First-Trimester Screening for Miscarriage or Stillbirth-Prediction Model Based on MicroRNA Biomarkers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Cooperatio - Mother and Childhood Care (no. 207035)
Charles University
SVV (no. 260645)
Charles University
PubMed
37373283
PubMed Central
PMC10299132
DOI
10.3390/ijms241210137
PII: ijms241210137
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular diseases, first-trimester screening, gene expression, microRNA, miscarriage, prediction, stillbirth, whole peripheral venous blood,
- MeSH
- biologické markery MeSH
- kardiovaskulární nemoci * genetika MeSH
- lidé MeSH
- mikro RNA * metabolismus MeSH
- narození mrtvého plodu MeSH
- první trimestr těhotenství MeSH
- retrospektivní studie MeSH
- samovolný potrat * genetika MeSH
- těhotenství MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- mikro RNA * MeSH
- MIRN145 microRNA, human MeSH Prohlížeč
We evaluated the potential of cardiovascular-disease-associated microRNAs to predict in the early stages of gestation (from 10 to 13 gestational weeks) the occurrence of a miscarriage or stillbirth. The gene expressions of 29 microRNAs were studied retrospectively in peripheral venous blood samples derived from singleton Caucasian pregnancies diagnosed with miscarriage (n = 77 cases; early onset, n = 43 cases; late onset, n = 34 cases) or stillbirth (n = 24 cases; early onset, n = 13 cases; late onset, n = 8 cases; term onset, n = 3 cases) and 80 selected gestational-age-matched controls (normal term pregnancies) using real-time RT-PCR. Altered expressions of nine microRNAs (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-26a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p, miR-342-3p, and miR-574-3p) were observed in pregnancies with the occurrence of a miscarriage or stillbirth. The screening based on the combination of these nine microRNA biomarkers revealed 99.01% cases at a 10.0% false positive rate (FPR). The predictive model for miscarriage only was based on the altered gene expressions of eight microRNA biomarkers (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-26a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p and miR-195-5p). It was able to identify 80.52% cases at a 10.0% FPR. Highly efficient early identification of later occurrences of stillbirth was achieved via the combination of eleven microRNA biomarkers (upregulation of miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-146a-5p, and miR-181a-5p and downregulation of miR-130b-3p, miR-145-5p, miR-210-3p, miR-342-3p, and miR-574-3p) or, alternatively, by the combination of just two upregulated microRNA biomarkers (miR-1-3p and miR-181a-5p). The predictive power achieved 95.83% cases at a 10.0% FPR and, alternatively, 91.67% cases at a 10.0% FPR. The models based on the combination of selected cardiovascular-disease-associated microRNAs had very high predictive potential for miscarriages or stillbirths and may be implemented in routine first-trimester screening programs.
