Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-17016S
Grantová Agentura České Republiky
PubMed
33266830
PubMed Central
PMC7514597
DOI
10.3390/e21020114
PII: e21020114
Knihovny.cz E-zdroje
- Klíčová slova
- medium entropy alloys, mechanical properties, microstructure, refractory high entropy alloys,
- Publikační typ
- časopisecké články MeSH
Refractory high entropy alloys (HEA) are promising materials for high temperature applications. This work presents investigations of the room temperature tensile mechanical properties of selected 3 and 4 elements medium entropy alloys (MEA) derived from the HfNbTaTiZr system. Tensile testing was combined with fractographic and microstructure analysis, using scanning electron microscope (SEM), wavelength dispersive spectroscope (WDS) and X-Ray powder diffraction (XRD). The 5 element HEA alloy HfNbTaTiZr exhibits the best combination of strength and elongation while 4 and 3 element MEAs have lower strength. Some of them are ductile, some of them brittle, depending on microstructure. Simultaneous presence of Ta and Zr in the alloy resulted in a significant reduction of ductility caused by reduction of the BCC phase content. Precipitation of Ta rich particles on grain boundaries reduces further the maximum elongation to failure down to zero values.
Faculty of Mathematics and Physics Charles University 5 Holešovičkách 2 18000 Praha 8 Czech Republic
UJP PRAHA a s Nad Kamínkou 1345 156 10 Praha 5 Zbraslav Czech Republic
Zobrazit více v PubMed
Miracle D.B., Senkov O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2016;122:448–511. doi: 10.1016/j.actamat.2016.08.081. DOI
Zhang W., Liaw P.K., Zhang Y. Science and technology in high-entropy alloys. Science China Materials, January. 2018;61:2–22. doi: 10.1007/s40843-017-9195-8. DOI
Cantor B., Chang IT H., Knight P., Vincent AJ B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 2004;377:213–218. doi: 10.1016/j.msea.2003.10.257. DOI
Yeh B.J., Chen S., Lin S., Gan J., Chin T., Shun T., Tsau C. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004;6:299–303. doi: 10.1002/adem.200300567. DOI
Schön C.G., Duong T., Wang Y., Arróyave R. Probing the entropy hypothesis in highly concentrated alloys. Acta Mater. 2018;148:263–279. doi: 10.1016/j.actamat.2018.01.028. DOI
Otto F., Yang Y., Bei H., George E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2018;61:2628–2638. doi: 10.1016/j.actamat.2013.01.042. DOI
Li Z., Ludwig A., Savan A., Springer H., Raabe D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 2018;33:3156–3169. doi: 10.1557/jmr.2018.214. DOI
Tsai M., Yeh J., Tsai M., Yeh J. High-Entropy Alloys: A Critical Review High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014;2:107–123. doi: 10.1080/21663831.2014.912690. DOI
Rost C.M., Sachet E., Borman T., Moballegh A., Dickey E.C., Hou D., Jones J.L., Curtarolo S., Maria J.P. Entropy-stabilized oxides. Nat. Commun. 2015;6:1–8. doi: 10.1038/ncomms9485. PubMed DOI PMC
Senkov O.N., Miracle D.B., Chaput K.J. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018;33:3092–3128. doi: 10.1557/jmr.2018.153. DOI
Niinomi M., Nakai M., Hieda J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012;8:3888–3903. doi: 10.1016/j.actbio.2012.06.037. PubMed DOI
Niinomi M. Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 2003;4:445–454. doi: 10.1016/j.stam.2003.09.002. DOI
Wang S., Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C. 2017;73:80–89. doi: 10.1016/j.msec.2016.12.057. PubMed DOI
Todai M., Nagase T., Hori T., Matsugaki A., Sekita A., Nakano T. Scripta Materialia Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. SMM. 2017;129:65–68. doi: 10.1016/j.scriptamat.2016.10.028. DOI
Li H.F., Xie X.H., Zhao K., Wang Y.B., Zheng Y.F., Wang W.H., Qin L. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater. 2013;9:8561–8573. doi: 10.1016/j.actbio.2013.01.029. PubMed DOI
Nnamchi P.S. First principles studies on structural, elastic and electronic properties of new Ti-Mo-Nb-Zr alloys for biomedical applications. JMADE. 2016;108:60–67. doi: 10.1016/j.matdes.2016.06.066. DOI
Pogrebnjak A.D., Beresnev V.M., Jurga S. Structural and mechanical characterization of (TiZrNbHfTa) N/WN multilayered nitride coatings. Mater. Lett. 2018;229:364–367. doi: 10.1016/j.matlet.2018.07.048. DOI
Zyka J., Malek J., Pala Z., Andrsova I., Vesely J. Structure And Mechanical Properties Of TaNbHfZrTi High Entropy Alloy; Proceedings of the METAL 2015—24rd International Conference on Metallurgy and Materials; Brno, Czech Republic. 3–5 June 2015; pp. 3–8.
