Applications of organic and inorganic amendments induce changes in the mobility of mercury and macro- and micronutrients of soils
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25401138
PubMed Central
PMC4226182
DOI
10.1155/2014/407049
Knihovny.cz E-zdroje
- MeSH
- látky znečišťující půdu analýza metabolismus MeSH
- mikroživiny aplikace a dávkování MeSH
- půda chemie MeSH
- rtuť analýza metabolismus MeSH
- znečištění životního prostředí * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- látky znečišťující půdu MeSH
- mikroživiny MeSH
- půda MeSH
- rtuť MeSH
Both soil organic matter and sulfur (S) can reduce or even suppress mercury (Hg) mobility and bioavailability in soil. A batch incubation experiment was conducted with a Chernozem and a Luvisol artificially contaminated by 440 mg · kg(-1) Hg showing wide differences in their physicochemical properties and available nutrients. The individual treatments were (i) digestate from the anaerobic fermentation of biowaste; (ii) fly ash from wood chip combustion; and (iii) ammonium sulfate, and every treatment was added with the same amount of S. The mobile Hg portion in Chernozem was highly reduced by adding digestate, even after 1 day of incubation, compared to control. Meanwhile, the outcome of these treatments was a decrease of mobile Hg forms as a function of incubation time whereas the contents of magnesium (Mg), potassium (K), iron (Fe), manganese (Mn), copper (Cu), zinc (Zn), and phosphorus (P) were stimulated by the addition of digestate in both soils. The available calcium (Ca) contents were not affected by the digestate addition. The experiment proved digestate application as the efficient measure for fast reduction of mobile Hg at extremely contaminated soils. Moreover, the decrease of the mobile mercury portion was followed by improvement of the nutrient status of the soils.
Zobrazit více v PubMed
EPA . Mercury Study Report to Congress. Vol. 1. Washington, DC, USA: GPO; 1997. (Executive Summary, EPA-452/R-97-003).
Tipping E., Lofts S., Hooper H., Frey B., Spurgeon D., Svendsen C. Critical Limits for Hg(II) in soils, derived from chronic toxicity data. Environmental Pollution. 2010;158(7):2465–2471. doi: 10.1016/j.envpol.2010.03.027. PubMed DOI
Li J., Lu Y., Shim H., Deng X., Lian J., Jia Z., Li J. Use of the BCR sequential extraction procedure for the study of metal availability to plants. Journal of Environmental Monitoring. 2010;12(2):466–471. doi: 10.1039/b916389a. PubMed DOI
Rodrigues S. M., Henriques B., Coimbra J., da Silva E. F., Pereira M. E., Duarte A. C. Water-soluble fraction of mercury, arsenic and other potentially toxic elements in highly contaminated sediments and soils. Chemosphere. 2010;78(11):1301–1312. doi: 10.1016/j.chemosphere.2010.01.012. PubMed DOI
Boszke L., Kowalski A., Astel A., Barański A., Gworek B., Siepak J. Mercury mobility and bioavailability in soil from contaminated area. Environmental Geology. 2008;55(5):1075–1087. doi: 10.1007/s00254-007-1056-4. DOI
Luo W., Lu Y., Wang B., Tong X., Wang G., Shi Y., Wang T., Giesy J. P. Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environmental Monitoring and Assessment. 2009;158(1–4):507–517. doi: 10.1007/s10661-008-0600-3. PubMed DOI
Hassen A., Saidi N., Cherif M., Boudabous A. Resistance of environmental bacteria to heavy metals. Bioresource Technology. 1998;64(1):7–15. doi: 10.1016/S0960-8524(97)00161-2. DOI
Khwaja A. R., Bloom P. R., Brezonik P. L. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter. Environmental Science & Technology. 2006;40(3):844–849. doi: 10.1021/es051085c. PubMed DOI
Heeraman D. A., Claassen V. P., Zasoski R. J. Interaction of lime, organic matter and fertilizer on growth and uptake of arsenic and mercury by Zorro fescue (Vulpia myuros L.) Plant and Soil. 2001;234(2):215–231. doi: 10.1023/A:1017995201694. DOI
Linde M., Öborn I., Gustafsson J. P. Effects of changed soil conditions on the mobility of trace metals in moderately contaminated urban soils. Water, Air, and Soil Pollution. 2007;183(1–4):69–83. doi: 10.1007/s11270-007-9357-5. DOI
Yao A., Qiu R., Qing C., Mu S., Reardon E. J. Effects of humus on the environmental activity of mineral-bound Hg: influence on Hg plant uptake. Journal of Soils and Sediments. 2011;11(6):959–967. doi: 10.1007/s11368-011-0370-3. DOI
