A History of Preterm Delivery Is Associated with Aberrant Postpartal MicroRNA Expression Profiles in Mothers with an Absence of Other Pregnancy-Related Complications
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 16-27761A
Agency of Medical Research, Ministry of Health, Prague, Czech Republic
260529/SVV/2020
Charles University, Prague, Czech Republic
PROGRES Q34
Charles University, Prague, Czech Republic
PubMed
33919834
PubMed Central
PMC8070839
DOI
10.3390/ijms22084033
PII: ijms22084033
Knihovny.cz E-zdroje
- Klíčová slova
- birth weight of newborns, cardiovascular risk, corticosteroids, expression, gestational age, microRNA, mothers, peripheral white blood cells, preterm prelabor rupture of membranes, spontaneous preterm birth, tocolytics,
- MeSH
- C-reaktivní protein metabolismus MeSH
- cerebrovaskulární poruchy genetika MeSH
- dospělí MeSH
- kardiovaskulární nemoci genetika MeSH
- komplikace těhotenství krev genetika MeSH
- leukocyty metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- matky MeSH
- mikro RNA krev genetika metabolismus MeSH
- novorozenec MeSH
- pilotní projekty MeSH
- poporodní období genetika MeSH
- porodní hmotnost MeSH
- předčasný odtok plodové vody genetika MeSH
- předčasný porod genetika MeSH
- regulace genové exprese * MeSH
- reprodukovatelnost výsledků MeSH
- signální transdukce genetika MeSH
- stanovení celkové genové exprese * MeSH
- studie případů a kontrol MeSH
- těhotenství MeSH
- vedení porodu MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- C-reaktivní protein MeSH
- mikro RNA MeSH
This prospective cross-sectional case-control study investigated the postpartal gene expression of microRNAs associated with diabetes/cardiovascular/cerebrovascular diseases in the peripheral white blood cells of women with anamnesis of preterm prelabor rupture of membranes (n = 58), spontaneous preterm birth (n = 55), and term delivery (n = 89) by a quantitative reverse transcription polymerase chain reaction. After pregnancies complicated by preterm prelabor rupture of membranes or spontaneous preterm birth, mothers showed diverse expression profiles for 25 out of 29 tested microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-100-5p, miR-103a-3p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-221-3p, miR-499a-5p, and miR-574-3p). The earliest gestational ages at delivery and the lowest birth weights of newborns were associated with the highest postpartal levels of the previously mentioned microRNAs in maternal peripheral white blood cells. Administration of tocolytic drugs in order to prolong pregnancy, used in order to administer and complete a full course of antenatal corticosteroids, was associated with alterations in postpartal microRNA expression profiles to a lesser extent than in women with imminent delivery, where there was insufficient time for administration of tocolytics and antenatal corticosteroids. Overall, mothers who did not receive tocolytic therapy (miR-24-3p and miR-146a-5p) and mothers who did not receive corticosteroid therapy (miR-1-3p, miR-100-5p, and miR-143-3p) had increased or showed a trend toward increased postpartal microRNA expression when compared with mothers given tocolytic and corticosteroid therapy. In addition, mothers with serum C-reactive protein levels above 20 mg/L, who experienced preterm labour, showed a trend toward increased postpartal expression profiles of miR-143-3p and miR-199a-5p when compared with mothers with normal serum C-reactive protein levels. On the other hand, the occurrence of maternal leukocytosis, the presence of intra-amniotic inflammation (higher levels of interleukin 6 in the amniotic fluid), and the administration of antibiotics at the time of preterm delivery had no impact on postpartal microRNA expression profiles in mothers with a history of preterm delivery. Likewise, the condition of the newborns at the moment of birth, determined by Apgar scores at 5 and 10 min and the pH of cord arterial blood, had no influence on the postpartal expression profiles of mothers with a history of preterm delivery. These findings may contribute to explaining the increased cardiovascular risk in mothers with anamnesis of preterm delivery, and the greater increase of maternal cardiovascular risk with the decrease of gestational age at delivery. Women with preterm delivery in their anamnesis represent a high-risk group with special needs on a long-term basis, with a need to apply preventive and therapeutic interventions as early as possible.
