N6-methyladenosine RNA modification regulates photosynthesis during photodamage in plants
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36460653
PubMed Central
PMC9718803
DOI
10.1038/s41467-022-35146-z
PII: 10.1038/s41467-022-35146-z
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * genetika MeSH
- fotosyntéza * genetika MeSH
- messenger RNA genetika MeSH
- umlčování genů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- N-methyladenosine MeSH Prohlížeč
N6-methyladenosine (m6A) modification of mRNAs affects many biological processes. However, the function of m6A in plant photosynthesis remains unknown. Here, we demonstrate that m6A modification is crucial for photosynthesis during photodamage caused by high light stress in plants. The m6A modification levels of numerous photosynthesis-related transcripts are changed after high light stress. We determine that the Arabidopsis m6A writer VIRILIZER (VIR) positively regulates photosynthesis, as its genetic inactivation drastically lowers photosynthetic activity and photosystem protein abundance under high light conditions. The m6A levels of numerous photosynthesis-related transcripts decrease in vir mutants, extensively reducing their transcript and translation levels, as revealed by multi-omics analyses. We demonstrate that VIR associates with the transcripts of genes encoding proteins with functions related to photoprotection (such as HHL1, MPH1, and STN8) and their regulatory proteins (such as regulators of transcript stability and translation), promoting their m6A modification and maintaining their stability and translation efficiency. This study thus reveals an important mechanism for m6A-dependent maintenance of photosynthetic efficiency in plants under high light stress conditions.
Zobrazit více v PubMed
Eberhard S, Finazzi G, Wollman F-A. The dynamics of photosynthesis. Annu. Rev. Genet. 2008;42:463–515. doi: 10.1146/annurev.genet.42.110807.091452. PubMed DOI
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. Annu. Rev. Plant Biol. 2013;64:609–635. doi: 10.1146/annurev-arplant-050312-120124. PubMed DOI
Vinyard DJ, Ananyev GM, Charles Dismukes G. Photosystem II: the reaction center of oxygenic photosynthesis. Annu. Rev. Biochem. 2013;82:577–606. doi: 10.1146/annurev-biochem-070511-100425. PubMed DOI
Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol. Chem. 2007;388:927–935. doi: 10.1515/BC.2007.118. PubMed DOI
Wada M, Kagawa T, Sato Y. Chloroplast movement. Annu. Rev. Plant Biol. 2003;54:455–468. doi: 10.1146/annurev.arplant.54.031902.135023. PubMed DOI
Winkel-Shirley B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. plant Biol. 2002;5:218–223. doi: 10.1016/S1369-5266(02)00256-X. PubMed DOI
Anderson, J. M. Strategies of Photosynthetic Adaptations and Acclimation (Taylor and Francis, 2000).
Ruban AV. Evolution under the sun: optimizing light harvesting in photosynthesis. J. Exp. Bot. 2015;66:7–23. doi: 10.1093/jxb/eru400. PubMed DOI
Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ. High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim. Biophys. Acta (BBA)—Bioenerg. 2013;1827:411–419. doi: 10.1016/j.bbabio.2012.12.003. PubMed DOI
Pospíšil P. Molecular mechanisms of production and scavenging of reactive oxygen species by photosystem II. Biochim. Biophys. Acta (BBA)—Bioenerg. 2012;1817:218–231. doi: 10.1016/j.bbabio.2011.05.017. PubMed DOI
Ruban AV. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiol. 2016;170:1903–1916. doi: 10.1104/pp.15.01935. PubMed DOI PMC
Takahashi S, Badger MR. Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci. 2011;16:53–60. doi: 10.1016/j.tplants.2010.10.001. PubMed DOI
Jarvi S, Suorsa M, Aro EM. Photosystem II repair in plant chloroplasts—regulation, assisting proteins and shared components with photosystem II biogenesis. Biochim. Biophys. Acta. 2015;1847:900–909. doi: 10.1016/j.bbabio.2015.01.006. PubMed DOI
Huang J, Zhao X, Chory J. The Arabidopsis transcriptome responds specifically and dynamically to high light stress. Cell Rep. 2019;29:4186–4199.e4183. doi: 10.1016/j.celrep.2019.11.051. PubMed DOI PMC
Suzuki N, et al. Ultra‐fast alterations in mRNA levels uncover multiple players in light stress acclimation in plants. Plant J. 2015;84:760–772. doi: 10.1111/tpj.13039. PubMed DOI PMC
Chen J-H, et al. Nuclear-encoded synthesis of the D1 subunit of photosystem II increases photosynthetic efficiency and crop yield. Nat. Plants. 2020;6:570–580. doi: 10.1038/s41477-020-0629-z. PubMed DOI
Zhang, M. et al. Increased photosystem II translation efficiency as an important photoprotective mechanism in an Arabidopsis thaliana ecotype (Tibet-0) adapted to high light environments. Environ. Exp. Bot.183, 104350 (2020).