Yang Y., Liang L., Wang D. Effect of dissolved organic matter on adsorption and desorption of mercury by soils. Journal of Environmental Sciences. 2008;20(9):1097–1102. doi: 10.1016/S1001-0742(08)62155-5. PubMed DOI
Zagury G. J., Neculita C.-M., Bastien C., Deschênes L. Mercury fractionation, bioavailability, and ecotoxicity in highly contaminated soils from chlor-alkali plants. Environmental Toxicology and Chemistry. 2006;25(4):1138–1147. doi: 10.1897/05-302R.1. PubMed DOI
Reis A. T., Rodrigues S. M., Davidson C. M., Pereira E., Duarte A. C. Extractability and mobility of mercury from agricultural soils surrounding industrial and mining contaminated areas. Chemosphere. 2010;81(11):1369–1377. doi: 10.1016/j.chemosphere.2010.09.030. PubMed DOI
Barnett M. O., Harris L. A., Turner R. R., et al. Formation of mercuric sulfide in soil. Environmental Science & Technology. 1997;31(11):3037–3043. doi: 10.1021/es960389j. DOI
Hesterberg D., Chou J. W., Hutchison K. J., Sayers D. E. Bonding of HG(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. Environmental Science and Technology. 2001;35(13):2741–2745. doi: 10.1021/es001960o. PubMed DOI
Remy S., Prudent P., Probst J.-L. Mercury speciation in soils of the industrialised Thur River catchment (Alsace, France) Applied Geochemistry. 2006;21(11):1855–1867. doi: 10.1016/j.apgeochem.2006.08.003. DOI
Åkerblom S., Bishop K., Björn E., Lambertsson L., Eriksson T., Nilsson M. B. Significant interaction effects from sulfate deposition and climate on sulfur concentrations constitute major controls on methylmercury production in peatlands. Geochimica et Cosmochimica Acta. 2013;102:1–11. doi: 10.1016/j.gca.2012.10.025. DOI
Jing Y. D., He Z. L., Yang X. E. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere. 2007;69(10):1662–1669. doi: 10.1016/j.chemosphere.2007.05.033. PubMed DOI
Ochecová P., Tlustoš P., Száková J. Wheat and soil response to wood fly ash application in contaminated soils. Agronomy Journal. 2014;106(3):995–1002. doi: 10.2134/agronj13.0363. DOI
Quevauviller P., Ure A., Muntau H., Griepink B. Improvement of analytical measurements within the BCR-program—single and sequential extraction procedures applied to soil and sediment analysis. International Journal of Environmental Analytical Chemistry. 1993;51:129–134.
Mehlich A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Communications in Soil Science & Plant Analysis. 1984;15(12):1409–1416. doi: 10.1080/00103628409367568. DOI
Šípková A., Száková J., Coufalík P., Zvěřina O., Kacálková L., Tlustoš P. Mercury distribution and mobility in contaminated soils from vicinity of waste incineration plant. Plant, Soil and Environment. 2014;60(2):87–92.
Ruggiero P., Terzano R., Spagnuolo M., Cavalca L., Colombo M., Andreoni V., Rao M. A., Perucci P., Monaci E. Hg bioavailability and impact on bacterial communities in a long-term polluted soil. Journal of Environmental Monitoring. 2011;13(1):145–156. doi: 10.1039/c0em00183j. PubMed DOI
Demirel B., Göl N. P., Onay T. T. Evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure. Journal of Material Cycles and Waste Management. 2013;15(2):242–246. doi: 10.1007/s10163-012-0107-4. DOI
Pöykiö R., Nurmesniemi H., Keiski R. L. Total and size fractionated concentrations of metals in combustion ash from forest residues and peat. Proceedings of the Estonian Academy of Sciences. 2009;58(4):247–254. doi: 10.3176/proc.2009.4.06. DOI
Bower J., Savage K. S., Weinman B., Barnett M. O., Hamilton W. P., Harper W. F. Immobilization of mercury by pyrite (FeS2) Environmental Pollution. 2008;156(2):504–514. doi: 10.1016/j.envpol.2008.01.011. PubMed DOI
Müller A. K., Westergaard K., Christensen S., Sørensen S. J. The effect of long-term mercury pollution on the soil microbial community. FEMS Microbiology Ecology. 2001;36(1):11–19. doi: 10.1016/S0168-6496(01)00112-X. PubMed DOI
Pant P., Allen Ć. M. Interaction of soil and mercury as a function of soil organic carbon: some field evidence. Bulletin of Environmental Contamination and Toxicology. 2007;78(6):539–542. doi: 10.1007/s00128-007-9186-7. PubMed DOI
Camargo F. A. O., Bento F. M., Jacques R. J. S. Uso de microrganismos para remediação de metais. In: Ceretta C. A., Silva L. S., Reichert J. M., editors. Tópicos em Ciência do Solo. Minas Gerais, Brazil: Sociedade Brasileira de Ciência do Solo; 2007. pp. 468–496.