Zobrazit více v PubMed
Tanz L.J., Stuart J.J., Williams P.L., Rimm E.B., Missmer S.A., Rexrode K.M., Mukamal K.J., Rich-Edwards J.W. Preterm Delivery and Maternal Cardiovascular Disease in Young and Middle-Aged Adult Women. Circulation. 2017;135:578–589. doi: 10.1161/CIRCULATIONAHA.116.025954. PubMed DOI PMC
Catov J.M., Dodge R., Barinas-Mitchell E., Sutton-Tyrrell K., Yamal J.M., Piller L.B., Ness R.B. Prior preterm birth and maternal subclinical cardiovascular disease 4 to 12 years after pregnancy. J. Women’s Health. 2013;22:835–843. doi: 10.1089/jwh.2013.4248. PubMed DOI PMC
Catov J.M., Lewis C.E., Lee M., Wellons M.F., Gunderson E.P. Preterm birth and future maternal blood pressure, inflammation, and intimal-medial thickness: The CARDIA study. Hypertension. 2013;61:641–646. doi: 10.1161/HYPERTENSIONAHA.111.00143. PubMed DOI PMC
Perng W., Stuart J., Rifas-Shiman S.L., Rich-Edwards J.W., Stuebe A., Oken E. Preterm birth and long-term maternal cardiovascular health. Ann. Epidemiol. 2015;25:40–45. doi: 10.1016/j.annepidem.2014.10.012. PubMed DOI PMC
Shi L., An S., Niu J., Zhao H., Wang Y., Wu S., Yang X. Effect of premature birth on long-term systolic blood pressure variability in women. Anatol. J. Cardiol. 2018;20:347–353. doi: 10.14744/AnatolJCardiol.2018.97415. PubMed DOI PMC
Haas D.M., Parker C.B., Marsh D.J., Grobman W.A., Ehrenthal D.B., Greenland P., Bairey Merz C.N., Pemberton V.L., Silver R.M., Barnes S., et al. NHLBI nuMoM2b Heart Health Study. Association of Adverse Pregnancy Outcomes with Hypertension 2 to 7 Years Postpartum. J. Am. Heart Assoc. 2019;8:e013092. doi: 10.1161/JAHA.119.013092. PubMed DOI PMC
Tanz L.J., Stuart J.J., Williams P.L., Missmer S.A., Rimm E.B., James-Todd T.M., Rich-Edwards J.W. Preterm Delivery and Maternal Cardiovascular Disease Risk Factors: The Nurses’ Health Study II. J. Women’s Health. 2019;28:677–685. doi: 10.1089/jwh.2018.7150. PubMed DOI PMC
Catov J.M., Snyder G.G., Fraser A., Lewis C.E., Liu K., Althouse A.D., Bertolet M., Gunderson E.P. Blood Pressure Patterns and Subsequent Coronary Artery Calcification in Women Who Delivered Preterm Births. Hypertension. 2018;72:159–166. doi: 10.1161/HYPERTENSIONAHA.117.10693. PubMed DOI PMC
James-Todd T.M., Karumanchi S.A., Hibert E.L., Mason S.M., Vadnais M.A., Hu F.B., Rich-Edwards J.W. Gestational age, infant birth weight, and subsequent risk of type 2 diabetes in mothers: Nurses’ Health Study II. Prev. Chronic Dis. 2013;10:E156. doi: 10.5888/pcd10.120336. PubMed DOI PMC
Lykke J.A., Paidas M.J., Damm P., Triche E.W., Kuczynski E., Langhoff-Roos J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-II diabetes in the mother. BJOG. 2010;117:274–281. doi: 10.1111/j.1471-0528.2009.02448.x. PubMed DOI
James-Todd T., Wise L., Boggs D., Rich-Edwards J., Rosenberg L., Palmer J. Preterm birth and subsequent risk of type 2 diabetes in black women. Epidemiology. 2014;25:805–810. doi: 10.1097/EDE.0000000000000167. PubMed DOI PMC
Catov J.M., Snyder G.G., Bullen B.L., Barinas-Mitchell E.J.M., Holzman C. Women with Preterm Birth Have Evidence of Subclinical Atherosclerosis a Decade after Delivery. J. Women’s Health. 2019;28:621–627. doi: 10.1089/jwh.2018.7148. PubMed DOI PMC
Bonamy A.K., Parikh N.I., Cnattingius S., Ludvigsson J.F., Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: Effects of gestational age and fetal growth. Circulation. 2011;124:2839–2846. doi: 10.1161/CIRCULATIONAHA.111.034884. PubMed DOI