Rossel JB, Wilson IW, Pogson BJ. Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol. 2002;130:1109–1120. doi: 10.1104/pp.005595. PubMed DOI PMC
Floris M, Bassi R, Robaglia C, Alboresi A, Lanet E. Post-transcriptional control of light-harvesting genes expression under light stress. Plant Mol. Biol. 2013;82:147–154. doi: 10.1007/s11103-013-0046-z. PubMed DOI
Li Z, Wakao S, Fischer BB, Niyogi KK. Sensing and responding to excess light. Annu. Rev. Plant Biol. 2009;60:239–260. doi: 10.1146/annurev.arplant.58.032806.103844. PubMed DOI
Li X, Wang H-B, Jin H-L. Light signaling-dependent regulation of PSII biogenesis and functional maintenance. Plant Physiol. 2020;183:1855–1868. doi: 10.1104/pp.20.00200. PubMed DOI PMC
Yue Y, Liu J, He C. RNA N6-methyladenosine methylation in post-transcriptional gene expression regulation. Genes Dev. 2015;29:1343–1355. doi: 10.1101/gad.262766.115. PubMed DOI PMC
Fu Y, Dominissini D, Rechavi G, He C. Gene expression regulation mediated through reversible m6A RNA methylation. Nat. Rev. Genet. 2014;15:293. doi: 10.1038/nrg3724. PubMed DOI
Luo G-Z, et al. Unique features of the m6A methylome in Arabidopsis thaliana. Nat. Commun. 2014;5:1–8. doi: 10.1038/ncomms6630. PubMed DOI PMC
Kim J, Shim S, Lee H, Seo PJ. m6A mRNA modification as a new layer of gene regulation in plants. J. Plant Biol. 2020;63:97–106. doi: 10.1007/s12374-020-09239-5. DOI
Yang Y, Hsu PJ, Chen Y-S, Yang Y-G. Dynamic transcriptomic m6A decoration: writers, erasers, readers and functions in RNA metabolism. Cell Res. 2018;28:616–624. doi: 10.1038/s41422-018-0040-8. PubMed DOI PMC
Frye M, Harada BT, Behm M, He C. RNA modifications modulate gene expression during development. Science. 2018;361:1346–1349. doi: 10.1126/science.aau1646. PubMed DOI PMC
Luo JH, et al. Natural Variation in RNA m6A Methylation and Its Relationship with Translational Status. Plant Physiol. 2020;182:332–344. doi: 10.1104/pp.19.00987. PubMed DOI PMC
Yue H, Nie X, Yan Z, Weining S. N6‐methyladenosine regulatory machinery in plants: composition, function and evolution. Plant Biotechnol. J. 2019;17:1194–1208. doi: 10.1111/pbi.13149. PubMed DOI PMC
Arribas-Hernández L, Brodersen P. Occurrence and functions of m6A and other covalent modifications in plant mRNA. Plant Physiol. 2020;182:79–96. doi: 10.1104/pp.19.01156. PubMed DOI PMC
Zhong S, et al. MTA is an Arabidopsis messenger RNA adenosine methylase and interacts with a homolog of a sex-specific splicing factor. Plant Cell. 2008;20:1278–1288. doi: 10.1105/tpc.108.058883. PubMed DOI PMC
Bodi Z, et al. Adenosine methylation in Arabidopsis mRNA is associated with the 3′end and reduced levels cause developmental defects. Front. Plant Sci. 2012;3:48. doi: 10.3389/fpls.2012.00048. PubMed DOI PMC
Shen L, et al. N6-methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Dev. Cell. 2016;38:186–200. doi: 10.1016/j.devcel.2016.06.008. PubMed DOI PMC
Růžička K, et al. Identification of factors required for m6A mRNA methylation in Arabidopsis reveals a role for the conserved E3 ubiquitin ligase HAKAI. N. Phytol. 2017;215:157–172. doi: 10.1111/nph.14586. PubMed DOI PMC
Martínez-Pérez M, et al. Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proc. Natl Acad. Sci. 2017;114:10755–10760. doi: 10.1073/pnas.1703139114. PubMed DOI PMC
Duan H-C, et al. ALKBH10B is an RNA N6-methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell. 2017;29:2995–3011. doi: 10.1105/tpc.16.00912. PubMed DOI PMC