Zobrazit více v PubMed
Robinson G.E. Pregnancy loss. Best. Pract. Res. Clin. Obstet. Gynaecol. 2014;28:169–178. doi: 10.1016/j.bpobgyn.2013.08.012. PubMed DOI
Savitz D.A., Hertz-Picciotto I., Poole C., Olshan A.F. Epidemiologic measures of the course and outcome of pregnancy. Epidemiol. Rev. 2002;24:91–101. doi: 10.1093/epirev/mxf006. PubMed DOI
DeVilbiss E.A., Mumford S.L., Sjaarda L.A., Connell M.T., Plowden T.C., Andriessen V.C., Perkins N.J., Hill M.J., Silver R.M., Schisterman E.F. Prediction of pregnancy loss by early first trimester ultrasound characteristics. Am. J. Obstet. Gynecol. 2020;223:242.e1–242.e22. doi: 10.1016/j.ajog.2020.02.025. PubMed DOI PMC
Practice Committee of the American Society for Reproductive Medicine Evaluation and treatment of recurrent pregnancy loss: A committee opinion. Fertil. Steril. 2012;98:1103–1111. doi: 10.1016/j.fertnstert.2012.06.048. PubMed DOI
Linnakaari R., Helle N., Mentula M., Bloigu A., Gissler M., Heikinheimo O., Niinimäki M. Trends in the incidence, rate and treatment of miscarriage-nationwide register-study in Finland, 1998–2016. Hum. Reprod. 2019;34:2120–2128. doi: 10.1093/humrep/dez211. PubMed DOI
Makrydimas G., Sebire N.J., Lolis D., Vlassis N., Nicolaides K.H. Fetal loss following ultrasound diagnosis of a live fetus at 6–10 weeks of gestation. Ultrasound Obstet. Gynecol. 2003;22:368–372. doi: 10.1002/uog.204. PubMed DOI
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Gynecology ACOG Practice Bulletin No. 200: Early Pregnancy Loss. Obstet. Gynecol. 2018;132:e197–e207. doi: 10.1097/AOG.0000000000002899. PubMed DOI
Redinger A., Nguyen H. StatPearls [Internet] StatPearls Publishing; Treasure Island, FL, USA: 2022. Incomplete Abortions. PubMed
Kim C., Barnard S., Neilson J.P., Hickey M., Vazquez J.C., Dou L. Medical treatments for incomplete miscarriage. Cochrane Database Syst. Rev. 2017;1:CD007223. doi: 10.1002/14651858.CD007223.pub4. PubMed DOI PMC
Bjørn A.M., Nielsen R.B., Nørgaard M., Nohr E.A., Ehrenstein V. Risk of miscarriage among users of corticosteroid hormones: A population-based nested case-control study. Clin. Epidemiol. 2013;5:287–294. doi: 10.2147/CLEP.S46893. PubMed DOI PMC
Larsen E.C., Christiansen O.B., Kolte A.M., Macklon N. New insights into mechanisms behind miscarriage. BMC Med. 2013;11:154. doi: 10.1186/1741-7015-11-154. PubMed DOI PMC
Michels T.C., Tiu A.Y. Second trimester pregnancy loss. Am. Fam. Physician. 2007;76:1341–1346. PubMed
American College of Obstetricians and Gynecologists ACOG practice bulletin. Management of recurrent pregnancy loss. (Replaces Technical Bulletin Number 212, September 1995). American College of Obstetricians and Gynecologists. Int. J. Gynaecol. Obstet. 2002;78:179–190. PubMed
ESHRE Guideline Group on RPL. Bender Atik R., Christiansen O.B., Elson J., Kolte A.M., Lewis S., Middeldorp S., Mcheik S., Peramo B., Quenby S., et al. ESHRE guideline: Recurrent pregnancy loss: An update in 2022. Hum. Reprod. Open. 2023;2023:hoad002. PubMed PMC
Christiansen O.B., Steffensen R., Nielsen H.S., Varming K. Multifactorial etiology of recurrent miscarriage and its scientific and clinical implications. Gynecol. Obstet. Investig. 2008;66:257–267. doi: 10.1159/000149575. PubMed DOI