Ngo A.D., Chen J.S., Figtree G., Morris J.M., Roberts C.L. Preterm birth and future risk of maternal cardiovascular disease—is the association independent of smoking during pregnancy? BMC Pregnancy Childbirth. 2015;15:144. doi: 10.1186/s12884-015-0571-7. PubMed DOI PMC
Nardi O., Zureik M., Courbon D., Ducimetière P., Clavel-Chapelon F. Preterm delivery of a first child and subsequent mothers’ risk of ischaemic heart disease: A nested case-control study. Eur J. Cardiovasc. Prev. Rehabil. 2006;13:281–283. doi: 10.1097/01.hjr.0000183917.35978.a6. PubMed DOI PMC
Crump C., Sundquist J., Howell E.A., McLaughlin M.A., Stroustrup A., Sundquist K. PreTerm Delivery and Risk of Ischemic Heart Disease in Women. J. Am. Coll. Cardiol. 2020;76:57–67. doi: 10.1016/j.jacc.2020.04.072. PubMed DOI PMC
Smith G.C., Pell J.P., Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. Lancet. 2001;357:2002–2006. doi: 10.1016/S0140-6736(00)05112-6. PubMed DOI
Catov J.M., Wu C.S., Olsen J., Sutton-Tyrrell K., Li J., Nohr E.A. Early or recurrent preterm birth and maternal cardiovascular disease risk. Ann. Epidemiol. 2010;20:604–609. doi: 10.1016/j.annepidem.2010.05.007. PubMed DOI PMC
Lykke J.A., Langhoff-Roos J., Lockwood C.J., Triche E.W., Paidas M.J. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. Paediatr. Perinat Epidemiol. 2010;24:323–330. doi: 10.1111/j.1365-3016.2010.01120.x. PubMed DOI
Rich-Edwards J.W., Klungsoyr K., Wilcox A.J., Skjaerven R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: A population-based study. Am. J. Obstet. Gynecol. 2015;213:518.e1–518.e8. doi: 10.1016/j.ajog.2015.06.001. PubMed DOI PMC
Crump C., Sundquist J., Sundquist K. Preterm delivery and long term mortality in women: National cohort and co-sibling study. BMJ. 2020;370:m2533. doi: 10.1136/bmj.m2533. PubMed DOI PMC
Hastie C.E., Smith G.C., Mackay D.F., Pell J.P. Maternal risk of ischaemic heart disease following elective and spontaneous PreTerm delivery: Retrospective cohort study of 750 350 singleton pregnancies. Int. J. Epidemiol. 2011;40:914–919. doi: 10.1093/ije/dyq270. PubMed DOI
Wu P., Gulati M., Kwok C.S., Wong C.W., Narain A., O’Brien S., Chew-Graham C.A., Verma G., Kadam U.T., Mamas M.A. Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis. J. Am. Heart Assoc. 2018;7:e007809. doi: 10.1161/JAHA.117.007809. PubMed DOI PMC
Walfisch A., Kessous R., Davidson E., Sergienko R., Beharier O., Sheiner E. Increased Risk for Ophthalmic Complications in Patients with a History of Preterm Delivery. Am. J. Perinatol. 2016;33:708–714. PubMed
Barrett P.M., McCarthy F.P., Evans M., Kublickas M., Perry I.J., Stenvinkel P., Kublickiene K., Khashan A.S. Risk of long-term renal disease in women with a history of preterm delivery: A population-based cohort study. BMC Med. 2020;18:66. doi: 10.1186/s12916-020-01534-9. PubMed DOI PMC
Swerdlow A.J., Wright L.B., Schoemaker M.J., Jones M.E. Maternal breast cancer risk in relation to birthweight and gestation of her offspring. Breast Cancer Res. 2018;20:110. doi: 10.1186/s13058-018-1035-6. PubMed DOI PMC
Melbye M., Wohlfahrt J., Andersen A.M., Westergaard T., Andersen P.K. Preterm delivery and risk of breast cancer. Br. J. Cancer. 1999;80:609–613. doi: 10.1038/sj.bjc.6690399. PubMed DOI PMC