Ravichandran M. Interactions between mercury and dissolved organic matter—a review. Chemosphere. 2004;55(3):319–331. doi: 10.1016/j.chemosphere.2003.11.011. PubMed DOI
Kabata-Pendias A. Trace Elements in Soils and Plants. 3rd. Boca Raton, Fla, USA: CRC Press LLC; 2001.
Mathema V. B., Thakuri B. C., Sillanpää M. Bacterial mer operon-mediated detoxification of mercurial compounds: a short review. Archives of Microbiology. 2011;193(12):837–844. doi: 10.1007/s00203-011-0751-4. PubMed DOI
Möller K., Müller T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: a review. Engineering in Life Sciences. 2012;12(3):242–257. doi: 10.1002/elsc.201100085. DOI
Walsh J. J., Jones D. L., Edwards-Jones G., Williams A. P. Replacing inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less environmental cost. Journal of Plant Nutrition and Soil Science. 2012;175(6):840–845. doi: 10.1002/jpln.201200214. DOI
Frøseth R. B., Bakken A. K., Bleken M. A., Riley H., Pommeresche R., Thorup-Kristensen K., Hansen S. Effects of green manure herbage management and its digestate from biogas production on barley yield, N recovery, soil structure and earthworm populations. European Journal of Agronomy. 2014;52:90–102. doi: 10.1016/j.eja.2013.10.006. DOI
Fernández-Delgado Juarez M., Waldhuber S., Knapp A., Partl C., Gómez-Brandón M., Insam H. Wood ash effects on chemical and microbiological properties of digestate- and manure-amended soils. Biology and Fertility of Soils. 2013;49(5):575–585. doi: 10.1007/s00374-012-0747-5. DOI
Demeyer A., Voundi Nkana J. C., Verloo M. G. Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology. 2001;77(3):287–295. doi: 10.1016/S0960-8524(00)00043-2. PubMed DOI
Pitman R. M. Wood ash use in forestry—a review of the environmental impacts. Forestry. 2006;79(5):563–588. doi: 10.1093/forestry/cpl041. DOI
Steenari B.-M., Karlsson L. G., Lindqvist O. Evaluation of the leaching characteristics of wood ash and the influence of ash agglomeration. Biomass and Bioenergy. 1999;16(2):119–136. doi: 10.1016/S0961-9534(98)00070-1. DOI
Száková J., Ochecová P., Hanzlíček T., Perná I., Tlustoš P. Variability of total and mobile element contents in ash derived from biomass combustion. Chemical Papers. 2013;67(11):1376–1385. doi: 10.2478/s11696-013-0399-4. DOI
Sierra M. J., Rodríguez-Alonso J., Millán R. Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere. 2012;89(11):1457–1466. doi: 10.1016/j.chemosphere.2012.06.017. PubMed DOI
Mehrotra A. S., Sedlak D. L. Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries. Environmental Science and Technology. 2005;39(8):2564–2570. doi: 10.1021/es049096d. PubMed DOI
Rhoton F. E., Bennett S. J. Soil and sediment properties affecting the accumulation of mercury in a flood control reservoir. Catena. 2009;79(1):39–48. doi: 10.1016/j.catena.2009.05.004. DOI
Liang P., Li Y.-C., Zhang C., Wu S.-C., Cui H.-J., Yu S., Wong M. H. Effects of salinity and humic acid on the sorption of Hg on Fe and Mn hydroxides. Journal of Hazardous Materials. 2013;244-245:322–328. doi: 10.1016/j.jhazmat.2012.11.050. PubMed DOI
Šípková A., Száková J., Tlustoš P. Affinity of selected elements to individual fractions of soil organic matter. Water, Air, & Soil Pollution. 2014;225(1, article 1802) doi: 10.1007/s11270-013-1802-z. DOI