Macklon N.S., Geraedts J.P., Fauser B.C. Conception to ongoing pregnancy: The ‘black box’ of early pregnancy loss. Hum. Reprod. Update. 2002;8:333–343. doi: 10.1093/humupd/8.4.333. PubMed DOI
Tavares Da Silva F., Gonik B., McMillan M., Keech C., Dellicour S., Bhange S., Tila M., Harper D.M., Woods C., Kawai A.T., et al. Stillbirth: Case definition and guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine. 2016;34:6057–6068. doi: 10.1016/j.vaccine.2016.03.044. PubMed DOI PMC
Management of stillbirth ACOG Obstetric Care Consensus No. 10. American College of Obstetricians and Gynecologists. Obstet. Gynecol. 2020;135:e110–e132. PubMed
MacDorman M.F., Gregory E.C. Fetal and Perinatal Mortality: United States, 2013. Natl. Vital. Stat. Rep. 2015;64:1–24. PubMed
Smith G.C., Fretts R.C. Stillbirth. Lancet. 2007;370:1715–1725. doi: 10.1016/S0140-6736(07)61723-1. PubMed DOI
Lawn J.E., Blencowe H., Pattinson R., Cousens S., Kumar R., Ibiebele I., Gardosi J., Day L.T., Stanton C., Lancet’s Stillbirths Series steering committee Stillbirths: Where? When? Why? How to make the data count? Lancet. 2011;377:1448–1463. doi: 10.1016/S0140-6736(10)62187-3. PubMed DOI
Monteiro L.J., Varas-Godoy M., Acuña-Gallardo S., Correa P., Passalacqua G., Monckeberg M., Rice G.E., Illanes S.E. Increased Circulating Levels of Tissue-Type Plasminogen Activator Are Associated with the Risk of Spontaneous Abortion during the First Trimester of Pregnancy. Diagnostics. 2020;10:197. doi: 10.3390/diagnostics10040197. PubMed DOI PMC
Deng W., Sun R., Du J., Wu X., Ma L., Wang M., Lv Q. Prediction of miscarriage in first trimester by serum estradiol, progesterone and β-human chorionic gonadotropin within 9 weeks of gestation. BMC Pregnancy Childbirth. 2022;22:112. doi: 10.1186/s12884-021-04158-w. PubMed DOI PMC
Jiang L., Du Y., Lu Y., Wu X., Tong X. Monitoring of hemostatic parameters for early prediction of first-trimester miscarriage. Biomarkers. 2021;26:532–538. doi: 10.1080/1354750X.2021.1933592. PubMed DOI
Bahado-Singh R.O., Syngelaki A., Mandal R., Han B., Li L., Bjorndahl T.C., Wang N., Maulik D., Dong E., Turkoglu O., et al. First-trimester metabolomic prediction of stillbirth. J. Matern. Fetal Neonatal Med. 2019;32:3435–3441. doi: 10.1080/14767058.2018.1465552. PubMed DOI
Kleinrouweler C.E., Cheong-See F.M., Collins G.S., Kwee A., Thangaratinam S., Khan K.S., Mol B.W., Pajkrt E., Moons K.G., Schuit E. Prognostic models in obstetrics: Available, but far from applicable. Am. J. Obstet. Gynecol. 2016;214:79–90.e36. doi: 10.1016/j.ajog.2015.06.013. PubMed DOI
Conde-Agudelo A., Bird S., Kennedy S.H., Villar J., Papageorghiou A.T. First- and second-trimester tests to predict stillbirth in unselected pregnant women: A systematic review and meta-analysis. BJOG. 2015;122:41–55. doi: 10.1111/1471-0528.13096. PubMed DOI
Åmark H., Westgren M., Persson M. Prediction of stillbirth in women with overweight or obesity-A register-based cohort study. PLoS ONE. 2018;13:e0206940. doi: 10.1371/journal.pone.0206940. PubMed DOI PMC
Akolekar R., Machuca M., Mendes M., Paschos V., Nicolaides K.H. Prediction of stillbirth from placental growth factor at 11–13 weeks. Ultrasound Obstet. Gynecol. 2016;48:618–623. doi: 10.1002/uog.17288. PubMed DOI