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Postpartum profiling of microRNAs involved in pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int. J. Cardiol. 2019;291:158–167. doi: 10.1016/j.ijcard.2019.05.036. PubMed DOI
Hromadnikova I., Kotlabova K., Dvorakova L., Krofta L. Diabetes Mellitus and Cardiovascular Risk Assessment in Mothers with a History of Gestational Diabetes Mellitus Based on Postpartal Expression Profile of MicroRNAs Associated with Diabetes Mellitus and Cardiovascular and Cerebrovascular Diseases. Int. J. Mol. Sci. 2020;21:2437. doi: 10.3390/ijms21072437. PubMed DOI PMC
Lai E.C. Micro RNAs are complementary to 3’ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 2002;30:363–364. doi: 10.1038/ng865. PubMed DOI
Berezikov E., Cuppen E., Plasterk R.H. Approaches to microRNA discovery. Nat. Genet. 2006;38:S2–S7. doi: 10.1038/ng1794. PubMed DOI
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Shyu A.B., Wilkinson M.F., van Hoof A. Messenger RNA regulation: To translate or to degrade. EMBO J. 2008;27:471–481. doi: 10.1038/sj.emboj.7601977. PubMed DOI PMC
Colpaert R.M.W., Calore M. MicroRNAs in Cardiac Diseases. Cells. 2019;8:737. doi: 10.3390/cells8070737. PubMed DOI PMC
Kaur A., Mackin S.T., Schlosser K., Wong F.L., Elharram M., Delles C., Stewart D.J., Dayan N., Landry T., Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc. Res. 2020;116:1113–1124. doi: 10.1093/cvr/cvz302. PubMed DOI
Siasos G., Bletsa E., Stampouloglou P.K., Oikonomou E., Tsigkou V., Paschou S.A., Vlasis K., Marinos G., Vavuranakis M., Stefanadis C., et al. MicroRNAs in cardiovascular disease. Hell. J. Cardiol. 2020;61:165–173. doi: 10.1016/j.hjc.2020.03.003. PubMed DOI
Pang J.K.S., Phua Q.H., Soh B.S. Applications of miRNAs in cardiac development, disease progression and regeneration. Stem Cell Res. Ther. 2019;10:336. doi: 10.1186/s13287-019-1451-2. PubMed DOI PMC
Peters L.J.F., Biessen E.A.L., Hohl M., Weber C., van der Vorst E.P.C., Santovito D. Small Things Matter: Relevance of MicroRNAs in Cardiovascular Disease. Front. Physiol. 2020;11:793. doi: 10.3389/fphys.2020.00793. PubMed DOI PMC
Ghantous C.M., Kamareddine L., Farhat R., Zouein F.A., Mondello S., Kobeissy F., Zeidan A. Advances in Cardiovascular Biomarker Discovery. Biomedicines. 2020;8:552. doi: 10.3390/biomedicines8120552. PubMed DOI PMC
Melak T., Baynes H.W. Circulating microRNAs as possible biomarkers for coronary artery disease: A narrative review. EJIFCC. 2019;30:179–194. PubMed PMC
Shahshahan Z., Rasouli O. The use of maternal C-reactive protein in the predicting of preterm labor and tocolytic therapy in preterm labor women. Adv. Biomed. Res. 2014;3:154. doi: 10.4103/2277-9175.137864. PubMed DOI PMC
Hvilsom G.B., Thorsen P., Jeune B., Bakketeig L.S. C-reactive protein: A serological marker for preterm delivery? Acta Obstet. Gynecol. Scand. 2002;81:424–429. doi: 10.1034/j.1600-0412.2002.810509.x. PubMed DOI
Pitiphat W., Gillman M.W., Joshipura K.J., Williams P.L., Douglass C.W., Rich-Edwards J.W. Plasma C-reactive protein in early pregnancy and preterm delivery. Am. J. Epidemiol. 2005;162:1108–1113. doi: 10.1093/aje/kwi323. PubMed DOI PMC
Vogel I., Grove J., Thorsen P., Moestrup S.K., Uldbjerg N., Møller H.J. Preterm delivery predicted by soluble CD163 and CRP in women with symptoms of preterm delivery. BJOG. 2005;112:737–742. doi: 10.1111/j.1471-0528.2005.00557.x. PubMed DOI
