• This record comes from PubMed

Influence of Hafnium Addition on the Microstructure, Microhardness and Corrosion Resistance of Ti20Ta20Nb20(ZrMo)20-xHfx (where x = 0, 5, 10, 15 and 20 at.%) High Entropy Alloys

. 2023 Feb 09 ; 16 (4) : . [epub] 20230209

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

The presented work aimed to investigate the influence of the hafnium/(zirconium and molybdenum) ratio on the microstructure, microhardness and corrosion resistance of Ti20Ta20Nb20(ZrMo)20-xHfx (where x = 0, 5, 10, 15 and 20 at.%) high entropy alloys in an as-cast state produced from elemental powder and obtained via the vacuum arc melting technique. All studied alloys contained only biocompatible elements and were chosen based on the thermodynamical calculations of phase formation predictions after solidification. Thermodynamical calculations predicted the presence of multi-phase, body-centered cubic phases, which were confirmed using X-ray diffraction and scanning electron microscopy. Segregation of alloying elements was recorded using elemental distribution maps. A decrease in microhardness with an increase in hafnium content in the studied alloys was revealed (512-482 HV1). The electrochemical measurements showed that the studied alloys exhibited a high corrosion resistance in a simulated body fluid environment (breakdown potential 4.60-5.50 V vs. SCE).

See more in PubMed

Matuła I., Dercz G., Sowa M., Barylski A., Duda P. Fabrication and Characterization of New Functional Graded Material Based on Ti, Ta, and Zr by Powder Metallurgy Method. Materials. 2021;14:6609. doi: 10.3390/ma14216609. PubMed DOI PMC

Matyja E., Prusik K., Zubko M., Dercz G. Microstructure refinement and mechanical properties of the NiCoMnIn alloy obtained by arc melting technique from mechanically alloyed powder. J. Alloys Compd. 2021;859:157841. doi: 10.1016/j.jallcom.2020.157841. DOI

Matyja E., Prusik K., Zubko M., Dercz G., Glowka K. Structure of the Ni-Co-Mn-In alloy obtained by mechanical alloying and sintering. J. Alloys Compd. 2019;801:529–535. doi: 10.1016/j.jallcom.2019.06.079. DOI

Zhang Y. High-Entropy Materials: A Brief Introduction. Springer Singapore; Singapore: 2019. History of High-Entropy Materials; pp. 1–33.

Senkov O.N., Miller J.D., Miracle D.B., Woodward C. Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 2015;6:1–10. doi: 10.1038/ncomms7529. PubMed DOI PMC

Cantor B., Chang I.T.H., Knight P., Vincent A.J.B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;375–377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI

Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin T.-S., Shun T.-T., Tsau C.-H., Chang S.-Y. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI

Yeh J.-W. In: Physical Metallurgy BT-High-Entropy Alloys: Fundamentals and Applications. Gao M.C., Yeh J.-W., Liaw P.K., Zhang Y., editors. Springer International Publishing; Cham, Switzerland: 2016. pp. 51–113.

Manivasagam G., Dhinasekaran D., Rajamanickam A. Biomedical Implants: Corrosion and its Prevention - A Review. Recent Patents Corros. Sci. 2010;2:40–54. doi: 10.2174/1877610801002010040. DOI

Rituerto Sin J., Suñer S., Neville A., Emami N. Fretting corrosion of hafnium in simulated body fluids. Tribol. Int. 2014;75:10–15. doi: 10.1016/j.triboint.2014.03.003. PubMed DOI

Matsuno H., Yokoyama A., Watari F., Uo M., Kawasaki T. Biocompatibility and osteogenesis of refractory metal implants, titanium, hafnium, niobium, tantalum and rhenium. Biomaterials. 2001;22:1253–1262. doi: 10.1016/S0142-9612(00)00275-1. PubMed DOI

Rituerto Sin J., Neville A., Emami N. Corrosion and tribocorrosion of hafnium in simulated body fluids. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014;102:1157–1164. doi: 10.1002/jbm.b.33097. PubMed DOI

Mohammadi S., Esposito M., Cucu M., Ericson L.E., Thomsen P. Tissue response to hafnium. J. Mater. Sci. Mater. Med. 2001;12:603–611. doi: 10.1023/A:1011237610299. PubMed DOI

Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903. doi: 10.1016/j.actbio.2012.06.037. PubMed DOI

