Exchangeable and Plant-Available Macronutrients in a Long-Term Tillage and Crop Rotation Experiment after 15 Years

. 2022 Feb 21 ; 11 (4) : . [epub] 20220221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35214898

The status of macronutrients phosphorus (P), potassium (K), sulphur (S), calcium (Ca) and magnesium (Mg) was assessed 15 years after the establishment of a long-term crop rotation and soil tillage trial with mouldboard ploughing (MP), no-till (NT), deep conservation tillage (CTd) and shallow conservation tillage (CTs). The mobile proportions of macronutrients in an Austrian Chernozem soil were determined to a depth of 50 cm with the single reagent extractant acetic acid (AA) and Mehlich 3 (M3), which uses several reagents as extractants. AA revealed less P and K, but more Ca and Mg compared to M3. Both extractants could capture the distribution pattern of the nutrients in the soil profile, but M3 showed higher differences among the soil layers. In the first 5 cm in NT, the P concentration was higher than in MP, CTd and CTs. The concentration of K was higher in NT, CTd and CTs than in MP in the first 10 cm of the soil. Phosphorus and K concentrations did not differ between tillage treatments below these soil layers, and S, Ca and Mg were similar in all soil layers. As none of the analysed elements except for Ca were fertilized and no accumulation of S, Ca and Mg was observed in the upper soil layer, the higher concentrations are attributed to accumulation through crop residues and then less leaching of P and K. Crop rotation did not affect the distribution of the analysed macronutrients in the soil but affected the nutrient uptake by winter wheat mostly due to the yield differences of winter wheat in the two crop rotations.

Zobrazit více v PubMed

Derpsch R., Friedrich T., Kassam A. Current status of adoption of no-till farming in the world and some of its main benefits. Int. J. Agric. Biol. Eng. 2010;3:1–25.

Soane B.D., Ball B.C., Arvidsson J., Basch G., Moreno F., Roger-Estrade J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012;118:66–87. doi: 10.1016/j.still.2011.10.015. DOI

Neugschwandtner R.W., Kaul H.-P., Liebhard P., Wagentristl H. Winter wheat yields in a long-term tillage experiment under pannonian climate conditions. Plant Soil Environ. 2015;61:145–150.

Moitzi G., Szalay T., Schüller M., Wagentristl H., Refenner K., Weingartmann H., Liebhard P., Boxberger J., Gronauer A. Effects of tillage systems and mechanization on work time, fuel and energy consumption for cereal cropping in Austria. Agric. Eng. Int. CIGR J. 2013;15:94–101.

Szalay T., Moitzi G., Liebhard P., Weingartmann H. Influence of different tillage systems on fuel consumption and requirement of working time in winter wheat cropping in a semiarid area of production. Bodenkultur. 2015;66:39–48.

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. Eur. J. Agron. 2019;103:24–31. doi: 10.1016/j.eja.2018.11.002. DOI

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. Effect of tillage systems on energy input and energy efficiency for sugar beet and soybean under Pannonian climate conditions. Plant Soil Environ. 2021;67:137–146. doi: 10.17221/615/2020-PSE. DOI

Moitzi G., Neugschwandtner R.W., Kaul H.-P., Wagentristl H. Comparison of energy inputs and energy efficiency for maize in a long-term tillage experiment under Pannonian climate conditions. Plant Soil Environ. 2021;67:299–306. doi: 10.17221/67/2021-PSE. DOI

Neugschwandtner R.W., Száková J., Pachtrog V., Tlustoš P., Černý J., Kulhánek M., Kaul H.-P., Euteneuer P., Moitzi G., Wagentristl H. Basic soil chemical properties after 15 years in a long-term tillage and crop rotation experiment. Int. Agrophys. 2020;34:133–140. doi: 10.31545/intagr/114880. PubMed DOI PMC

Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979;51:844–851. doi: 10.1021/ac50043a017. DOI