Catov J.M., Bodnar L.M., Ness R.B., Barron S.J., Roberts J.M. Inflammation and dyslipidemia related to risk of spontaneous preterm birth. Am. J. Epidemiol. 2007;166:1312–1319. doi: 10.1093/aje/kwm273. PubMed DOI
Lohsoonthorn V., Qiu C., Williams M.A. Maternal serum C-reactive protein concentrations in early pregnancy and subsequent risk of preterm delivery. Clin. Biochem. 2007;40:330–335. doi: 10.1016/j.clinbiochem.2006.11.017. PubMed DOI PMC
Han Y.S., Ha E.H., Park H.S., Kim Y.J., Lee S.S. Relationships between pregnancy outcomes, biochemical markers and pre-pregnancy body mass index. Int. J. Obes. 2011;35:570–577. doi: 10.1038/ijo.2010.162. PubMed DOI PMC
Bullen B.L., Jones N.M., Holzman C.B., Tian Y., Senagore P.K., Thorsen P., Skogstrand K., Hougaard D.M., Sikorskii A. C-reactive protein and preterm delivery: Clues from placental findings and maternal weight. Reprod. Sci. 2013;20:715–722. doi: 10.1177/1933719112466302. PubMed DOI PMC
Kuller L.H., Tracy R.P., Shaten J., Meilahn E.N. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study. Multiple Risk Factor Intervention Trial. Am. J. Epidemiol. 1996;144:537–547. PubMed
Tracy R.P., Lemaitre R.N., Psaty B.M., Ives D.G., Evans R.W., Cushman M., Meilahn E.N., Kuller L.H. Relationship of C-reactive protein to risk of cardiovascular disease in the elderly. Results from the Cardiovascular Health Study and the Rural Health Promotion Project. Arterioscler. Thromb Vasc. Biol. 1997;17:1121–1127. doi: 10.1161/01.ATV.17.6.1121. PubMed DOI
Koenig W., Sund M., Fröhlich M., Fischer H.G., Löwel H., Döring A., Hutchinson W.L., Pepys M.B. C-Reactive protein, a sensitive marker of inflammation, predicts future risk of coronary heart disease in initially healthy middle-aged men: Results from the MONICA (Monitoring Trends and Determinants in Cardiovascular Disease) Augsburg Cohort Study, 1984 to 1992. Circulation. 1999;99:237–242. PubMed
Danesh J., Whincup P., Walker M., Lennon L., Thomson A., Appleby P., Gallimore J.R., Pepys M.B. Low grade inflammation and coronary heart disease: Prospective study and updated meta-analyses. BMJ. 2000;321:199–204. doi: 10.1136/bmj.321.7255.199. PubMed DOI PMC
Albert C.M., Ma J., Rifai N., Stampfer M.J., Ridker P.M. Prospective study of C-reactive protein, homocysteine, and plasma lipid levels as predictors of sudden cardiac death. Circulation. 2002;105:2595–2599. doi: 10.1161/01.CIR.0000017493.03108.1C. PubMed DOI
Sakkinen P., Abbott R.D., Curb J.D., Rodriguez B.L., Yano K., Tracy R.P. C-reactive protein and myocardial infarction. J. Clin. Epidemiol. 2002;55:445–451. doi: 10.1016/S0895-4356(01)00502-9. PubMed DOI
Ridker P.M. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–369. doi: 10.1161/01.CIR.0000053730.47739.3C. PubMed DOI
Folsom A.R., Chambless L.E., Ballantyne C.M., Coresh J., Heiss G., Wu K.K., Boerwinkle E., Mosley T.H., Jr., Sorlie P., Diao G., et al. An assessment of incremental coronary risk prediction using C-reactive protein and other novel risk markers: The atherosclerosis risk in communities study. Arch. Intern. Med. 2006;166:1368–1373. doi: 10.1001/archinte.166.13.1368. PubMed DOI
Davey Smith G., Timpson N., Lawlor D.A. C-reactive protein and cardiovascular disease risk: Still an unknown quantity? Ann. Intern. Med. 2006;145:70–72. doi: 10.7326/0003-4819-145-1-200607040-00130. PubMed DOI