Luo J.-P., Jia X., Zheng D.-L., Wang G., Sun J.-F., Yan M. A novel approach to achieving a low Young’s modulus in titanium-based metallic glasses. Emerg. Mater. Res. 2019;8:22–28. doi: 10.1680/jemmr.16.00098. DOI

Rajaraman V., Nallaswamy D., Ganapathy D., Rajeshkumar S., Ariga P., Ganesh K. Effect of Hafnium Coating on Osseointegration of Titanium Implants: A Split Mouth Animal Study. J. Nanomater. 2021;2021 doi: 10.1155/2021/7512957. DOI

Rajaraman V., Dhanraj M., Jain A.R. Dental implant biomaterials - Newer metals and their alloys. Drug Invent. Today. 2018;10:986–989.

Wang S.P., Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C. 2017;73:80–89. doi: 10.1016/j.msec.2016.12.057. PubMed DOI

Todai M., Nagase T., Hori T., Matsugaki A., Sekita A., Nakano T. Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scr. Mater. 2017;129:65–68. doi: 10.1016/j.scriptamat.2016.10.028. DOI

Shittu J., Pole M., Cockerill I., Sadeghilaridjani M., Reddy L.V.K., Manivasagam G., Singh H., Grewal H.S., Arora H.S., Mukherjee S. Biocompatible High Entropy Alloys with Excellent Degradation Resistance in a Simulated Physiological Environment. ACS Appl. Bio Mater. 2020;3:8890–8900. doi: 10.1021/acsabm.0c01181. PubMed DOI

Hori T., Nagase T., Todai M., Matsugaki A., Nakano T. Development of non-equiatomic Ti-Nb-Ta-Zr-Mo high-entropy alloys for metallic biomaterials. Scr. Mater. 2019;172:83–87. doi: 10.1016/j.scriptamat.2019.07.011. DOI

Gurel S., Yagci M.B., Bal B., Canadinc D. Corrosion behavior of novel Titanium-based high entropy alloys designed for medical implants. Mater. Chem. Phys. 2020;254:123377. doi: 10.1016/j.matchemphys.2020.123377. DOI

Motallebzadeh A., Peighambardoust N.S., Sheikh S., Murakami H., Guo S., Canadinc D. Microstructural, mechanical and electrochemical characterization of TiZrTaHfNb and Ti1.5ZrTa0.5Hf0.5Nb0.5 refractory high-entropy alloys for biomedical applications. Intermetallics. 2019;113:106572. doi: 10.1016/j.intermet.2019.106572. DOI

Yang W., Liu Y., Pang S., Liaw P.K., Zhang T. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics. 2020;124:106845. doi: 10.1016/j.intermet.2020.106845. DOI

Yuan Y., Wu Y., Yang Z., Liang X., Lei Z., Huang H., Wang H., Liu X., An K., Wu W., et al. Formation, structure and properties of biocompatible TiZrHfNbTa high-entropy alloys. Mater. Res. Lett. 2019;7:225–231. doi: 10.1080/21663831.2019.1584592. DOI

Yang W., Pang S., Liu Y., Wang Q., Liaw P.K., Zhang T. Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics. 2022;141:107421. doi: 10.1016/j.intermet.2021.107421. DOI

Yang X., Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012;132:233–238. doi: 10.1016/j.matchemphys.2011.11.021. DOI

Glowka K., Zubko M., Świec P., Prusik K., Albrecht R., Dercz G., Loskot J., Witala B., Stróż D. Microstructure and mechanical properties of Co-Cr-Mo-Si-Y-Zr high entropy alloy. Metals. 2020;10:1456. doi: 10.3390/met10111456. DOI

Glowka K., Zubko M., Świec P., Prusik K., Szklarska M., Chrobak D., Lábár J.L., Stróż D. Influence of Molybdenum on the Microstructure, Mechanical Properties and Corrosion Resistance of Ti20Ta20Nb20(ZrHf)20−xMox (Where: x = 0, 5, 10, 15, 20) High Entropy Alloys. Materials. 2022;15:393. doi: 10.3390/ma15010393. PubMed DOI PMC

Rodríguez-Carvajal J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B Condens. Matter. 1993;192:55–69. doi: 10.1016/0921-4526(93)90108-I. DOI

Gao Y., Liu Y., Wang L., Yang X., Zeng T., Sun L., Wang R. Microstructure evolution and wear resistance of laser cladded 316L stainless steel reinforced with in-situ VC-Cr7C3. Surf. Coatings Technol. 2022;435:128264. doi: 10.1016/j.surfcoat.2022.128264. DOI

