Predictability of tick-borne encephalitis fluctuations
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
28791941
PubMed Central
PMC9203426
DOI
10.1017/s0950268817001662
PII: S0950268817001662
Knihovny.cz E-zdroje
- Klíčová slova
- Central Europe, forecast, incidence, tick-borne encephalitis,
- MeSH
- incidence MeSH
- klíšťová encefalitida epidemiologie virologie MeSH
- lidé MeSH
- periodicita MeSH
- teoretické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
Tick-borne encephalitis is a serious arboviral infection with unstable dynamics and profound inter-annual fluctuations in case numbers. A dependable predictive model has been sought since the discovery of the disease. The present study demonstrates that four superimposed cycles, approximately 2·4, 3, 5·4, and 10·4 years long, can account for three-fifths of the variation in the disease fluctuations over central Europe. Using harmonic regression, these cycles can be projected into the future, yielding forecasts of sufficient accuracy for up to 4 years ahead. For the years 2016-2018, this model predicts elevated incidence levels in most parts of the region.
Zobrazit více v PubMed
Mansfield KL, et al. Tick-borne encephalitis virus – a review of an emerging zoonosis. Journal of General Virology 2009; 90: 1781–1794. PubMed
Kolman JM. Contribution to the possible forecast of an epidemic of tick-borne encephalitis. In: Rosicky B, Heyberger K, eds. Theoretical Questions of Natural Foci of Diseases. Prague: Publishing House of the Czechoslovak Academy of Sciences, 1965, pp. 209–222.
Naumov RL. On the predictions of tick-borne encephalitis [in Russian]. Parazitologiya 1983; 17: 337–345. PubMed
Haemig PD, et al. Forecasting risk of tick-borne encephalitis (TBE): using data from wildlife and climate to predict next year's number of human victims. Scandinavian Journal of Infectious Diseases 2011; 43: 366–372. PubMed
Zeman P. Cyclic patterns in the central European tick-borne encephalitis incidence series. Epidemiology and Infection 2017; 145: 358–367. PubMed PMC
Artis MJ, et al. Harmonic regression models: a comparative review with applications. University of Zurich, Institute for Empirical Research in Economics, Working Paper No. 333, 2007. (http://ssrn.com/abstract=1017519). Accessed 24 October 2016.
Stan Development Team. Stan modelling language: user's guide and reference manual, Version 2.9.0, 2015 (http://mc-stan.org/documentation). Accessed 15 June 2016.
Heinz FX, et al. Emergence of tick-borne encephalitis in new endemic areas in Austria: 42 years of surveillance. Eurosurveillance 2015; 20(13): pii=21077. PubMed
Helfenstein U. The use of transfer-function models, intervention analysis and related time-series methods in epidemiology. International Journal of Epidemiology 1991; 20: 808–815. PubMed
Randolph SE, et al. Incidence from coincidence: patterns of tick infestations on rodents facilitate transmission of tick-borne encephalitis virus. Parasitology 1999; 118: 177–186. PubMed