Wilson P.W., Nam B.H., Pencina M., D’Agostino R.B.S., Benjamin E.J., O’Donnell C.J. C-reactive protein and risk of cardiovascular disease in men and women from the Framingham Heart Study. Arch. Intern. Med. 2005;165:2473–2478. doi: 10.1001/archinte.165.21.2473. PubMed DOI
Ørn S., Manhenke C., Ueland T., Damås J.K., Mollnes T.E., Edvardsen T., Aukrust P., Dickstein K. C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction. Eur. Heart J. 2009;30:1180–1186. doi: 10.1093/eurheartj/ehp070. PubMed DOI
Schiele F., Meneveau N., Seronde M.F., Chopard R., Descotes-Genon V., Dutheil J., Bassand J.P., Reseau de Cardiologie de Franche Comte C-reactive protein improves risk prediction in patients with acute coronary syndromes. Eur. Heart J. 2010;31:290–297. doi: 10.1093/eurheartj/ehp273. PubMed DOI
Menon R., Camargo M.C., Thorsen P., Lombardi S.J., Fortunato S.J. Amniotic fluid interleukin-6 increase is an indicator of spontaneous preterm birth in white but not black Americans. Am. J. Obstet. Gynecol. 2008;198:77.e1–77.e7. doi: 10.1016/j.ajog.2007.06.071. PubMed DOI
Chaemsaithong P., Romero R., Korzeniewski S.J., Martinez-Varea A., Dong Z., Yoon B.H., Hassan S.S., Chaiworapongsa T., Yeo L. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J. Matern Fetal Neonatal. Med. 2016;29:349–359. doi: 10.3109/14767058.2015.1006620. PubMed DOI PMC
Bacchiega B.C., Bacchiega A.B., Usnayo M.J., Bedirian R., Singh G., Pinheiro G.D. Interleukin 6 Inhibition and Coronary Artery Disease in a High-Risk Population: A Prospective Community-Based Clinical Study. J. Am. Heart Assoc. 2017;6:e005038. doi: 10.1161/JAHA.116.005038. PubMed DOI PMC
Enquobahrie D.A., Abetew D.F., Sorensen T.K., Willoughby D., Chidambaram K., Williams M.A. Placental microRNA expression in pregnancies complicated by preeclampsia. Am. J. Obstet. Gynecol. 2011;204:178.e12–178.e21. doi: 10.1016/j.ajog.2010.09.004. PubMed DOI PMC
Yu H.R., Li S.C., Tseng W.N., Tain Y.L., Chen C.C., Sheen J.M., Tiao M.M., Kuo H.C., Huang C.C., Hsieh K.S., et al. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats. Exp. Ther. Med. 2016;11:753–762. doi: 10.3892/etm.2016.2992. PubMed DOI PMC
Gao L., Li S.C., Moodie M. How Does Preterm Delivery Contribute to the Increased Burden of Cardiovascular Disease? Quantifying the Economic Impact of Cardiovascular Disease in Women with a History of Preterm Delivery. J. Women’s Health. 2020;29:1392–1400. doi: 10.1089/jwh.2019.7995. PubMed DOI
Romero R., Espinoza J., Kusanovic J.P., Gotsch F., Hassan S., Erez O., Chaiworapongsa T., Mazor M. The preterm parturition syndrome. BJOG. 2006;113:17–42. doi: 10.1111/j.1471-0528.2006.01120.x. PubMed DOI PMC
Guinn D.A., Goldenberg R.L., Hauth J.C., Andrews W.W., Thom E., Romero R. Risk factors for the development of preterm premature rupture of the membranes after arrest of preterm labor. Am. J. Obstet. Gynecol. 1995;173:1310–1315. doi: 10.1016/0002-9378(95)91377-7. PubMed DOI
Challis J.R., Lockwood C.J., Myatt L., Norman J.E., Strauss J.F., 3rd, Petraglia F. Inflammation and pregnancy. Reprod. Sci. 2009;16:206–215. doi: 10.1177/1933719108329095. PubMed DOI
Keelan J.A. Pharmacological inhibition of inflammatory pathways for the prevention of preterm birth. J. Reprod. Immunol. 2011;88:176–184. doi: 10.1016/j.jri.2010.11.003. PubMed DOI