Wang D., Wang Y., Wu S., Lin H., Yang Y., Fan S., Gu C., Wang J., Song C. Customized a Ti6Al4V Bone Plate for Complex Pelvic Fracture by Selective Laser Melting. Materials. 2017;10:35. doi: 10.3390/ma10010035. PubMed DOI PMC

Prusa F., Bernatikova A., Palan J. Ultra-High Strength Ti Grade 4 Prepared by Intensive Plastic Deformation. Manuf. Technol. J. 2017;17:819–822. doi: 10.21062/ujep/x.2017/a/1213-2489/MT/17/5/819. DOI

Wang C.T., Gao N., Gee M.G., Wood R.J.K., Langdon T.G. Effect of grain size on the micro-tribological behavior of pure titanium processed by high-pressure torsion. Wear. 2012;280–281:28–35. doi: 10.1016/j.wear.2012.01.012. DOI

Kunčická L., Kocich R., Benč M., Dvořák J. Affecting Microstructure and Properties of Additively Manufactured AISI 316L Steel by Rotary Swaging. Materials. 2022;15:6291. doi: 10.3390/ma15186291. PubMed DOI PMC

Stea S., Visentin M., Savarino L., Ciapetti G., Donati M.E., Moroni A., Caja V., Pizzoferrato A. Microhardness of bone at the interface with ceramic-coated metal implants. J. Biomed. Mater. Res. 1995;29:695–699. doi: 10.1002/jbm.820290604. PubMed DOI

Schmidt A.M., Azambuja D.S. Corrosion behavior of ti and Ti6Al4V in citrate buffers containing fluoride ions. Mater. Res. 2010;13:45–50. doi: 10.1590/S1516-14392010000100011. DOI

Oliveira N.T.C., Guastaldi A.C. Electrochemical stability and corrosion resistance of Ti–Mo alloys for biomedical applications. Acta Biomater. 2009;5:399–405. doi: 10.1016/j.actbio.2008.07.010. PubMed DOI

Szklarska M., Łosiewicz B., Dercz G., Zubko M., Albrecht R., Stróz D. Charac terization of long-term corros ion performance of ti15mo alloy in saline solution. Arch. Metall. Mater. 2019;64:773–778. doi: 10.24425/amm.2019.127612. DOI

Samuel S., Nag S., Nasrazadani S., Ukirde V., El Bouanani M., Mohandas A., Nguyen K., Banerjee R. Corrosion resistance and in vitro response of laser-deposited Ti-Nb-Zr-Ta alloys for orthopedic implant applications. J. Biomed. Mater. Res.—Part A. 2010;94:1251–1256. doi: 10.1002/jbm.a.32782. PubMed DOI

Szklarska M., Dercz G., Rak J., Simka W., Losiewicz B. The influence of passivation type on corrosion resistance of Ti15Mo alloy in simulated body fluids. Arch. Metall. Mater. 2015;60:2687–2693. doi: 10.1515/amm-2015-0433. DOI

Handzlik P., Fitzner K. Corrosion resistance of Ti and Ti-Pd alloy in phosphate buffered saline solutions with and without H2O2 addition. Trans. Nonferrous Met. Soc. China (English Ed.) 2013;23:866–875. doi: 10.1016/S1003-6326(13)62541-8. DOI

Cai Z., Shafer T., Watanabe I., Nunn M.E., Okabe T. Electrochemical characterization of cast titanium alloys. Biomaterials. 2003;24:213–218. doi: 10.1016/S0142-9612(02)00293-4. PubMed DOI

Hryniewicz T., Rokosz K. Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corrosion Methods Mater. 2014;61:57–64. doi: 10.1108/ACMM-03-2013-1249. DOI

Godley R., Starosvetsky D., Gotman I. Corrosion behavior of a low modulus β -Ti-45 % Nb. J. Mater. Scince Med. 2006;17:63–67. PubMed

Rondelli G. Corrosion resistance tests on NiTi shape memory alloy. Biomaterials. 1996;17:2003–2008. doi: 10.1016/0142-9612(95)00352-5. PubMed DOI

Chembath M., Balaraju J.N., Sujata M. Surface characteristics, corrosion and bioactivity of chemically treated biomedical grade NiTi alloy. Mater. Sci. Eng. C. 2015;56:417–425. doi: 10.1016/j.msec.2015.06.051. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...