Influence of Hafnium Addition on the Microstructure, Microhardness and Corrosion Resistance of Ti20Ta20Nb20(ZrMo)20-xHfx (where x = 0, 5, 10, 15 and 20 at.%) High Entropy Alloys
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
36837086
PubMed Central
PMC9965103
DOI
10.3390/ma16041456
PII: ma16041456
Knihovny.cz E-resources
- Keywords
- corrosion resistance, high entropy alloys, mechanical properties, microstructure, multi-component alloys,
- Publication type
- Journal Article MeSH
The presented work aimed to investigate the influence of the hafnium/(zirconium and molybdenum) ratio on the microstructure, microhardness and corrosion resistance of Ti20Ta20Nb20(ZrMo)20-xHfx (where x = 0, 5, 10, 15 and 20 at.%) high entropy alloys in an as-cast state produced from elemental powder and obtained via the vacuum arc melting technique. All studied alloys contained only biocompatible elements and were chosen based on the thermodynamical calculations of phase formation predictions after solidification. Thermodynamical calculations predicted the presence of multi-phase, body-centered cubic phases, which were confirmed using X-ray diffraction and scanning electron microscopy. Segregation of alloying elements was recorded using elemental distribution maps. A decrease in microhardness with an increase in hafnium content in the studied alloys was revealed (512-482 HV1). The electrochemical measurements showed that the studied alloys exhibited a high corrosion resistance in a simulated body fluid environment (breakdown potential 4.60-5.50 V vs. SCE).
See more in PubMed
Matuła I., Dercz G., Sowa M., Barylski A., Duda P. Fabrication and Characterization of New Functional Graded Material Based on Ti, Ta, and Zr by Powder Metallurgy Method. Materials. 2021;14:6609. doi: 10.3390/ma14216609. PubMed DOI PMC
Matyja E., Prusik K., Zubko M., Dercz G. Microstructure refinement and mechanical properties of the NiCoMnIn alloy obtained by arc melting technique from mechanically alloyed powder. J. Alloys Compd. 2021;859:157841. doi: 10.1016/j.jallcom.2020.157841. DOI
Matyja E., Prusik K., Zubko M., Dercz G., Glowka K. Structure of the Ni-Co-Mn-In alloy obtained by mechanical alloying and sintering. J. Alloys Compd. 2019;801:529–535. doi: 10.1016/j.jallcom.2019.06.079. DOI
Zhang Y. High-Entropy Materials: A Brief Introduction. Springer Singapore; Singapore: 2019. History of High-Entropy Materials; pp. 1–33.
Senkov O.N., Miller J.D., Miracle D.B., Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 2015;6:1–10. doi: 10.1038/ncomms7529. PubMed DOI PMC
Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI
Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Yeh J.-W. In: Physical Metallurgy BT-High-Entropy Alloys: Fundamentals and Applications. Gao M.C., Yeh J.-W., Liaw P.K., Zhang Y., editors. Springer International Publishing; Cham, Switzerland: 2016. pp. 51–113.
Manivasagam G., Dhinasekaran D., Rajamanickam A. Biomedical Implants: Corrosion and its Prevention - A Review. Recent Patents Corros. Sci. 2010;2:40–54. doi: 10.2174/1877610801002010040. DOI
Rituerto Sin J., Suñer S., Neville A., Emami N. Fretting corrosion of hafnium in simulated body fluids. Tribol. Int. 2014;75:10–15. doi: 10.1016/j.triboint.2014.03.003. PubMed DOI
Matsuno H., Yokoyama A., Watari F., Uo M., Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253–1262. doi: 10.1016/S0142-9612(00)00275-1. PubMed DOI
Rituerto Sin J., Neville A., Emami N. Corrosion and tribocorrosion of hafnium in simulated body fluids. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1157–1164. doi: 10.1002/jbm.b.33097. PubMed DOI
Mohammadi S., Esposito M., Cucu M., Ericson L.E., Thomsen P. Tissue response to hafnium. J. Mater. Sci. Mater. Med. 2001;12:603–611. doi: 10.1023/A:1011237610299. PubMed DOI
Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903. doi: 10.1016/j.actbio.2012.06.037. PubMed DOI
Luo J.-P., Jia X., Zheng D.-L., Wang G., Sun J.-F., Yan M. A novel approach to achieving a low Young’s modulus in titanium-based metallic glasses. Emerg. Mater. Res. 2019;8:22–28. doi: 10.1680/jemmr.16.00098. DOI
Rajaraman V., Nallaswamy D., Ganapathy D., Rajeshkumar S., Ariga P., Ganesh K. Effect of Hafnium Coating on Osseointegration of Titanium Implants: A Split Mouth Animal Study. J. Nanomater. 2021;2021 doi: 10.1155/2021/7512957. DOI
Rajaraman V., Dhanraj M., Jain A.R. Dental implant biomaterials - Newer metals and their alloys. Drug Invent. Today. 2018;10:986–989.