Ekwo E.E., Gosselink C.A., Woolson R., Moawad A. Risks for premature rupture of amniotic membranes. Int. J. Epidemiol. 1993;22:495–503. doi: 10.1093/ije/22.3.495. PubMed DOI
Hadley C.B., Main D.M., Gabbe S.G. Risk factors for preterm premature rupture of the fetal membranes. Am. J. Perinatol. 1990;7:374–379. doi: 10.1055/s-2007-999527. PubMed DOI
Naeye R.L., Peters E.C. Causes and consequences of premature rupture of fetal membranes. Lancet. 1980;1:192–197. doi: 10.1016/S0140-6736(80)90674-1. PubMed DOI
Menon R., Boldogh I., Hawkins H.K., Woodson M., Polettini J., Syed T.A., Fortunato S.J., Saade G.R., Papaconstantinou J., Taylor R.N. Histological evidence of oxidative stress and premature senescence in preterm premature rupture of the human fetal membranes recapitulated in vitro. Am. J. Pathol. 2014;184:1740–1751. doi: 10.1016/j.ajpath.2014.02.011. PubMed DOI
Menon R., Polettini J., Syed T.A., Saade G.R., Boldogh I. Expression of 8-oxoguanine glycosylase in human fetal membranes. Am. J. Reprod. Immunol. 2014;72:75–84. doi: 10.1111/aji.12220. PubMed DOI
Menon R., Yu J., Basanta-Henry P., Brou L., Berga S.L., Fortunato S.J., Taylor R.N. Short fetal leukocyte telomere length and preterm prelabor rupture of the membranes. PLoS ONE. 2013;7:e31136. doi: 10.1371/journal.pone.0031136. PubMed DOI PMC
Goldenberg R.L., Culhane J.F., Iams J.D., Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84. doi: 10.1016/S0140-6736(08)60074-4. PubMed DOI PMC
Moutquin J.M., Milot Roy V., Irion O. Preterm prevention: Effectivenss of current strategies. J. Soc. Obstet. Gynaecol. Can. 1996;18:571–588. doi: 10.1016/S0849-5831(16)30300-7. DOI
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics Practice Bulletin No. 172: Premature Rupture of Membranes. Obstet. Gynecol. 2016;128:e165–e177. doi: 10.1097/AOG.0000000000001712. PubMed DOI
Abbassi-Ghanavati M., Greer L.G., Cunningham F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstet. Gynecol. 2009;114:1326–1331. doi: 10.1097/AOG.0b013e3181c2bde8. PubMed DOI
Yoon B.H., Romero R., Moon J.B., Shim S.S., Kim M., Kim G., Jun J.K. Clinical significance of intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 2001;185:1130–1136. doi: 10.1067/mob.2001.117680. PubMed DOI
Committee on Obstetric Practice Committee Opinion No. 713: Antenatal Corticosteroid Therapy for Fetal Maturation. Obstet. Gynecol. 2017;130:e102–e109. doi: 10.1097/AOG.0000000000002237. PubMed DOI
Miracle X., Di Renzo G.C., Stark A., Fanaroff A., Carbonell-Estrany X., Saling E., Coordinators of World Associatin of Perinatal Medicine Prematurity Working Group Guideline for the use of antenatal corticosteroids for fetal maturation. J. Perinat. Med. 2008;36:191–196. doi: 10.1515/JPM.2008.032. PubMed DOI
Skoll A., Boutin A., Bujold E., Burrows J., Crane J., Geary M., Jain V., Lacaze-Masmonteil T., Liauw J., Mundle W., et al. No. 364-Antenatal Corticosteroid Therapy for Improving Neonatal Outcomes. J. Obstet. Gynaecol. Can. 2018;40:1219–1239. doi: 10.1016/j.jogc.2018.04.018. PubMed DOI
The WHO Reproductive Health Library [(accessed on 13 October 2020)]; Available online: https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirth-and-postpartum-care/pregnancy-complications/preterm-birth/who-reccommendation-on-routine-antibiotic-administration-for-women-in-preterm-labour-with-intact-amniotic-membranes.