Akolekar R., Bower S., Flack N., Bilardo C.M., Nicolaides K.H. Prediction of miscarriage and stillbirth at 11–13 weeks and the contribution of chorionic villus sampling. Prenat. Diagn. 2011;31:38–45. doi: 10.1002/pd.2644. PubMed DOI
Mastrodima S., Akolekar R., Yerlikaya G., Tzelepis T., Nicolaides K.H. Prediction of stillbirth from biochemical and biophysical markers at 11–13 weeks. Ultrasound Obstet. Gynecol. 2016;48:613–617. doi: 10.1002/uog.17289. PubMed DOI
Townsend R., Manji A., Allotey J., Heazell A., Jorgensen L., Magee L.A., Mol B.W., Snell K., Riley R.D., Sandall J., et al. Can risk prediction models help us individualise stillbirth prevention? A systematic review and critical appraisal of published risk models. BJOG. 2021;128:214–224. doi: 10.1111/1471-0528.16487. PubMed DOI
Bottomley C., Van Belle V., Kirk E., Van Huffel S., Timmerman D., Bourne T. Accurate prediction of pregnancy viability by means of a simple scoring system. Hum. Reprod. 2013;28:68–76. doi: 10.1093/humrep/des352. PubMed DOI
Guha S., Van Belle V., Bottomley C., Preisler J., Vathanan V., Sayasneh A., Stalder C., Timmerman D., Bourne T. External validation of models and simple scoring systems to predict miscarriage in intrauterine pregnancies of uncertain viability. Hum. Reprod. 2013;28:2905–2911. doi: 10.1093/humrep/det342. PubMed DOI
Wan O.Y.K., Chan S.S.C., Chung J.P.W., Kwok J.W.K., Lao T.T.H., Sahota D.S. External validation of a simple scoring system to predict pregnancy viability in women presenting to an early pregnancy assessment clinic. Hong Kong Med. J. 2020;26:102–110. doi: 10.12809/hkmj198276. PubMed DOI
Ashoor G., Syngelaki A., Papastefanou I., Nicolaides K.H., Akolekar R. Development and validation of model for prediction of placental dysfunction-related stillbirth from maternal factors, fetal weight and uterine artery Doppler at mid-gestation. Ultrasound Obstet. Gynecol. 2022;59:61–68. doi: 10.1002/uog.24795. PubMed DOI
Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular Disease-Associated MicroRNA Dysregulation during the First Trimester of Gestation in Women with Chronic Hypertension and Normotensive Women Subsequently Developing Gestational Hypertension or Preeclampsia with or without Fetal Growth Restriction. Biomedicines. 2022;10:256. PubMed PMC
Hromadnikova I., Kotlabova K., Krofta L. First-Trimester Screening for HELLP Syndrome-Prediction Model Based on MicroRNA Biomarkers and Maternal Clinical Characteristics. Int. J. Mol. Sci. 2023;24:5177. doi: 10.3390/ijms24065177. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines. 2022;10:718. doi: 10.3390/biomedicines10030718. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. First Trimester Prediction of Preterm Delivery in the Absence of Other Pregnancy-Related Complications Using Cardiovascular-Disease Associated MicroRNA Biomarkers. Int. J. Mol. Sci. 2022;23:3951. doi: 10.3390/ijms23073951. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int. J. Mol. Sci. 2022;23:10635. doi: 10.3390/ijms231810635. PubMed DOI PMC
The Fetal Medicine Foundation Stratification of Pregnancy Management 11–13 Weeks’ Gestation. [(accessed on 4 February 2023)]. Available online: https://courses.fetalmedicine.com/research/assess/