Tack F.M.G., Verloo M.G. Single extractions versus sequentialextraction for the estimation of heavy metal fractions in reduced and oxidised dredged sediments. Chem. Speciat. Bioavailab. 1999;11:43. doi: 10.3184/095422999782775708. DOI

Miller W.P., Martens D.C., Zelazny L.W., Kornegay E.T. Forms of solid phase copper in copper-enriched swine manure. J. Environ. Qual. 1986;15:69–72. doi: 10.2134/jeq1986.00472425001500010016x. DOI

Rauret G., López-Sánchez J.F., Sahuquillo A., Rubio R., Davidson C.M., Ure A.M., Quevauviller P. Improvement of the BCR three step sequential extraction procedure prior to certification of new sediment and soil reference materials. J. Environ. Monit. 1999;1:57–61. doi: 10.1039/a807854h. PubMed DOI

He Q., Ren Y., Mohamed I., Ali M., Hassan W., Zeng F. Assessment of trace and heavy metal distribution by four sequential extraction procedures in a contaminated soil. Soil Water Res. 2013;8:71–76. doi: 10.17221/20/2012-SWR. DOI

Mehlich A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984;15:1409–1416. doi: 10.1080/00103628409367568. DOI

Wuenscher R., Unterfrauner H., Peticzka R., Zehetner F.A. Comparison of 14 Soil Phosphorus Extraction Methods Applied to 50 Agricultural Soils from Central Europe. Plant Soil Environ. 2015;61:86–96. doi: 10.17221/932/2014-PSE. DOI

Cappuyns V.A. Critical Evaluation of Single Extractions from the SMT Program to Determine Trace Element Mobility in Sediments. Appl. Environ. Soil Sci. 2012;2012:672914. doi: 10.1155/2012/672914. DOI

Novozamsky J., Lexmond T.M., Houba V.J.G. A single extraction procedure of soil for evaluation of uptake of some heavy metals by plants. Int. J. Environ. Anal. Chem. 1993;51:47–58. doi: 10.1080/03067319308027610. DOI

Quevauviller P., Ure A., Muntau H., Griepink B. Improvement of analytical measurements within the BCR-program—Single and sequential extraction procedures applied to soil and sediment analysis. Int. J. Environ. Anal. Chem. 1993;51:129–134. doi: 10.1080/03067319308027618. DOI

Schöning A., Brümmer G.W. Extraction of mobile element fractions in forest soils using ammonium nitrate and ammonium chloride. J. Plant Nutr. Soil Sci. 2008;171:392–398. doi: 10.1002/jpln.200625169. DOI

Gaudino S., Galas C., Belli M., Barbizzi S., De Zorzi P., Jaćimović R., Jeran Z., Pati A., Sansone U. The role of different soil sample digestion methods on trace elements analysis: A comparison of ICP-MS and INAA measurement results. Accredit. Qual. Assur. 2007;12:84–93. doi: 10.1007/s00769-006-0238-1. DOI

Hanlon E.A., Johnson G.V. Bray/Kurtz, Mehlich III, AB/D, and ammonium acetate extractions of P, K, and Mg in four Oklahoma soils. Commun. Soil Sci. Plant Anal. 1984;15:277–294. doi: 10.1080/00103628409367475. DOI

Chang S.C., Jackson M.L. Fractionation of soil phosphorus. Soil Sci. 1957;84:133–144. doi: 10.1097/00010694-195708000-00005. DOI

Elrashidi M.A., Lindsay W.L. Chemical equilibria of fluorine in soils: A theoretical development. Soil Sci. 1986;14:274–280. doi: 10.1097/00010694-198604000-00004. DOI

Komárek M., Tlustoš P., Száková J., Chrastný J., Ettler V. The use of maize and poplar in chelant enhanced phytoextraction of lead from contaminated agricultural soil. Chemosphere. 2007;67:640–651. doi: 10.1016/j.chemosphere.2006.11.010. PubMed DOI