American College of Obstetricians and Gynecologists’ Committee on Practice Bulletins—Obstetrics Practice Bulletin No. 171: Management of Preterm Labor. Obstet. Gynecol. 2016;128:e155–e164. doi: 10.1097/AOG.0000000000001711. PubMed DOI
The WHO Reproductive Health Library [(accessed on 13 October 2020)]; Available online: https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirth-and-postpartum-care/pregnancy-complications/preterm-birth/who-reccommendation-on-the-use-of-tocolytic-treatment-for-inhibiting-preterm-labour.
Miyazaki C., Moreno Garcia R., Ota E., Swa T., Oladapo O.T., Mori R. Tocolysis for inhibiting preterm birth in extremely preterm birth, multiple gestations and in growth-restricted fetuses: A systematic review and meta-analysis. Reprod. Health. 2016;13:4. doi: 10.1186/s12978-015-0115-7. PubMed DOI PMC
The World Health Organization [(accessed on 13 October 2020)]; Available online: https://www.who.int/news-room/fact-sheets/detail/preterm-birth.
Quinn J.A., Munoz F.M., Gonik B., Frau L., Cutland C., Mallett-Moore T., Kissou A., Wittke F., Das M., Nunes T., et al. Preterm birth: Case definition & guidelines for data collection, analysis, and presentation of immunisation safety data. Vaccine. 2016;34:6047–6056. PubMed PMC
MSD Manual [(accessed on 13 January 2021)]; Available online: https://www.msdmanuals.com/professional/pediatrics/perinatal-problems/premature-infants.
The WHO Reproductive Health Library [(accessed on 13 October 2020)]; Available online: https://extranet.who.int/rhl/topics/preconception-pregnancy-childbirth-and-postpartum-care/pregnancy-complications/preterm-birth/who-reccommendation-on-the-optimal-mode-of-birth-for-women-in-refractory-preterm-labour.
Morfaw F., Gao A., Moore G., Bacchini F., Santaguida P., Mukerji A., McDonald S.D. Experiences, knowledge, and preferences of Canadian parents regarding preterm mode of birth. J. Obstet. Gynaecol. Can. 2020;S1701–S2163:30967–30971. PubMed
Thanh B.Y.L., Lumbiganon P., Pattanittum P., Laopaiboon M., Vogel J.P., Oladapo O.T., Pileggi-Castro C., Mori R., Jayaratne K., Qureshi Z., et al. Mode of delivery and pregnancy outcomes in preterm birth: A secondary analysis of the WHO Global and Multi-country Surveys. Sci. Rep. 2019;9:15556. doi: 10.1038/s41598-019-52015-w. PubMed DOI PMC
The American College of Obstetricans and Gynecologists [(accessed on 14 October 2020)]; Available online: https://www.acog.org/clinical/clinical-guidance/committee-opinion/articles/2015/10/the-apgar-score.
Apgar V. A proposal for a new method of evaluation of the newborn infant. Curr. Res. Anesth. Analg. 1953;32:260–267. doi: 10.1213/00000539-195301000-00041. PubMed DOI
Apgar V., Holaday D.A., James L.S., Weisbrot I.M., Berrien C. Evaluation of the newborn infant; second report. J. Am. Med. Assoc. 1958;168:1985–1988. doi: 10.1001/jama.1958.03000150027007. PubMed DOI
American Academy of Pediatrics and American Heart Association . Textbook of Neonatal Resuscitation. 6th ed. American Academy of Pediatrics and American Heart Association; Elk Grove Village, IL, USA: 2011.
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Vandesompele J., de Preter K., Pattyn F., Poppe B., Van Roy N., de Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:research0034. doi: 10.1186/gb-2002-3-7-research0034. PubMed DOI PMC
Shapiro S.S., Wilk M.B. An Analysis of Variance Test for Normality (Complete Samples) Biometrika. 1965;52:591–611. doi: 10.1093/biomet/52.3-4.591. DOI
Dweep H., Sticht C., Pandey P., Gretz N. miRWalk—Database: Prediction of possible miRNA binding sites by “walking” the genes of three genomes. J. Biomed. Inform. 2011;44:839–847. doi: 10.1016/j.jbi.2011.05.002. PubMed DOI