.1016/0002-9378(95)91377-7. PubMed DOI

Challis J.R., Lockwood C.J., Myatt L., Norman J.E., Strauss J.F., 3rd, Petraglia F. Inflammation and pregnancy. Reprod. Sci. 2009;16:206–215. doi: 10.1177/1933719108329095. PubMed DOI

Keelan J.A. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J. Reprod. Immunol. 2011;88:176–184. doi: 10.1016/j.jri.2010.11.003. PubMed DOI

Ekwo E.E., Gosselink C.A., Woolson R., Moawad A. Risks for premature rupture of amniotic membranes. Int. J. Epidemiol. 1993;22:495–503. doi: 10.1093/ije/22.3.495. PubMed DOI

Hadley C.B., Main D.M., Gabbe S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990;7:374–379. doi: 10.1055/s-2007-999527. PubMed DOI

Naeye R.L., Peters E.C. Causes and consequences of premature rupture of fetal membranes. Lancet. 1980;1:192–197. doi: 10.1016/S0140-6736(80)90674-1. PubMed DOI

Menon R., Boldogh I., Hawkins H.K., Woodson M., Polettini J., Syed T.A., Fortunato S.J., Saade G.R., Papaconstantinou J., Taylor R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014;184:1740–1751. doi: 10.1016/j.ajpath.2014.02.011. PubMed DOI

Menon R., Polettini J., Syed T.A., Saade G.R., Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am. J. Reprod. Immunol. 2014;72:75–84. doi: 10.1111/aji.12220. PubMed DOI

Menon R., Yu J., Basanta-Henry P., Brou L., Berga S.L., Fortunato S.J., Taylor R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE. 2013;7:e31136. doi: 10.1371/journal.pone.0031136. PubMed DOI PMC

Gu Y., Sun J., Groome L.J., Wang Y. Differential miRNA expression profiles between the first and third trimester human placentas. Am. J. Physiol. Endocrinol. Metab. 2013;304:E836–E843. doi: 10.1152/ajpendo.00660.2012. PubMed DOI PMC

Addo K.A., Palakodety N., Hartwell H.J., Tingare A., Fry R.C. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol. Rep. 2020;7:1046–1056. doi: 10.1016/j.toxrep.2020.08.002. PubMed DOI PMC

Committee on Obstetric Practice. Society for Maternal-Fetal Medicine ACOG Committee Opinion No. 743. Low-Dose Aspirin Use during Pregnancy. Obstet. Gynecol. 2018;132:e44–e52. PubMed

National Institute for Health and Care Excellence Hypertension in Pregnancy: Diagnosis and Management. [(accessed on 6 January 2022)]. Available online: www.nice.org.uk/guidance/ng133.

Hromadnikova I., Kotlabova K., Krofta L. Association Analysis in Young and Middle-Aged Mothers-Relation between Expression of Cardiovascular Disease Associated MicroRNAs and Abnormal Clinical Findings. J. Pers. Med. 2021;11:39. doi: 10.3390/jpm11010039. PubMed DOI PMC

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC

Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripheral blood. Thromb. Res. 2016;137:126–140. doi: 10.1016/j.thromres.2015.11.032. PubMed DOI

Andersen C.L., Jensen J.L., Ørntoft T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–5250. doi: 10.1158/0008-5472.CAN-04-0496. PubMed DOI

Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI

Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Cardiovascular and Cerebrovascular Disease Associated microRNAs Are Dysregulated in Placental Tissues Affected with Gestational Hypertension, Preeclampsia and Intrauterine Growth Restriction. PLoS ONE. 2015;10:e0138383. doi: 10.1371/journal.pone.0138383. PubMed DOI PMC

Dweep H., Sticht C., Pandey P., Gretz N. miRWalk—Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Abnormal microRNA expression profile at early stages of gestation in pregnancies destined to develop placenta previa

. 2024 ; 11 () : 1469855. [epub] 20241203

First-trimester predictive models for adverse pregnancy outcomes-a base for implementation of strategies to prevent cardiovascular disease development

. 2024 ; 12 () : 1461547. [epub] 20240904

First-Trimester Screening for Miscarriage or Stillbirth-Prediction Model Based on MicroRNA Biomarkers

. 2023 Jun 14 ; 24 (12) : . [epub] 20230614

First-Trimester Screening for HELLP Syndrome-Prediction Model Based on MicroRNA Biomarkers and Maternal Clinical Characteristics

. 2023 Mar 08 ; 24 (6) : . [epub] 20230308

Novel First-Trimester Prediction Model for Any Type of Preterm Birth Occurring before 37 Gestational Weeks in the Absence of Other Pregnancy-Related Complications Based on Cardiovascular Disease-Associated MicroRNAs and Basic Maternal Clinical Characteristics

. 2022 Oct 15 ; 10 (10) : . [epub] 20221015

Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications

. 2022 Sep 13 ; 23 (18) : . [epub] 20220913

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...