Wang S.P., Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C. 2017;73:80–89. doi: 10.1016/j.msec.2016.12.057. PubMed DOI
Todai M., Nagase T., Hori T., Matsugaki A., Sekita A., Nakano T. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017;129:65–68. doi: 10.1016/j.scriptamat.2016.10.028. DOI
Shittu J., Pole M., Cockerill I., Sadeghilaridjani M., Reddy L.V.K., Manivasagam G., Singh H., Grewal H.S., Arora H.S., Mukherjee S. Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment. ACS Appl. Bio Mater. 2020;3:8890–8900. doi: 10.1021/acsabm.0c01181. PubMed DOI
Hori T., Nagase T., Todai M., Matsugaki A., Nakano T. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Scr. Mater. 2019;172:83–87. doi: 10.1016/j.scriptamat.2019.07.011. DOI
Gurel S., Yagci M.B., Bal B., Canadinc D. Corrosion behavior of novel Titanium-based high entropy alloys designed for medical implants. Mater. Chem. Phys. 2020;254:123377. doi: 10.1016/j.matchemphys.2020.123377. DOI
Motallebzadeh A., Peighambardoust N.S., Sheikh S., Murakami H., Guo S., Canadinc D. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics. 2019;113:106572. doi: 10.1016/j.intermet.2019.106572. DOI
Yang W., Liu Y., Pang S., Liaw P.K., Zhang T. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics. 2020;124:106845. doi: 10.1016/j.intermet.2020.106845. DOI
Yuan Y., Wu Y., Yang Z., Liang X., Lei Z., Huang H., Wang H., Liu X., An K., Wu W., et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019;7:225–231. doi: 10.1080/21663831.2019.1584592. DOI
Yang W., Pang S., Liu Y., Wang Q., Liaw P.K., Zhang T. Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics. 2022;141:107421. doi: 10.1016/j.intermet.2021.107421. DOI
Yang X., Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021. DOI
Glowka K., Zubko M., Świec P., Prusik K., Albrecht R., Dercz G., Loskot J., Witala B., Stróż D. Microstructure and mechanical properties of Co-Cr-Mo-Si-Y-Zr high entropy alloy. Metals. 2020;10:1456. doi: 10.3390/met10111456. DOI
Glowka K., Zubko M., Świec P., Prusik K., Szklarska M., Chrobak D., Lábár J.L., Stróż D. Influence of Molybdenum on the Microstructure, Mechanical Properties and Corrosion Resistance of Ti20Ta20Nb20(ZrHf)20−xMox (Where: x = 0, 5, 10, 15, 20) High Entropy Alloys. Materials. 2022;15:393. doi: 10.3390/ma15010393. PubMed DOI PMC
Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI
Gao Y., Liu Y., Wang L., Yang X., Zeng T., Sun L., Wang R. Microstructure evolution and wear resistance of laser cladded 316L stainless steel reinforced with in-situ VC-Cr7C3. Surf. Coatings Technol. 2022;435:128264. doi: 10.1016/j.surfcoat.2022.128264. DOI
Wang D., Wang Y., Wu S., Lin H., Yang Y., Fan S., Gu C., Wang J., Song C. Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting. Materials. 2017;10:35. doi: 10.3390/ma10010035. PubMed DOI PMC
Prusa F., Bernatikova A., Palan J. Ultra-High Strength Ti Grade 4 Prepared by Intensive Plastic Deformation. Manuf. Technol. J. 2017;17:819–822. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/819. DOI
Wang C.T., Gao N., Gee M.G., Wood R.J.K., Langdon T.G. Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear. 2012;280–281:28–35. doi: 10.1016/j.wear.2012.01.012. DOI
Kunčická L., Kocich R., Benč M., Dvořák J. Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging. Materials. 2022;15:6291. doi: 10.3390/ma15186291. PubMed DOI PMC
Stea S., Visentin M., Savarino L., Ciapetti G., Donati M.E., Moroni A., Caja V., Pizzoferrato A. Microhardness of bone at the interface with ceramic-coated metal implants. J. Biomed. Mater. Res. 1995;29:695–699. doi: 10.1002/jbm.820290604. PubMed DOI
Schmidt A.M., Azambuja D.S. Corrosion behavior of ti and Ti6Al4V in citrate buffers containing fluoride ions. Mater. Res. 2010;13:45–50. doi: 10.1590/S1516-14392010000100011. DOI
Oliveira N.T.C., Guastaldi A.C. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 2009;5:399–405. doi: 10.1016/j.actbio.2008.07.010. PubMed DOI
Szklarska M., Łosiewicz B., Dercz G., Zubko M., Albrecht R., Stróz D. Charac terization of long-term corros ion performance of ti15mo alloy in saline solution. Arch. Metall. Mater. 2019;64:773–778. doi: 10.24425/amm.2019.127612. DOI
Samuel S., Nag S., Nasrazadani S., Ukirde V., El Bouanani M., Mohandas A., Nguyen K., Banerjee R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J. Biomed. Mater. Res.—Part A. 2010;94:1251–1256. doi: 10.1002/jbm.a.32782. PubMed DOI
Szklarska M., Dercz G., Rak J., Simka W., Losiewicz B. The influence of passivation type on corrosion resistance of Ti15Mo alloy in simulated body fluids. Arch. Metall. Mater. 2015;60:2687–2693. doi: 10.1515/amm-2015-0433. DOI
Handzlik P., Fitzner K. Corrosion resistance of Ti and Ti-Pd alloy in phosphate buffered saline solutions with and without H2O2 addition. Trans. Nonferrous Met. Soc. China (English Ed.) 2013;23:866–875. doi: 10.1016/S1003-6326(13)62541-8. DOI
Cai Z., Shafer T., Watanabe I., Nunn M.E., Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003;24:213–218. doi: 10.1016/S0142-9612(02)00293-4. PubMed DOI
Hryniewicz T., Rokosz K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corrosion Methods Mater. 2014;61:57–64. doi: 10.1108/ACMM-03-2013-1249. DOI
Godley R., Starosvetsky D., Gotman I. Corrosion behavior of a low modulus β -Ti-45 % Nb. J. Mater. Scince Med. 2006;17:63–67. PubMed
Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials. 1996;17:2003–2008. doi: 10.1016/0142-9612(95)00352-5. PubMed DOI
Chembath M., Balaraju J.N., Sujata M. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy. Mater. Sci. Eng. C. 2015;56:417–425. doi: 10.1016/j.msec.2015.06.051. PubMed DOI