The Influence of Powder Milling on Properties of SPS Compacted FeAl
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_FCHT_2020_003
Specific university research
LM2015056
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32403351
PubMed Central
PMC7248823
DOI
10.3390/molecules25092263
PII: molecules25092263
Knihovny.cz E-zdroje
- Klíčová slova
- FeAl, SPS compaction, ball milling, neutron diffraction,
- MeSH
- difrakce rentgenového záření MeSH
- hliník chemie MeSH
- mikroskopie elektronová rastrovací MeSH
- mikrotechnologie metody MeSH
- neutronová difrakce MeSH
- povrchové vlastnosti MeSH
- prášky, zásypy, pudry chemie MeSH
- slitiny chemie MeSH
- teplota MeSH
- testování materiálů metody MeSH
- transmisní elektronová mikroskopie MeSH
- tvrdost MeSH
- velikost částic MeSH
- železo chemie MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- hliník MeSH
- prášky, zásypy, pudry MeSH
- slitiny MeSH
- železo MeSH
The Fe-28 at.% Al alloy was studied in this article. The aim was to describe the influence of gas atomized powder pre-milling before SPS (Spark Plasma Sintering) sintering on the structure and properties of the bulk materials. The initial powder was milled for 0.5, 1, and 8 h. It was proven that 1 h milling leads to the change in size and morphology of the particles, B2→A2 phase transformation, and to the contamination with the material from a milling vessel. Powder materials were compacted by the SPS process at 900, 1000, and 1100 °C. The differences between the bulk materials were tested by LM, SEM, and TEM microscopy, XRD, and neutron diffraction methods. It was proven that, although the structures of initial powder (B2) and milled powder (A2) were different, both provide after-sintering material with the same structure (D03) with similar structural parameters. Higher hardness and improved ductility of the material sintered from the milled powder are likely caused by the change in chemical composition during the milling process.
FZU Institute of Physics of the CAS Na Slovance 1999 2 182 21 Prague 8 Czech Republic
Nuclear Physics Institute ASCR v v i 250 68 Řež Czech Republic
Zobrazit více v PubMed
Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI
Zhu S.M., Tamura M., Sakamoto K., Iwasaki K. Characterization of Fe3Al-based intermetallic alloys fabricated by mechanical alloying and HIP consolidation. Mater. Sci. Eng. A. 2000;292:83–89. doi: 10.1016/S0921-5093(00)01025-X. DOI
Park B.G., Ko S.H., Park Y.H., Lee J.H. Mechanical properties of in situ Fe3Al matrix composites fabricated by MA–PDS process. Intermetallics. 2006;14:660–665. doi: 10.1016/j.intermet.2005.10.007. DOI
Krasnowski M., Grabias A., Kulik T. Phase transformations during mechanical alloying of Fe–50% Al and subsequent heating of the milling product. J. Alloys Compd. 2006;424:119–127. doi: 10.1016/j.jallcom.2005.12.077. DOI
Pang L., Kumar K.S. Mechanical behavior of an Fe–40Al–0.6C alloy. Acta Mater. 1998;46:4017–4028. doi: 10.1016/S1359-6454(98)00075-5. DOI
Moris D.G., Munos-Moris M.A., Chao J. Development of high strength, high ductility and high creep resistant iron aluminide. Intermetallics. 2004;12:821–826. doi: 10.1016/j.intermet.2004.02.032. DOI
Varin R.A., Bystrzycki J., Calka A. Effect of annealing on the microstructure, ordering and microhardness of ball milled cubic (L12) titanium trialuminide intermetallic powder. Intermetallics. 1999;7:785–796. doi: 10.1016/S0966-9795(98)00127-7. DOI
Deevi S.C., Gedevanishvili S., Paldey S. Iron Aluminide Fuel Injector Component. No. 6489043. U.S. Patent. 2002 Dec 3;
Morris D.G., Munoz-Morris M.A. Recent Developments Toward the Application of Iron Aluminides in Fossil Fuel Technologies. Adv. Eng. Mater. 2010;13:43–47. doi: 10.1002/adem.201000210. DOI