Fretts R.C., Schmittdiel J., McLean F.H., Usher R.H., Goldman M.B. Increased maternal age and the risk of fetal death. N. Engl. J. Med. 1995;333:953–957. doi: 10.1056/NEJM199510123331501. PubMed DOI
Reddy U.M., Ko C.W., Willinger M. Maternal age and the risk of stillbirth throughout pregnancy in the United States. Am. J. Obstet. Gynecol. 2006;195:764–770. doi: 10.1016/j.ajog.2006.06.019. PubMed DOI
Catalano P.M. Management of obesity in pregnancy. Obstet. Gynecol. 2007;109:419–433. doi: 10.1097/01.AOG.0000253311.44696.85. PubMed DOI
Flenady V., Koopmans L., Middleton P., Frøen J.F., Smith G.C., Gibbons K., Coory M., Gordon A., Ellwood D., McIntyre H.D., et al. Major risk factors for stillbirth in high-income countries: A systematic review and meta-analysis. Lancet. 2011;377:1331–1340. doi: 10.1016/S0140-6736(10)62233-7. PubMed DOI
Aune D., Saugstad O.D., Henriksen T., Tonstad S. Maternal body mass index and the risk of fetal death, stillbirth, and infant death: A systematic review and meta-analysis. JAMA. 2014;311:1536–1546. doi: 10.1001/jama.2014.2269. PubMed DOI
Marufu T.C., Ahankari A., Coleman T., Lewis S. Maternal smoking and the risk of still birth: Systematic review and meta-analysis. BMC Public Health. 2015;15:239. doi: 10.1186/s12889-015-1552-5. PubMed DOI PMC
Stillbirth Collaborative Research Network Writing Group Association between stillbirth and risk factors known at pregnancy confirmation. JAMA. 2011;306:2469–2479. doi: 10.1001/jama.2011.1798. PubMed DOI PMC
Jackson R.A., Gibson K.A., Wu Y.W., Croughan M.S. Perinatal outcomes in singletons following in vitro fertilization: A meta-analysis. Obstet. Gynecol. 2004;103:551–563. doi: 10.1097/01.AOG.0000114989.84822.51. PubMed DOI
Marino J.L., Moore V.M., Willson K.J., Rumbold A., Whitrow M.J., Giles L.C., Davies M.J. Perinatal outcomes by mode of assisted conception and sub-fertility in an Australian data linkage cohort. PLoS ONE. 2014;9:e80398. doi: 10.1371/journal.pone.0080398. PubMed DOI PMC
Wisborg K., Ingerslev H.J., Henriksen T.B. IVF and stillbirth: A prospective follow-up study. Hum. Reprod. 2010;25:1312–1316. doi: 10.1093/humrep/deq023. PubMed DOI
Bay B., Lyngsø J., Hohwü L., Kesmodel U.S. Childhood growth of singletons conceived following in vitro fertilisation or intracytoplasmic sperm injection: A systematic review and meta-analysis. BJOG. 2019;126:158–166. doi: 10.1111/1471-0528.15456. PubMed DOI
Merritt T.A., Goldstein M., Philips R., Peverini R., Iwakoshi J., Rodriguez A., Oshiro B. Impact of ART on pregnancies in California: An analysis of maternity outcomes and insights into the added burden of neonatal intensive care. J. Perinatol. 2014;34:345–350. doi: 10.1038/jp.2014.17. PubMed DOI
Lamont K., Scott N.W., Jones G.T., Bhattacharya S. Risk of recurrent stillbirth: Systematic review and meta-analysis. BMJ. 2015;350:h3080. doi: 10.1136/bmj.h3080. PubMed DOI
Hartmann K.E., Velez Edwards D.R., Savitz D.A., Jonsson-Funk M.L., Wu P., Sundermann A.C., Baird D.D. Prospective Cohort Study of Uterine Fibroids and Miscarriage Risk. Am. J. Epidemiol. 2017;186:1140–1148. doi: 10.1093/aje/kwx062. PubMed DOI PMC
Lai J., Caughey A.B., Qidwai G.I., Jacoby A.F. Neonatal outcomes in women with sonographically identified uterine leiomyomata. J. Matern. Fetal Neonatal Med. 2012;25:710–713. doi: 10.3109/14767058.2011.572205. PubMed DOI