Neugschwandtner R.W., Tlustoš P., Komárek M., Száková J. Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: Laboratory versus field scale measures of efficiency. Geoderma. 2008;144:446–454. doi: 10.1016/j.geoderma.2007.11.021. DOI

Neugschwandtner R.W., Tlustoš P., Komárek M., Száková J., Jakoubková L. Chemically Enhanced Phytoextraction of Risk Elements from a Contaminated Agricultural Soil Using Zea mays and Triticum aestivum: Performance and Metal Mobilization Over a Three Year Period. Int. J. Phytoremediation. 2012;14:754–771. doi: 10.1080/15226514.2011.619231. PubMed DOI

Neugschwandtner R.W., Tlustoš P., Komárek M., Száková J. Nutrient mobilization and nutrient contents of Zea mays in response to EDTA additions to heavy-metal-contaminated agricultural soil. J. Plant Nutr. Soil Sci. 2009;172:520–527. doi: 10.1002/jpln.200700328. DOI

Neugschwandtner R.W., Tlustoš P., Száková J., Komárek M., Jakoubková L. Monitoring of mobilization and uptake of nutrients in response to EDTA additions to a contaminated agricultural soil. Environ. Eng. Manag. J. 2017;16:2475–2483. doi: 10.30638/eemj.2017.256. DOI

Scheffer F., Schachtschabel P. Lehrbuch der Bodenkunde. 15th ed. Spektrum Akademischder Verlag GmbH; Heidelberg/Berlin, Germany: 2002.

Neugschwandtner R.W., Liebhard P., Kaul H.-P., Wagentristl H. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant Soil Environ. 2014;60:57–62.

Franzluebbers A.J., Hons F.M. Soil-profile distribution of primary and secondary plant-available nutrients under conventional and no tillage. Soil Tillage Res. 1996;39:229–239. doi: 10.1016/S0167-1987(96)01056-2. DOI

Liebhard P. Einfluß der Primärbodenbearbeitung auf pH-Wert, Calcium-, Phosphat- und Kaliumgehalt von Ackerböden im oberösterreichischen Zentralraum (Teil 2) Bodenkultur. 1993;44:303–315.

Deubel A., Hofmann B., Orzessek D. Long-term effects of tillage on stratification and plant availability of phosphate and potassium in a loess chernozem. Soil Tillage Res. 2011;117:85–92. doi: 10.1016/j.still.2011.09.001. DOI

Martínez I., Chervet A., Weisskopf P., Sturny W.G., Etana A., Stettler M., Forkman J., Keller T. Two decades of no-till in the Oberacker long-term field experiment: Part I. Crop yield, soil organic carbon and nutrient distribution in the soil profile. Soil Tillage Res. 2016;163:141–151. doi: 10.1016/j.still.2016.05.021. DOI

Duiker S.W., Beegle D.B. Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems. Soil Tillage Res. 2006;88:30–41. doi: 10.1016/j.still.2005.04.004. DOI

Neugschwandtner R.W., Wagentristl H., Kaul H.-P. Concentrations and uptake of macro and micronutrients by chickpea compared to pea, barley and oat in central Europe. J. Kult. 2015;67:404–409.

Neugschwandtner R.W., Kaul H.-P. Concentrations and uptake of macronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Arch. Agron. Soil Sci. 2016;62:1236–1249. doi: 10.1080/03650340.2016.1147648. DOI

Yläranta T., Uusi-Kämppä J., Jaakkola A. Leaching of phosphorus, calcium, magnesium and potassium in barley, grass and fallow lysimeters. Acta Agric. Scand.—B Soil Plant Sci. 1996;46:9–17. doi: 10.1080/09064719609410941. DOI

de Oliveira M.W., Trivelin P.C.O., Boaretto A.E., Muraoka T., Mortatti J. Leaching of nitrogen, potassium, calcium and magnesium in a sandy soil cultivated with sugarcane. Pesqui. Agropecu. Bras. 2002;37:861–868. doi: 10.1590/S0100-204X2002000600016. DOI

Száková J., Tlustoš P., Frková Z., Najmanová J., Balík J. Effect of soil sample treatment on an evaluation of trace element (Cu, Fe, Mn, Zn) mobility in soils. Trans. Univ. Košice. 2008;3:137–144.