Senkov O.N., Scott J.M., Senkova S.V., Miracle D.B., Woodward C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011;509:6043–6048. doi: 10.1016/j.jallcom.2011.02.171. DOI
Senkov O.N., Zhang C., Pilchak A.L., Payton E.J., Woodward C., Zhang F. CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr. J. Alloys Compd. 2019;783:729–742. doi: 10.1016/j.jallcom.2018.12.325. DOI
Senkov O.N., Rao S., Chaput K.J., Woodward C. Acta Materialia Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys. Acta Mater. 2018;151:201–215. doi: 10.1016/j.actamat.2018.03.065. DOI
Coelho A.A. TOPAS. Coelho Software; Brisbane, Australia: 2016. Version 5; Computer Software.
Standard Test Methods for Determining Average Grain Size. ASTM; West Conshohocken, PA, USA: 2013. ASTM E112-13.
Lukac F., Dudr M., Musalek R., Klecka J., Cinert J., Cizek J., Chraska T., Cizek J., Melikhova O., Kuriplach J., et al. Introduction, Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr. J. Mater. Res. 2018;33:3247–3257. doi: 10.1557/jmr.2018.320. DOI
Nguyen V.T., Shi Z., Song T. Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach. Mater. Sci. Eng. A. 2019;742:762–772. doi: 10.1016/j.msea.2018.11.054. DOI
Maiti S., Steurer W. Structural-disorder and its effect on mechanical properties in single- phase TaNbHfZr high-entropy alloy. Acta Mater. 2016;106:87–97. doi: 10.1016/j.actamat.2016.01.018. DOI
Couzinié J.P., Dirras G., Perrière L., Chauveau T., Leroy E., Champion Y., Guillot I. Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 2014;126:285–287. doi: 10.1016/j.matlet.2014.04.062. DOI
Sheikh S., Shafeie S., Hu Q., Ahlström J., Persson C., Veselý J., Zýka J. Alloy design for intrinsically ductile refractory high-entropy alloys Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016;120 doi: 10.1063/1.4966659. DOI
Takeuchi A., Inoue A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005;46:2817–2829. doi: 10.2320/matertrans.46.2817. DOI
Okamoto H. Ta-Zr (Tantalum-Zirconium) J. Phase Equilib. 1996;17:555. doi: 10.1007/BF02666009. DOI
Okamoto H. Nb-Zr (Niobium-Zirconium) J. Phase Equilib. 1992;13:577. doi: 10.1007/BF02665776. DOI
Okamoto H. Hf-Ta (Hafnium-Tantalum) J. Phase Equilib. 1996;17:382. doi: 10.1007/BF02667626. DOI
Okamoto H. Hf-Nb (Hafnium-Niobium) J. Phase Equilib. 1998;19:288. doi: 10.1361/105497198770342490. DOI
Wu Y.D., Cai Y.H., Chen X.H., Wang T., Si J.J., Wang L., Wang Y.D., Hui X.D. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 2015;83:651–660. doi: 10.1016/j.matdes.2015.06.072. DOI
Schuh B., Volker B., Todt J., Schell N., Perriere L., Li J., Couzinie J.P., Hohenwarter A. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 2018;142:201–212. doi: 10.1016/j.actamat.2017.09.035. DOI
Coury F.G., Butler T., Chaput K., Saville A., Copley J., Foltz J., Mason P., Clarke K., Kaufman M., Clarke A. Phase equilibria, mechanical properties and design of quaternary refractory high entropy alloys. Mater. Des. 2018;155:244–256. doi: 10.1016/j.matdes.2018.06.003. DOI
Stepanov N.D., Yurchenko N.Y., Zherebtsov S.V., Tikhonovsky M.A., Salishchev G.A. Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 2018;211:87–90. doi: 10.1016/j.matlet.2017.09.094. DOI
Chen S.Y., Tong Y., Tseng K., Yeh J., Poplawsky J.D., Wen J.G., Gao M.C., Kim G., Chen W., Ren Y., et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scr. Mater. 2019;158:50–56. doi: 10.1016/j.scriptamat.2018.08.032. DOI
Sheikh S., Bijaksana M.K., Motallebzadeh A., Shafeie S., Lozinko A., Gan L., Tsao T., Klement U., Canadinc D., Murakami H., et al. Accelerated oxidation in ductile refractory high-entropy alloys. Intermetallics. 2018;97:58–66. doi: 10.1016/j.intermet.2018.04.001. DOI