Wei L-H, et al. The m6A reader ECT2 controls trichome morphology by affecting mRNA stability in Arabidopsis. Plant Cell. 2018;30:968–985. doi: 10.1105/tpc.17.00934. PubMed DOI PMC
Arribas-Hernández L, et al. An m6A-YTH module controls developmental timing and morphogenesis in Arabidopsis. Plant Cell. 2018;30:952–967. doi: 10.1105/tpc.17.00833. PubMed DOI PMC
Scutenaire J, et al. The YTH domain protein ECT2 is an m6A reader required for normal trichome branching in Arabidopsis. Plant Cell. 2018;30:986–1005. doi: 10.1105/tpc.17.00854. PubMed DOI PMC
Song P, et al. Arabidopsis N6-methyladenosine reader CPSF30-L recognizes FUE signals to control polyadenylation site choice in liquid-like nuclear bodies. Mol. Plant. 2021;14:571–587. doi: 10.1016/j.molp.2021.01.014. PubMed DOI
Tzafrir I, et al. Identification of genes required for embryo development in Arabidopsis. Plant Physiol. 2004;135:1206–1220. doi: 10.1104/pp.104.045179. PubMed DOI PMC
Arribas-Hernández, L. et al. Recurrent requirement for the m6A-ECT2/ECT3/ECT4 axis in the control of cell proliferation during plant organogenesis. Development147, (2020). PubMed PMC
Li Y, et al. Transcriptome-wide N6-methyladenosine profiling of rice callus and leaf reveals the presence of tissue-specific competitors involved in selective mRNA modification. RNA Biol. 2014;11:1180–1188. doi: 10.4161/rna.36281. PubMed DOI PMC
Anderson SJ, et al. N6-methyladenosine inhibits local ribonucleolytic cleavage to stabilize mRNAs in Arabidopsis. Cell Rep. 2018;25:1146–1157.e1143. doi: 10.1016/j.celrep.2018.10.020. PubMed DOI
Kühn K, Bohne A-V, Liere K, Weihe A, Börner T. Arabidopsis phage-type RNA polymerases: accurate in vitro transcription of organellar genes. Plant Cell. 2007;19:959–971. doi: 10.1105/tpc.106.046839. PubMed DOI PMC
Boccalandro HE, et al. PHYTOCHROME KINASE SUBSTRATE1 regulates root phototropism and gravitropism. Plant Physiol. 2008;146:108–115. doi: 10.1104/pp.107.106468. PubMed DOI PMC
Garcia-Molina A, Leister D. Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. Nat. Plants. 2020;6:9–12. doi: 10.1038/s41477-019-0572-z. PubMed DOI
Jin H, et al. Hypersensitive to high light1 interacts with low quantum yield of photosystem II1 and functions in protection of photosystem II from photodamage in Arabidopsis. Plant Cell. 2014;26:1213–1229. doi: 10.1105/tpc.113.122424. PubMed DOI PMC
Liu J, Last RL. A land plant‐specific thylakoid membrane protein contributes to photosystem II maintenance in A rabidopsis thaliana. Plant J. 2015;82:731–743. doi: 10.1111/tpj.12845. PubMed DOI
Link S, Engelmann K, Meierhoff K, Westhoff P. The atypical short-chain dehydrogenases HCF173 and HCF244 are jointly involved in translational initiation of the psbA mRNA of Arabidopsis. Plant Physiol. 2012;160:2202–2218. doi: 10.1104/pp.112.205104. PubMed DOI PMC
Chassin Y, Kapri-Pardes E, Sinvany G, Arad T, Adam Z. Expression and characterization of the thylakoid lumen protease DegP1 from Arabidopsis. Plant Physiol. 2002;130:857–864. doi: 10.1104/pp.007922. PubMed DOI PMC
Albiniak AM, Baglieri J, Robinson C. Targeting of lumenal proteins across the thylakoid membrane. J. Exp. Bot. 2012;63:1689–1698. doi: 10.1093/jxb/err444. PubMed DOI
Bonardi V, et al. Photosystem II core phosphorylation and photosynthetic acclimation require two different protein kinases. Nature. 2005;437:1179–1182. doi: 10.1038/nature04016. PubMed DOI
Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science. 2009;324:218–223. doi: 10.1126/science.1168978. PubMed DOI PMC