Palm M., Stein F., Dehm G. Iron Aluminides. Annu. Rev. Mater. Res. 2019;49:297–326. doi: 10.1146/annurev-matsci-070218-125911. DOI
LaBarge W.J., Anderson C., Kupe J. Exhaust Manifold Comprising Aluminide. No. 8020378. U.S. Patent. 2011 Sep 20;
Morris D.G., Morris-Munoz M.A. The influence of microstructure on the ductility of iron aluminides. Intermetallics. 1999;7:1121–1129. doi: 10.1016/S0966-9795(99)00038-2. DOI
Grosdidier T., Ji G., Launois S. Processing dense hetero-nanostructured metallic materials by spark plasma sintering. Scr. Mater. 2007;57:525–528. doi: 10.1016/j.scriptamat.2007.05.022. DOI
Paris S., Valot C., Gosmain L., Gaffet E., Bernard F., Munir Z., Valot C. Investigation of mechanically activated field-activated pressure-assisted synthesis processing parameters for producing dense nanostructured FeAl. J. Mater. Res. 2003;18:2331–2338. doi: 10.1557/JMR.2003.0327. DOI
Grosdidier T., Ji G., Bernard F., Gaffet E., Munir Z.A., Launois S. Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and Spark Plasma Sintering. Intermetallics. 2006;14:1208–1213. doi: 10.1016/j.intermet.2005.11.033. DOI
Yang G.J., Wang H.-T., Li C.J., Li C.-X. Effect of annealing on the microstructure and erosion performance of cold-sprayed FeAl intermetallic coatings. Surf. Coat. Technol. 2011;205:5502–5509. doi: 10.1016/j.surfcoat.2011.06.033. DOI
Łyszkowski R., Bystrzycki J. Hot deformation and processing maps of a Fe–Al intermetallic alloy. Mater. Charact. 2014;96:196–205. doi: 10.1016/j.matchar.2014.07.004. DOI
Skoglund H., Wedel M.K., Karlsson B. Processing of fine-grained mechanically alloyed FeAl. Intermetallics. 2004;12:977–983. doi: 10.1016/j.intermet.2004.03.004. DOI
Senderowski C., Bojar Z., Wołczyński W., Pawłowski A. Microstructure characterization of D-gun sprayed Fe–Al intermetallic coatings. Intermetallics. 2010;18:1405–1409. doi: 10.1016/j.intermet.2010.01.015. DOI
Song B., Dong S., Coddet P., Liao H., Coddet C. Fabrication and microstructure characterization of selective laser-melted FeAl intermetallic parts. Surf. Coatings Technol. 2012;206:4704–4709. doi: 10.1016/j.surfcoat.2012.05.072. DOI
Bernard F., Charlot F., Gaffet E., Munir Z.A.J. One-Step Synthesis and Consolidation of Nanophase Iron Aluminide. J. Am. Ceram. Soc. 2001;84:910–914. doi: 10.1111/j.1151-2916.2001.tb00767.x. DOI
Paris S., Gaffet E., Bernard F., Munir Z. Spark plasma synthesis from mechanically activated powders: A versatile route for producing dense nanostructured iron aluminides. Scr. Mater. 2004;50:691–696. doi: 10.1016/j.scriptamat.2003.11.019. DOI
Elkedim O., Paris S., Phigini C., Bernard F., Gaffet E., Munir Z. Electrochemical behavior of nanocrystalline iron aluminide obtained by mechanically activated field activated pressure assisted synthesis. Mater. Sci. Eng. A. 2004;369:49–55. doi: 10.1016/j.msea.2003.10.271. DOI
Ji G., Goran D., Bernard F., Grosdidier T., Gaffet E., Munir Z.A. Structure and composition heterogeneity of a FeAl alloy prepared by one-step synthesis and consolidation processing and their influence on grain size characterization. J. Alloys Compd. 2006;420:158–164. doi: 10.1016/j.jallcom.2005.10.058. DOI
Sasaki T.T., Mukai T., Hono K. A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 2007;57:189–192. doi: 10.1016/j.scriptamat.2007.04.010. DOI
Ji G., Grosdidier T., Bozzolo N., Launois S. The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering. Intermetallics. 2007;15:108–118. doi: 10.1016/j.intermet.2006.03.006. DOI
Ko I.-Y., Jo S.-H., Doh J.-M., Yoon J.-K., Shon I.-J. Rapid consolidation of nanostructured FeAl compound by high frequency induction heating and its mechanical properties. J. Alloys Compd. 2010;496:L1–L3. doi: 10.1016/j.jallcom.2010.01.148. DOI