Shavell V.I., Thakur M., Sawant A., Kruger M.L., Jones T.B., Singh M., Puscheck E.E., Diamond M.P. Adverse obstetric outcomes associated with sonographically identified large uterine fibroids. Fertil. Steril. 2012;97:107–110. doi: 10.1016/j.fertnstert.2011.10.009. PubMed DOI
Hosseinirad H., Yadegari P., Falahieh F.M., Shahrestanaki J.K., Karimi B., Afsharzadeh N., Sadeghi Y. The impact of congenital uterine abnormalities on pregnancy and fertility: A literature review. JBRA Assist. Reprod. 2021;25:608–616. doi: 10.5935/1518-0557.20210021. PubMed DOI PMC
Drakeley A.J., Quenby S., Farquharson R.G. Mid-trimester loss--appraisal of a screening protocol. Hum. Reprod. 1998;13:1975–1980. doi: 10.1093/humrep/13.7.1975. PubMed DOI
Alexander E.K., Pearce E.N., Brent G.A., Brown R.S., Chen H., Dosiou C., Grobman W.A., Laurberg P., Lazarus J.H., Mandel S.J., et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid. 2017;27:315–389. doi: 10.1089/thy.2016.0457. PubMed DOI
De Vivo A., Mancuso A., Giacobbe A., Moleti M., Maggio Savasta L., De Dominici R., Priolo A.M., Vermiglio F. Thyroid function in women found to have early pregnancy loss. Thyroid. 2010;20:633–637. doi: 10.1089/thy.2009.0323. PubMed DOI
Stagnaro-Green A., Roman S.H., Cobin R.H., el-Harazy E., Alvarez-Marfany M., Davies T.F. Detection of at-risk pregnancy by means of highly sensitive assays for thyroid autoantibodies. JAMA. 1990;264:1422–1425. doi: 10.1001/jama.1990.03450110068029. PubMed DOI
Chen L., Hu R. Thyroid autoimmunity and miscarriage: A meta-analysis. Clin. Endocrinol. 2011;74:513–519. doi: 10.1111/j.1365-2265.2010.03974.x. PubMed DOI
Thangaratinam S., Tan A., Knox E., Kilby M.D., Franklyn J., Coomarasamy A. Association between thyroid autoantibodies and miscarriage and preterm birth: Meta-analysis of evidence. BMJ. 2011;342:d2616. doi: 10.1136/bmj.d2616. PubMed DOI PMC
Practice bulletin no. 124: Inherited thrombophilias in pregnancy. Obstet. Gynecol. 2011;118:730–740. PubMed
Bates S.M., Greer I.A., Middeldorp S., Veenstra D.L., Prabulos A.M., Vandvik P.O. VTE, thrombophilia, antithrombotic therapy, and pregnancy: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141:e691S–e736S. doi: 10.1378/chest.11-2300. PubMed DOI PMC
Marik P.E., Plante L.A. Venous thromboembolic disease and pregnancy. N. Engl. J. Med. 2008;359:2025–2033. doi: 10.1056/NEJMra0707993. PubMed DOI
Tian Q.X., Xia S.H., Wu Y.H., Zhang J.H., Wang L.Y., Zhu W.P. Comprehensive analysis of the differential expression profile of microRNAs in missed abortion. Kaohsiung J. Med. Sci. 2020;36:114–121. doi: 10.1002/kjm2.12144. PubMed DOI PMC
Hosseini M.K., Gunel T., Gumusoglu E., Benian A., Aydinli K. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol. Med. Rep. 2018;17:4941–4952. doi: 10.3892/mmr.2018.8530. PubMed DOI PMC
Winger E.E., Reed J.L., Ji X. First-trimester maternal cell microRNA is a superior pregnancy marker to immunological testing for predicting adverse pregnancy outcome. J. Reprod. Immunol. 2015;110:22–35. doi: 10.1016/j.jri.2015.03.005. PubMed DOI
