Prolongation of Tick-Borne Encephalitis Cycles in Warmer Climatic Conditions
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
31731822
PubMed Central
PMC6888212
DOI
10.3390/ijerph16224532
PII: ijerph16224532
Knihovny.cz E-resources
- Keywords
- climate change, disease dynamics, tick-borne encephalitis, time-series analysis,
- MeSH
- Incidence MeSH
- Climate Change * MeSH
- Encephalitis, Tick-Borne epidemiology MeSH
- Humans MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Tick-borne encephalitis exhibits profound inter-annual fluctuations in incidence. Previous studies showed that three-fifths of the variation can be explained in terms of four superimposed oscillations: a quasi-biennial, triennial, pentennial, and a decadal cycle. This study was conducted to determine how these cycles could be influenced by climate change. Epidemiological data, spanning from the 1970s to the present, and originating from six regions/countries bridging Scandinavia and the Mediterranean, represented a temporal/latitudinal gradient. Spectral analysis of time series was used to determine variation in the cycles' length/amplitude with respect to these gradients. The analysis showed that-whereas the lengths of the shorter cycles do not vary substantially-cycles in the decadal band tend to be longer southwards. When comparing the disease's oscillations before- and after the mid-1990s, a shift towards longer oscillations was detected in the pentennial-decadal band, but not in the biennial- triennial band. Simultaneously, oscillations in the latter band increased in intensity whereas the decadal oscillations weakened. In summary, the rhythm of the cycles has been altered by climate change. Lengthened cycles may be explained by prolonged survival of some animal hosts, and consequently greater inertia in herd immunity changes, slowing down a feedback loop between the herd immunity and amount of virus circulating in nature.
See more in PubMed
Kaiser R. Tick-borne encephalitis. Infect. Dis. Clin. N. Am. 2008;22:561–575. doi: 10.1016/j.idc.2008.03.013. PubMed DOI
Beauté J., Spiteri G., Warns-Petit E., Zeller H. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 2018;23:1800201. doi: 10.2807/1560-7917.ES.2018.23.45.1800201. PubMed DOI PMC
Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antivir. Res. 2003;57:129–146. doi: 10.1016/S0166-3542(02)00206-1. PubMed DOI
Suess J. Epidemiology and ecology of TBE relevant to the production of effective vaccines. Vaccine. 2003;21:S19–S35. doi: 10.1016/S0264-410X(02)00812-5. PubMed DOI
Bogovic P., Strle F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. J. Clin. Cases. 2015;3:430–441. doi: 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Ruzek D., Avsic-Zupanc T., Borde J., Chrdle A., Eyer L., Karganova G., Kholodilov I., Knap N., Kozlovskaya L., Matveev A., et al. Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antivir. Res. 2019;164:23–51. doi: 10.1016/j.antiviral.2019.01.014. PubMed DOI
Haemig P.D., de Luna S.S., Grafström A., Lithner S., Lundkvist A., Waldenström J., Kindberg J., Stedt J., Olsén B. Forecasting risk of tick-borne encephalitis (TBE): Using data from wildlife and climate to predict next year’s number of human victims. Scand. J. Infect. Dis. 2011;43:366–372. doi: 10.3109/00365548.2011.552072. PubMed DOI
Palo R.T. Tick-borne encephalitis transmission risk: Its dependence on host population dynamics and climate effects. Vector Borne Zoon. Dis. 2014;14:346–352. doi: 10.1089/vbz.2013.1386. PubMed DOI
Brugger K., Walter M., Chitimia-Dobler L., Dobler G., Rubel F. Forecasting next season’s Ixodes ricinus nymphal density: The example of southern Germany 2018. Exp. Appl. Acarol. 2018;75:281–288. doi: 10.1007/s10493-018-0267-6. PubMed DOI PMC
Zeman P. Cyclic patterns in the central European tick-borne encephalitis incidence series. Epidemiol. Infect. 2017;145:358–367. doi: 10.1017/S0950268816002223. PubMed DOI PMC
Zeman P. Predictability of tick-borne encephalitis fluctuations. Epidemiol. Infect. 2017;145:2781–2786. doi: 10.1017/S0950268817001662. PubMed DOI PMC
Cazelles B., Chavez M., McMichael A.J., Hales S. Nonstationary influence of El Niño on the synchronous dengue epidemics in Thailand. PLoS Med. 2005;2:e106. doi: 10.1371/journal.pmed.0020106. PubMed DOI PMC
Kreppel K.S., Caminade C., Telfer S., Rajerison M., Rahalison L., Morse A., Baylis M. A Non-Stationary Relationship between Global Climate Phenomena and Human Plague Incidence in Madagascar. PLoS Negl. Trop. Dis. 2014;8:e3155. doi: 10.1371/journal.pntd.0003155. PubMed DOI PMC
Tian H., Yu P., Cazelles B., Xu L., Tan H., Yang J., Huang S., Xu B., Cai J., Ma C., et al. Interannual cycles of Hantaan virus outbreaks at the human–animal interface in Central China are controlled by temperature and rainfall. PNAS. 2017;114:8041–8046. doi: 10.1073/pnas.1701777114. PubMed DOI PMC
Ims R.A., Henden J.-A., Killengreen S.T. Collapsing population cycles. Trends Ecol. Evol. 2007;23:79–86. doi: 10.1016/j.tree.2007.10.010. PubMed DOI
ISW-TBE International Scientific Working Group on TBE. [(accessed on 15 April 2002)]; Available online: http://www.tbe-info.com.