Lewis D.R., McGechan M.B. A review of field scale phosphorus dynamic models. Biosyst. Eng. 2002;82:359–380. doi: 10.1006/bioe.2002.0102. DOI

Balík J., Kulhánek M., Černý J., Sedlář O., Suran P. Potassium fractions in soil and simple K balance in long-term fertilising experiments. Soil Water Res. 2020;15:211–219. doi: 10.17221/151/2019-SWR. DOI

Kulhánek M., Balík J., Černý J., Vašák F., Shejbalová Š. Influence of long-term fertilizer application on changes of the content of mehlich-3 estimated soil macronutrients. Plant Soil Environ. 2014;60:151–157. doi: 10.17221/930/2013-PSE. DOI

Kulhánek M., Cerný J., Balík J., Sedlar O., Vasak F. Changes of soil bioavailable phosphorus content in the long-term field fertilizing experiment. Soil Water Res. 2019;14:240–245. doi: 10.17221/175/2018-SWR. DOI

Balík J., Černý J., Kulhánek M., Sedlář O., Suran P. Balance of potassium in two long-term field experiments with different fertilization treatments. Plant Soil Environ. 2019;65:225–232. doi: 10.17221/109/2019-PSE. DOI

García-Sánchez M., Šípková A., Száková J., Kaplan L., Ochecová P., Tlustoš P. Applications of organic and inorganic amendments induce changes in the mobility of mercury and macro- and micronutrients of soils. Sci. World J. 2014;2014:407049. doi: 10.1155/2014/407049. PubMed DOI PMC

Redel Y.D., Escudey M., Alvear M., Conrad J., Borie F. Effects of tillage and crop rotation on chemical phosphorus forms and some related biological activities in a Chilean Ultisol. Soil Use Manag. 2011;27:221–228. doi: 10.1111/j.1475-2743.2011.00334.x. DOI

Hickman M.V. Long-term tillage and crop rotation effects on soil chemical and mineral properties. J. Plant Nutr. 2002;25:1457–1470. doi: 10.1081/PLN-120005402. DOI

Edwards J.H., Wood C.W., Thurlow D.L., Ruf M.E. Tillage and crop rotation effects on fertility status of a hapludult soil. Soil Sci. Soc. Am. J. 1992;56:1577–1582. doi: 10.2136/sssaj1992.03615995005600050040x. DOI

Houx J.H., Wiebold W.J., Fritschi F.B. Long-term tillage and crop rotation determines the mineral nutrient distributions of some elements in a Vertic Epiaqualf. Soil Tillage Res. 2011;112:27–35. doi: 10.1016/j.still.2010.11.003. DOI

Neugschwandtner R.W., Böhm K., Hall R.M., Kaul H.-P. Development, growth, and nitrogen use of autumn- and spring-sown facultative wheat. Acta Agric. Scand.—B Soil Plant Sci. 2015;65:6–13. doi: 10.1080/09064710.2014.958522. DOI

Watanabe T., Urayama M., Shinano T., Okada R., Osaki M. Application of ionomics to plant and soil in fields under long-term fertilizer trials. SpringerPlus. 2015;4:781. doi: 10.1186/s40064-015-1562-x. PubMed DOI PMC

Sedlář O., Balík J., Kulhánek M., Černý J., Kos M. Mehlich 3 extractant used for the evaluation of wheat-available phosphorus and zinc in calcareous soils. Plant Soil Environ. 2018;64:53–57.

Lupwayi N.Z., Clayton G.W., O’Donovan J.T., Harker K.N., Turkington T.K., Soon Y.K. Soil nutrient stratification and uptake by wheat after seven years of conventional and zero tillage in the Northern Grain belt of Canada. Can. J. Soil Sci. 2006;86:767–778. doi: 10.4141/S06-010. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...