Shahidi M., Nazari F., Ghanbarian H., Taheripanah R., Hajivalili M., Amani D. miR-146b-5p and miR-520h Expressions Are Upregulated in Serum of Women with Recurrent Spontaneous Abortion. Biochem. Genet. 2022;60:1716–1732. doi: 10.1007/s10528-021-10173-5. PubMed DOI
Zhao L., Han L., Hei G., Wei R., Zhang Z., Zhu X., Guo Q., Chu C., Fu X., Xu K., et al. Diminished miR-374c-5p negatively regulates IL (interleukin)-6 in unexplained recurrent spontaneous abortion. J. Mol. Med. 2022;100:1043–1056. doi: 10.1007/s00109-022-02178-3. PubMed DOI
Tutunfroush M., Ghorbian S., Mohseni J., Danaii S., Rad M.G. Down-Regulation of circulating miR-23a-3p, miR-101-3p, and miR-let-7c in Women with Idiopathic Recurrent Pregnancy Loss. Clin. Lab. 2022;68 doi: 10.7754/Clin.Lab.2022.211142. PubMed DOI
Abbaskhani H., Seifati S.M., Salmani T., Vojdani S., Al-Rubaye S., Yaseen R., Hajiesmaeili Y., Ghaderian S.M.H. Evaluating changes in the expression of BCL-2 gene, lncRNA SRA, and miR-361-3p in unexplained recurrent pregnancy loss. Nucleosides Nucleotides Nucleic Acids. 2022;41:891–899. doi: 10.1080/15257770.2022.2085298. PubMed DOI
Qin W., Tang Y., Yang N., Wei X., Wu J. Potential role of circulating microRNAs as a biomarker for unexplained recurrent spontaneous abortion. Fertil. Steril. 2016;105:1247–1254.e3. doi: 10.1016/j.fertnstert.2016.01.028. PubMed DOI
Cho S.H., Kim J.H., An H.J., Kim Y.R., Ahn E.H., Lee J.R., Kim J.O., Ko J.J., Kim N.K. Genetic Polymorphisms in miR-604A>G, miR-938G>A, miR-1302-3C>T and the Risk of Idiopathic Recurrent Pregnancy Loss. Int. J. Mol. Sci. 2021;22:6127. doi: 10.3390/ijms22116127. PubMed DOI PMC
Al-Rubaye S., Ghaderian S.M.H., Salehpour S., Salmani T., Vojdani S., Yaseen R., Akbarzadeh R. Aberrant expression of BAX, MEG3, and miR-214-3P genes in recurrent pregnancy loss. Gynecol. Endocrinol. 2021;37:660–664. doi: 10.1080/09513590.2021.1897098. PubMed DOI
Yang Q., Gu W.W., Gu Y., Yan N.N., Mao Y.Y., Zhen X.X., Wang J.M., Yang J., Shi H.J., Zhang X., et al. Association of the peripheral blood levels of circulating microRNAs with both recurrent miscarriage and the outcomes of embryo transfer in an in vitro fertilization process. J. Transl. Med. 2018;16:186. doi: 10.1186/s12967-018-1556-x. PubMed DOI PMC
Jairajpuri D.S., Malalla Z.H., Mahmood N., Khan F., Almawi W.Y. Differentially expressed circulating microRNAs associated with idiopathic recurrent pregnancy loss. Gene. 2021;768:145334. doi: 10.1016/j.gene.2020.145334. PubMed DOI
Ding J., Zhang Y., Cai X., Zhang Y., Yan S., Wang J., Zhang S., Yin T., Yang C., Yang J. Extracellular vesicles derived from M1 macrophages deliver miR-146a-5p and miR-146b-5p to suppress trophoblast migration and invasion by targeting TRAF6 in recurrent spontaneous abortion. Theranostics. 2021;11:5813–5830. doi: 10.7150/thno.58731. PubMed DOI PMC
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of re-al-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Hympanova L., Krofta L. Gestational hypertension, preeclampsia and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease associated microRNAs in maternal whole peripher-al blood. Thromb. Res. 2016;137:126–140. doi: 10.1016/j.thromres.2015.11.032. PubMed DOI
Benjamini Y., Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x. DOI
Special Issue of Pathogenesis of Pregnancy-Related Complications, 2023