First-trimester predictive models for adverse pregnancy outcomes-a base for implementation of strategies to prevent cardiovascular disease development
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39296937
PubMed Central
PMC11409004
DOI
10.3389/fcell.2024.1461547
PII: 1461547
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular risk, first-trimester screening, miRNA, predictive models, preventive program, risk factors,
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: This study aimed to establish efficient, cost-effective, and early predictive models for adverse pregnancy outcomes based on the combinations of a minimum number of miRNA biomarkers, whose altered expression was observed in specific pregnancy-related complications and selected maternal clinical characteristics. METHODS: This retrospective study included singleton pregnancies with gestational hypertension (GH, n = 83), preeclampsia (PE, n = 66), HELLP syndrome (n = 14), fetal growth restriction (FGR, n = 82), small for gestational age (SGA, n = 37), gestational diabetes mellitus (GDM, n = 121), preterm birth in the absence of other complications (n = 106), late miscarriage (n = 34), stillbirth (n = 24), and 80 normal term pregnancies. MiRNA gene expression profiling was performed on the whole peripheral venous blood samples collected between 10 and 13 weeks of gestation using real-time reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Most pregnancies with adverse outcomes were identified using the proposed approach (the combinations of selected miRNAs and appropriate maternal clinical characteristics) (GH, 69.88%; PE, 83.33%; HELLP, 92.86%; FGR, 73.17%; SGA, 81.08%; GDM on therapy, 89.47%; and late miscarriage, 84.85%). In the case of stillbirth, no addition of maternal clinical characteristics to the predictive model was necessary because a high detection rate was achieved by a combination of miRNA biomarkers only [91.67% cases at 10.0% false positive rate (FPR)]. CONCLUSION: The proposed models based on the combinations of selected cardiovascular disease-associated miRNAs and maternal clinical variables have a high predictive potential for identifying women at increased risk of adverse pregnancy outcomes; this can be incorporated into routine first-trimester screening programs. Preventive programs can be initiated based on these models to lower cardiovascular risk and prevent the development of metabolic/cardiovascular/cerebrovascular diseases because timely implementation of beneficial lifestyle strategies may reverse the dysregulation of miRNAs maintaining and controlling the cardiovascular system.
Zobrazit více v PubMed
ACOG Committee on Practice Bulletins—Gynecology (2018). ACOG practice bulletin No. 200: early pregnancy loss. Obstet. Gynecol. 132, e197–e207. 10.1097/AOG.0000000000002899 PubMed DOI
ACOG Committee on Practice Bulletins--Obstetrics (2002). ACOG practice bulletin. Diagnosis and management of preeclampsia and eclampsia. Number 33, January 2002. Obstet. Gynecol. 99, 159–167. 10.1016/s0029-7844(01)01747-1 PubMed DOI
ACOG Committee on Practice Bulletins--Obstetrics (2020). Gestational hypertension and preeclampsia: ACOG practice bulletin, number 222. Obstet. Gynecol. 135, e237–e260. 10.1097/AOG.0000000000003891 PubMed DOI
ACOG Committee on Practice Bulletins—Obstetrics (2021). ACOG practice bulletin, number 227. Fetal growth restriction. Obstet. Gynecol. 137, e16–e28. 10.1097/AOG.0000000000004251 PubMed DOI
American College of Obstetricians and Gynecologists Society for Maternal-Fetal Medicine in collaboration with Metz T. D., Berry R. S., Fretts R. C., Reddy U. M., et al. (2020). Obstetric Care Consensus #10: management of Stillbirth: (replaces practice bulletin number 102, March 2009). Am. J. Obstet. Gynecol. 222, B2–B20. 10.1016/j.ajog.2020.01.017 PubMed DOI
American Diabetes Association (2009). Diagnosis and classification of diabetes mellitus. Diabetes. Care 32, S62–S67. 10.2337/dc09-S062 PubMed DOI PMC