Yu, Q. et al. RNA demethylation increases the yield and biomass of rice and potato plants in field trials. Nat. Biotechnol.39, 1581–1588 (2021). PubMed
Wang X, et al. N 6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–120. doi: 10.1038/nature12730. PubMed DOI PMC
Liu J, Last RL. MPH1 is a thylakoid membrane protein involved in protecting photosystem II from photodamage in land plants. Plant Signal. Behav. 2015;10:e1076602. doi: 10.1080/15592324.2015.1076602. PubMed DOI PMC
Yahalom A, et al. Arabidopsis eIF3e is regulated by the COP9 signalosome and has an impact on development and protein translation. Plant J. 2008;53:300–311. doi: 10.1111/j.1365-313X.2007.03347.x. PubMed DOI
Halpert M, Liveanu V, Glaser F, Schuster G. The Arabidopsis chloroplast RNase J displays both exo-and robust endonucleolytic activities. Plant Mol. Biol. 2019;99:17–29. doi: 10.1007/s11103-018-0799-5. PubMed DOI
Stoppel R, Meurer J. The cutting crew–ribonucleases are key players in the control of plastid gene expression. J. Exp. Bot. 2012;63:1663–1673. doi: 10.1093/jxb/err401. PubMed DOI
Asakura Y, Galarneau E, Watkins KP, Barkan A, van Wijk KJ. Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol. 2012;159:961–974. doi: 10.1104/pp.112.197525. PubMed DOI PMC
Chantarachot T, et al. DHH1/DDX6-like RNA helicases maintain ephemeral half-lives of stress-response mRNAs. Nat. Plants. 2020;6:675–685. doi: 10.1038/s41477-020-0681-8. PubMed DOI
Kramer MC, Janssen KA. N6-methyladenosine and RNA secondary structure affect transcript stability and protein abundance during systemic salt stress in Arabidopsis. Plant Direct. 2020;4:e00239. doi: 10.1002/pld3.239. PubMed DOI PMC
Hu J, et al. N6 -Methyladenosine mRNA methylation is important for salt stress tolerance in Arabidopsis. Plant J. 2021;106:1759–1775. doi: 10.1111/tpj.15270. PubMed DOI
Tang Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature. Dev. Cell. 2020;53:272–286.e277. doi: 10.1016/j.devcel.2020.03.009. PubMed DOI
Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide mapping of N6-methyladenosine by m6A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 2013;8:176–189. doi: 10.1038/nprot.2012.148. PubMed DOI
Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m6A methyltransferase METTL3 promotes translation in human cancer cells. Mol. Cell. 2016;62:335–345. doi: 10.1016/j.molcel.2016.03.021. PubMed DOI PMC
Parker MT, et al. Nanopore direct RNA sequencing maps the complexity of Arabidopsis mRNA processing and m6A modification. Elife. 2020;9:e49658. doi: 10.7554/eLife.49658. PubMed DOI PMC
Li L, Aro E-M, Millar AH. Mechanisms of photodamage and protein turnover in photoinhibition. Trends Plant Sci. 2018;23:667–676. doi: 10.1016/j.tplants.2018.05.004. PubMed DOI
Tian YN, et al. Arabidopsis CHLOROPHYLLASE 1 protects young leaves from long-term photodamage by facilitating FtsH-mediated D1 degradation in photosystem II repair. Mol. plant. 2021;14:1149–1167. doi: 10.1016/j.molp.2021.04.006. PubMed DOI
Chen, H., Zou, W. & Jie, Z. Ribonuclease J is required for chloroplast and embryo development in Arabidopsis. J. Exp. Bot.66, 2079–2091 (2015). PubMed PMC
Xia C, et al. The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis. Plant J. 2010;63:189–202. doi: 10.1111/j.1365-313X.2010.04237.x. PubMed DOI PMC
Henry, R., Goforth, R. L. & Schünemann, D. In The Enzymes (eds Dalbey, R. E., Koehler, C. M. & Tamanoi, F.) (Elsevier, 2007).