Lundkvist A., Wallensten A., Vene S., Hjertqvist M. Tick-borne encephalitis increasing in Sweden, 2011. Euro Surveill. 2011;16:19981. doi: 10.2807/ese.16.39.19981-en. PubMed DOI
Suess J., Schrader C., Falk U., Wohanka N. Tick-borne encephalitis (TBE) in Germany—Epidemiological data, development of risk areas and virus prevalence in field-collected ticks and in ticks removed from humans. Int. J. Med. Microbiol. 2004;293:69–79. doi: 10.1016/S1433-1128(04)80011-1. PubMed DOI
PFIZER FSME Erkrankungsfälle in Österreich. [(accessed on 11 March 2018)]; Available online: https://www.pfizer.at/fileadmin/content/Content/04_Presse/04.3_Pressemappen/FSME_in_Oesterreich/FSME_Situationsbericht_2017_Endversion.pdf.
Rezza G., Farchi F., Pezzott P., Ruscio M., Lo Presti A., Ciccozzi M., Mondardini V., Paternoster C., Bassetti M., Merelli M., et al. Tick-borne encephalitis in north-east Italy: A 14-year retrospective study, January 2000 to December 2013. Euro Surveill. 2015;20:30034. doi: 10.2807/1560-7917.ES.2015.20.40.30034. PubMed DOI
Huang N.E., Shen Z., Long S.R., Wu M.C., Shih H.H., Zheng Q., Yen N.-C., Tung C.C., Liu H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A. 1998;454:903–995. doi: 10.1098/rspa.1998.0193. DOI
Torrence C., Compo G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998;79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. DOI
Donghoh K., Hee-Seok O. EMD: A package for empirical mode decomposition and Hilbert spectrum. R J. 2009;1:40–46.
Roesch A., Schmidbauer H. WaveletComp 1.1: A guided tour through the R package. [(accessed on 18 March 2018)]; Available online: http://www.hs-stat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf.
EDJNet Europe one degree warmer. [(accessed on 23 August 2019)]; Available online: https://www.onedegreewarmer.eu.
Randolph S.E. Human activities predominate in determining changing incidence of tick-borne encephalitis in Europe. Euro Surveill. 2010;15:24–31. doi: 10.2807/ese.15.27.19606-en. PubMed DOI
Jaenson T.G.T., Petersson E.H., Jaenson D.G.E., Kindberg J., Pettersson J.H.O., Hjertqvist M., Medlock J.M., Bengtsson H. The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: Incidence of human TBE correlates with abundance of deer and hares. Parasit. Vectors. 2018;11:477. doi: 10.1186/s13071-018-3057-4. PubMed DOI PMC
Hubalek Z. North Atlantic weather oscillation and human infectious diseases in the Czech Republic, 1951-2003. Eur. J. Epidemiol. 2005;20:263–270. doi: 10.1007/s10654-004-6518-3. PubMed DOI
Dizij A., Kurtenbach K. Clethrionomys glareolus, but not Apodemus flavicollis, acquires resistance to lxodes ricinus L, the main European vector of Borrelia burgdorferi. Parasit. Immunol. 1995;17:177–183. doi: 10.1111/j.1365-3024.1995.tb00887.x. PubMed DOI
Awerbuch T.E., Sandberg S. Trends and oscillations in tick population dynamics. J. Theor. Biol. 1995;175:511–516. doi: 10.1006/jtbi.1995.0158. DOI
Fan G., Thieme H.R., Zhu H. Delay differential systems for tick population dynamics. J. Math. Biol. 2015;71:1017–1048. doi: 10.1007/s00285-014-0845-0. PubMed DOI
Grzybek M., Alsarraf M., Tolkacz K., Behnke-Borowczyk J., Biernat B., Stanczak J., Strachecka A., Guz L., Szczepaniak K., Paleolog P., et al. Seroprevalence of TBEV in bank voles from Poland—A long-term approach. Emerg. Microb. Infect. 2018;7:1–8. doi: 10.1038/s41426-018-0149-3. PubMed DOI PMC
Gerth H.-J., Grimshandl D., Stage B., Döller G., Kunz C. Roe deer as sentinels for endemicity of tick-borne encephalitis virus. Epidemiol. Infect. 1995;115:355–365. doi: 10.1017/S0950268800058477. PubMed DOI PMC
Martello E., Mannelli A., Ragagli C., Ambrogi C., Selmi M., Ceballos L.A., Tomassone L. Range expansion of Ixodes ricinus to higher altitude, and co-infestation of small rodents with Dermacentor marginatus in the Northern Apennines, Italy. Ticks Tick Borne Dis. 2014;5:970–974. doi: 10.1016/j.ttbdis.2014.07.021. PubMed DOI
Jaenson T.G.T., Jaenson D.G.E., Eisen L., Petersson E., Lindgren E. Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasit. Vectors. 2012;5:8. doi: 10.1186/1756-3305-5-8. PubMed DOI PMC
Peters W., Hebblewhite M., Mysterud A., Spitz D., Focardi S., Urbano F., Morellet N., Heurich M., Kjellander P., Linnell J.D.C., et al. Migration in geographic and ecological space by a large herbivore. Ecol. Monogr. 2017;87:297–320. doi: 10.1002/ecm.1250. DOI
Davis M.L., Stephens P.A., Kjellander P. Beyond climate envelope projections: Roe deer survival and environmental change. J. Wildl. Manag. 2016;80:452–464. doi: 10.1002/jwmg.1029. DOI
Gaillard J.-M., Hewison A.J.M., Klein F., Plard F., Douhard M., Davison R., Bonenfant C. How does climate change influence demographic processes of widespread species? Lessons from the comparative analysis of contrasted populations of roe deer. Ecol. Lett. 2013;16:48–57. doi: 10.1111/ele.12059. PubMed DOI