Audibert F., Friedman S. A., Frangieh A. Y., Sibai B. M. (1996). Clinical utility of strict diagnostic criteria for the HELLP (hemolysis, elevated liver enzymes, and low platelets) syndrome. Am. J. Obstet. Gynecol. 175, 460–464. 10.1016/s0002-9378(96)70162-x PubMed DOI
Bartel D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. 10.1016/s0092-8674(04)00045-5 PubMed DOI
Barton J. R., Sibai B. M. (2004). Diagnosis and management of hemolysis, elevated liver enzymes, and low platelets syndrome. Clin. Perinatol. 31, 807–833. 10.1016/j.clp.2004.06.008 PubMed DOI
Bellamy L., Casas J. P., Hingorani A. D., Williams D. J. (2007). Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ 335, 974. 10.1136/bmj.39335.385301.BE PubMed DOI PMC
Berks D., Hoedjes M., Raat H., Duvekot J. J., Steegers E. A., Habbema J. D. (2013). Risk of cardiovascular disease after pre-eclampsia and the effect of lifestyle interventions: a literature-based study. BJOG 120, 924–931. 10.1111/1471-0528.12191 PubMed DOI
Borna S., Neamatipoor E., Radman N. (2012). Risk of coronary artery disease in women with history of pregnancies complicated by preeclampsia and LBW. J. Matern. Fetal. Neonatal. Med. 25, 1114–1116. 10.3109/14767058.2011.624218 PubMed DOI
Condrat C. E., Thompson D. C., Barbu M. G., Bugnar O. L., Boboc A., Cretoiu D., et al. (2020). miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9, 276. 10.3390/cells9020276 PubMed DOI PMC
Craici I. M., Wagner S. J., Hayman S. R., Garovic V. D. (2008). Pre-eclamptic pregnancies: an opportunity to identify women at risk for future cardiovascular disease. Womens. Health. (Lond). 4, 133–135. 10.2217/17455057.4.2.133 PubMed DOI
Garovic V. D., Hayman S. R. (2007). Hypertension in pregnancy: an emerging risk factor for cardiovascular disease. Nat. Clin. Pract. Nephrol. 3, 613–622. 10.1038/ncpneph0623 PubMed DOI
Goldenberg R. L., Culhane J. F., Iams J. D., Romero R. (2008). Epidemiology and causes of preterm birth. Lancet 371, 75–84. 10.1016/S0140-6736(08)60074-4 PubMed DOI PMC
Haukkamaa L., Moilanen L., Kattainen A., Luoto R., Kahonen M., Leinonen M., et al. (2009). Pre-eclampsia is a risk factor of carotid artery atherosclerosis. Cerebrovasc. Dis. 27, 599–607. 10.1159/000216834 PubMed DOI
Hromadnikova I. (2022f). Czech national patent application No. PV 2022-505.
Hromadnikova I. (2023a). Czech national patent No. 309639.
Hromadnikova I. (2023b). Czech national patent No. 309886.
Hromadnikova I., Kotlabova K., Krofta L. (2022a). Cardiovascular disease-associated microRNA dysregulation during the first trimester of gestation in women with chronic hypertension and normotensive women subsequently developing gestational hypertension or preeclampsia with or without fetal growth restriction. Biomedicines 10, 256. 10.3390/biomedicines10020256 PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. (2022b). First-trimester screening for fetal growth restriction and small-for-gestational-age pregnancies without preeclampsia using cardiovascular disease-associated microRNA biomarkers. Biomedicines 10, 718. 10.3390/biomedicines10030718 PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. (2022c). First trimester prediction of preterm delivery in the absence of other pregnancy-related complications using cardiovascular-disease associated microRNA biomarkers. Int. J. Mol. Sci. 23, 3951. 10.3390/ijms23073951 PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. (2022d). Cardiovascular disease-associated microRNAs as novel biomarkers of first-trimester screening for gestational diabetes mellitus in the absence of other pregnancy-related complications. Int. J. Mol. Sci. 23, 10635. 10.3390/ijms231810635 PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. (2022e). Novel first-trimester prediction model for any type of preterm birth occurring before 37 gestational weeks in the absence of other pregnancy-related complications based on cardiovascular disease-associated microRNAs and basic maternal clinical characteristics. Biomedicines 10, 2591. 10.3390/biomedicines10102591 PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. (2023a). First-trimester screening for HELLP syndrome-Prediction model based on microRNA biomarkers and maternal clinical characteristics. Int. J. Mol. Sci. 24, 5177. 10.3390/ijms24065177 PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. (2023b). First trimester prediction models for small-for- gestational age and fetal growth restricted fetuses without the presence of preeclampsia. Mol. Cell. Probes. 72, 101941. 10.1016/j.mcp.2023.101941 PubMed DOI