Karim S, et al. A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. Plant Mol. Biol. 2014;84:675–692. doi: 10.1007/s11103-013-0161-x. PubMed DOI
Shimada H, et al. Arabidopsis cotyledon-specific chloroplast biogenesis factor CYO1 is a protein disulfide isomerase. Plant Cell. 2007;19:3157–3169. doi: 10.1105/tpc.107.051714. PubMed DOI PMC
Schult K, et al. The nuclear-encoded factor HCF173 is involved in the initiation of translation of the psbA mRNA in Arabidopsis thaliana. Plant Cell. 2007;19:1329–1346. doi: 10.1105/tpc.106.042895. PubMed DOI PMC
Peng L, et al. LOW PSII ACCUMULATION1 is involved in efficient assembly of photosystem II in Arabidopsis thaliana. Plant Cell. 2006;18:955–969. doi: 10.1105/tpc.105.037689. PubMed DOI PMC
Dominguez-Solis JR, et al. A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc. Natl Acad. Sci. 2008;105:16386–16391. doi: 10.1073/pnas.0808204105. PubMed DOI PMC
Lima A, et al. A redox-active FKBP-type immunophilin functions in accumulation of the photosystem II supercomplex in Arabidopsis thaliana. Proc. Natl Acad. Sci. 2006;103:12631–12636. doi: 10.1073/pnas.0605452103. PubMed DOI PMC
Schuhmann H, Adamska I. Deg proteases and their role in protein quality control and processing in different subcellular compartments of the plant cell. Physiol. Plant. 2012;145:224–234. doi: 10.1111/j.1399-3054.2011.01533.x. PubMed DOI
Zaltsman A, Ori N, Adam Z. Two types of FtsH protease subunits are required for chloroplast biogenesis and photosystem II repair in Arabidopsis. Plant Cell. 2005;17:2782–2790. doi: 10.1105/tpc.105.035071. PubMed DOI PMC
Bečková M, et al. Association of Psb28 and Psb27 proteins with PSII-PSI supercomplexes upon exposure of Synechocystis sp. PCC 6803 to high light. Mol. Plant. 2017;10:62–72. doi: 10.1016/j.molp.2016.08.001. PubMed DOI
Lu Y. Identification and roles of photosystem II assembly, stability, and repair factors in Arabidopsis. Front. plant Sci. 2016;7:168. doi: 10.3389/fpls.2016.00168. PubMed DOI PMC
Adamiec M, Drath M, Jackowski G. Redox state of plastoquinone pool regulates expression of Arabidopsis thaliana genes in response to elevated irradiance. Acta Biochim Pol. 2008;55:161–174. doi: 10.18388/abp.2008_3176. PubMed DOI
Kimura M, et al. Identification of Arabidopsis genes regulated by high light–stress using cDNA microarray. Photochem. Photobiol. 2003;77:226–233. PubMed
Smith H. Phytochromes and light signal perception by plants—an emerging synthesis. Nature. 2000;407:585–591. doi: 10.1038/35036500. PubMed DOI
Leivar P, Quail PH. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 2011;16:19–28. doi: 10.1016/j.tplants.2010.08.003. PubMed DOI PMC
Lu Y, et al. New connections across pathways and cellular processes: industrialized mutant screening reveals novel associations between diverse phenotypes in Arabidopsis. Plant Physiol. 2008;146:1482–1500. doi: 10.1104/pp.107.115220. PubMed DOI PMC
Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc. 2012;7:1534–1550. doi: 10.1038/nprot.2012.086. PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC
Meng J, et al. A protocol for RNA methylation differential analysis with MeRIP-Seq data and exomePeak R/Bioconductor package. Methods. 2014;69:274–281. doi: 10.1016/j.ymeth.2014.06.008. PubMed DOI PMC
Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC
Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016;11:1650. doi: 10.1038/nprot.2016.095. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:1–21. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Calviello L, et al. Detecting actively translated open reading frames in ribosome profiling data. Nat. Methods. 2016;13:165–170. doi: 10.1038/nmeth.3688. PubMed DOI
Zhong Y, et al. RiboDiff: detecting changes of mRNA translation efficiency from ribosome footprints. Bioinformatics. 2017;33:139–141. doi: 10.1093/bioinformatics/btw585. PubMed DOI PMC
Jin H, et al. Low photosynthetic efficiency 1 is required for light-regulated photosystem II biogenesis in Arabidopsis. Proc. Natl Acad. Sci. 2018;115:E6075–E6084. doi: 10.1073/pnas.1807364115. PubMed DOI PMC
Daras G, et al. LEFKOTHEA regulates nuclear and chloroplast mRNA splicing in plants. Dev. Cell. 2019;50:767–779.e767. doi: 10.1016/j.devcel.2019.07.024. PubMed DOI