Hromadnikova I., Kotlabova K., Krofta L. (2023c). First-trimester screening for miscarriage or stillbirth-Prediction model based on microRNA biomarkers. Int. J. Mol. Sci. 24, 10137. 10.3390/ijms241210137 PubMed DOI PMC
Hromadnikova I., Kotlabova K., Krofta L. (2024). First trimester prediction model for gestational hypertension and any subtype of preeclampsia based on cardiovascular disease associated microRNAs and maternal clinical characteristics. Under Rev. Ann. Med. PubMed PMC
Hypertension in pregnancy (2013). Report of the American college of obstetricians and gynecologists’ task force on hypertension in pregnancy. Obstet. Gynecol. 122, 1122–1131. 10.1097/01.AOG.0000437382.03963.88 PubMed DOI
International Association of Diabetes and Pregnancy Study Groups Consensus Panel, Metzger B. E., Gabbe S. G., Persson B., Buchanan T. A., Catalano P. A., Damm P., et al. (2010). International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy. Diabetes. Care 33, 676–682. 10.2337/dc09-1848 PubMed DOI PMC
Irgens H. U., Reisaeter L., Irgens L. M., Lie R. T. (2001). Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ 23, 1213–1217. 10.1136/bmj.323.7323.1213 PubMed DOI PMC
Lai E. C. (2002). Micro RNAs are complementary to 3' UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364. 10.1038/ng865 PubMed DOI
Leeners B., Neumaier-Wagner P. M., Kuse S., Mütze S., Rudnik-Schöneborn S., Zerres K., et al. (2011). Recurrence risks of hypertensive diseases in pregnancy after HELLP syndrome. J. Perinat. Med. 39, 673–678. 10.1515/jpm.2011.081 PubMed DOI
Libby G., Murphy D. J., McEwan N. F., Greene S. A., Forsyth J. S., Chien P. W., et al. (2007). Pre-eclampsia and the later development of type 2 diabetes in mothers and their children: an intergenerational study from the Walker cohort. Diabetologia 50, 523–530. 10.1007/s00125-006-0558-z PubMed DOI
Livak K. J., Schmittgen T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408. 10.1006/meth.2001.1262 PubMed DOI
Lykke J. A., Langhoff-Roos J., Sibai B. M., Funai E. F., Triche E. W., Paidas M. J. (2009). Hypertensive pregnancy disorders and subsequent cardiovascular morbidity and type 2 diabetes mellitus in the mother. Hypertension 53, 944–951. 10.1161/HYPERTENSIONAHA.109.130765 PubMed DOI
Malmström O., Morken N. H. (2018). HELLP syndrome, risk factors in first and second pregnancy: a population-based cohort study. Acta. Obstet. Gynecol. Scand. 97, 709–716. 10.1111/aogs.13322 PubMed DOI
Männistö T., Mendola P., Vääräsmäki M., Järvelin M. R., Hartikainen A. L., Pouta A., et al. (2013). Elevated blood pressure in pregnancy and subsequent chronic disease risk. Circulation 127, 681–690. 10.1161/CIRCULATIONAHA.112.128751 PubMed DOI PMC
Martin J. N., Jr., Blake P. G., Perry K. G., Jr., McCaul J. F., Hess L. W., Martin R. W. (1991). The natural history of HELLP syndrome: patterns of disease progression and regression. Am. J. Obstet. Gynecol. 164, 1500–1509. 10.1016/0002-9378(91)91429-z PubMed DOI
Martin J. N., Jr., Rose C. H., Briery C. M. (2006). Understanding and managing HELLP syndrome: the integral role of aggressive glucocorticoids for mother and child. Am. J. Obstet. Gynecol. 195, 914–934. 10.1016/j.ajog.2005.08.044 PubMed DOI
Mazer Zumaeta A., Wright A., Syngelaki A., Maritsa V. A., Da Silva A. B., Nicolaides K. H. (2020). Screening for pre-eclampsia at 11–13 weeks’ gestation: use of pregnancy-associated plasma protein-A, placental growth factor or both. Ultrasound. Obstet. Gynecol. 56, 400–407. 10.1002/uog.22093 PubMed DOI
McDonald S. D., Ray J., Teo K., Jung H., Salehian O., Yusuf S., et al. (2013). Measures of cardiovascular risk and subclinical atherosclerosis in a cohort of women with a remote history of preeclampsia. Atherosclerosis 229, 234–239. 10.1016/j.atherosclerosis.2013.04.020 PubMed DOI
Mongraw-Chaffin M. L., Cirillo P. M., Cohn B. A. (2010). Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension 56, 166–171. 10.1161/HYPERTENSIONAHA.110.150078 PubMed DOI PMC
Moutquin J. M., Milot Roy V., Irion O. (1996). Preterm prevention: effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 18, 571–588. 10.1016/S0849-5831(16)30300-7 DOI
O'Gorman N., Wright D., Poon L. C., Rolnik D. L., Syngelaki A., de Alvarado M., et al. (2017). Multicenter screening for pre-eclampsia by maternal factors and biomarkers at 11–13 weeks’ gestation: comparison with NICE guidelines and ACOG recommendations. Ultrasound. Obstet. Gynecol. 49, 756–760. 10.1002/uog.17455 PubMed DOI
O'Gorman N., Wright D., Syngelaki A., Akolekar R., Wright A., Poon L. C., et al. (2016). Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 214, 103.e1–103.e12. 10.1016/j.ajog.2015.08.034 PubMed DOI
Piletič K., Kunej T. (2016). MicroRNA epigenetic signatures in human disease. Arch. Toxicol. 90, 2405–2419. 10.1007/s00204-016-1815-7 PubMed DOI
Ray J. G., Vermeulen M. J., Schull M. J., Redelmeier D. A. (2005). Cardiovascular health after maternal placental syndromes (CHAMPS): population-based retrospective cohort study. Lancet 366, 1797–1803. 10.1016/S0140-6736(05)67726-4 PubMed DOI
Romero R., Espinoza J., Kusanovic J. P., Gotsch F., Hassan S., Erez O., et al. (2006). The preterm parturition syndrome. BJOG 113, 17–42. 10.1111/j.1471-0528.2006.01120.x PubMed DOI PMC
Sibai B. M. (2004). Imitators of severe pre-eclampsia/eclampsia. Clin. Perinatol. 31, 835–852. 10.1016/j.clp.2004.06.007 PubMed DOI
Tan M. Y., Syngelaki A., Poon L. C., Rolnik D. L., O'Gorman N., Delgado J. L., et al. (2018). Screening for pre-eclampsia by maternal factors and biomarkers at 11-13 weeks' gestation. Obstet. Gynecol. 52, 186–195. 10.1002/uog.19112 PubMed DOI
The Fetal Medicine Foundation (2023). Stratification of pregnancy management 11–13 Weeks’ gestation. Available at: https://courses.fetalmedicine.com/fmf/show/861?locale=en (Accessed February 27, 2023).
Thilaganathan B. (2016). Association of higher maternal blood pressure with lower infant birthweight: placental cause or cardiovascular effect? Hypertension 67, 499–500. 10.1161/HYPERTENSIONAHA.115.06880 PubMed DOI
Thilaganathan B. (2017). Placental syndromes: getting to the heart of the matter. Ultrasound. Obstet. Gynecol. 49, 7–9. 10.1002/uog.17378 PubMed DOI
Udenze I. C. (2016). Association of pre-eclampsia with metabolic syndrome and increased risk of cardiovascular disease in women: a systemic review. Niger. J. Clin. Pract. 19, 431–435. 10.4103/1119-3077.180055 PubMed DOI
Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., et al. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome. Biol. 3, RESEARCH0034. 10.1186/gb-2002-3-7-research0034 PubMed DOI PMC
Veerbeek J. H., Hermes W., Breimer A. Y., van Rijn B. B., Koenen S. V., Mol B. W., et al. (2015). Cardiovascular disease risk factors after early-onset preeclampsia, late-onset preeclampsia, and pregnancy-induced hypertension. Hypertension 65, 600–606. 10.1161/HYPERTENSIONAHA.114.04850 PubMed DOI
Wang J., Chen J., Sen S. (2016). MicroRNA as biomarkers and diagnostics. J. Cell. Physiol. 231, 25–30. 10.1002/jcp.25056 PubMed DOI PMC
Weinstein L. (1982). Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. 1982. Am. J. Obstet. Gynecol. 193, 859; discussion 860. 10.1016/j.ajog.2005.02.113 PubMed DOI
Yang J. J., Lee S. A., Choi J. Y., Song M., Han S., Yoon H. S., et al. (2015). Subsequent risk of metabolic syndrome in women with a history of preeclampsia: data from the Health Examinees Study. J. Epidemiol. 25, 281–288. 10.2188/jea.JE20140136 PubMed DOI PMC