Ji G., Bernard F., Launois S., Grosdidier T. Processing conditions, microstructure and mechanical properties of hetero-nanostructured ODS FeAl alloys produced by spark plasma sintering. Mater. Sci. Eng. A. 2013;559:566–573. doi: 10.1016/j.msea.2012.08.142. DOI
Jian W., Xing J.-D., Tang H.-P., Yang B.-J., Li Y.-N. Microstructure and mechanical properties of Fe3Al alloys prepared by MA-PAS and MA-HP. Trans. Nonferr. Met. Soc. China. 2011;21:2408–2414. doi: 10.1016/s1003-6326(11)61028-5. DOI
He Q., Jia C., Meng J. Influence of iron powder particle size on the microstructure and properties of Fe3Al intermetallics prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A. 2006;428:314–318. doi: 10.1016/j.msea.2006.05.024. DOI
Wang J., Xing J., Qiu Z., Zhi X., Cao L. Effect of fabrication methods on microstructure and mechanical properties of Fe3Al-based alloys. J. Alloys Compd. 2009;488:117–122. doi: 10.1016/j.jallcom.2009.08.138. DOI
Michalcová A., Senčekova L., Rolink G., Weisheit A., Pešička J., Stobik M., Palm M. Laser additive manufacturing of iron aluminides strengthened by ordering, borides or coherent Heusler phase. Mater. Des. 2017;116:481–494. doi: 10.1016/j.matdes.2016.12.046. DOI
Skiba T., Haušild P., Karlík M., Vanmeensel K., Vleugels J. Mechanical properties of spark plasma sintered FeAl intermetallics. Intermetallics. 2010;18:1410–1414. doi: 10.1016/j.intermet.2010.02.009. DOI
Stein F., Palm M. Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. Int. J. Mater. Res. 2007;98:580–588. doi: 10.3139/146.101512. DOI
Raabe D., Keichel J. Microstructure and crystallographic texture of rolled polycrystalline Fe3AI. J. Mater. Sci. 1996;31:339–344. doi: 10.1007/BF01139149. DOI
Ikeda O., Ohnuma I., Kainuma R., Ishida K. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe–Al system. Intermetallics. 2001;9:755–761. doi: 10.1016/S0966-9795(01)00058-9. DOI
Noh J.-Y., Kim H. Density Functional Theory Calculations on κ-carbides, (Fe,Mn)3AlC. J. Korean Phys. Soc. 2011;58:285–290. doi: 10.3938/jkps.58.285. DOI
Peteline S., Divinski S.V., Njiokep E.M.T., Mehrer H. Diffusion of Solute Elements in Fe3Al. Defect Diffus. Forum. 2003;216:175–180. doi: 10.4028/www.scientific.net/DDF.216-217.175. DOI
Golovin I., Divinski S.V., Čížek J., Prochazka I., Stein F. Study of atom diffusivity and related relaxation phenomena in Fe3Al–(Ti,Nb)–C alloys. Acta Mater. 2005;53:2581–2594. doi: 10.1016/j.actamat.2005.02.017. DOI
Morita K., Kim B., Yoshida H., Hiraga K., Sakka Y. Assessment of carbon contamination in MgAl2O4 spinel during spark-plasma-sintering (SPS) processing. J. Ceram. Soc. Jpn. 2015;123:983–988. doi: 10.2109/jcersj2.123.983. DOI
Morita K., Kim B., Yoshida H., Hiraga K., Sakka Y. Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II - Effect of SPS and loading temperatures. J. Eur. Ceram. Soc. 2018;38:2596–2604. doi: 10.1016/j.jeurceramsoc.2017.12.004. DOI
Mackie A., Hatton G.D., Hamilton H.G., Dean J.S., Goodall R. Carbon uptake and distribution in Spark Plasma Sintering (SPS) processed Sm(Co, Fe, Cu, Zr) z. Mater. Lett. 2016;171:14–17. doi: 10.1016/j.matlet.2016.02.049. DOI
Kant R., Prakash U., Agarwala V., Prasad V.V.S. Microstructure and wear behaviour of FeAl-based composites containing in-situ carbides. Bull. Mater. Sci. 2016;39:1827–1834. doi: 10.1007/s12034-016-1326-4. DOI
Minamino Y., Koizumi Y., Tsuji N., Hirohata N., Mizuuchi K., Ohkanda Y. Microstructures and mechanical properties of bulk nanocrystalline Fe–Al–C alloys made by mechanically alloying with subsequent spark plasma sintering. Sci. Technol. Adv. Mater. 2004;5:133–143. doi: 10.1016/j.stam.2003.11.004. DOI
Pelleg J. Diffusion in the Iron Group L12 and B2 Intermetallic Compounds. Springer International Publishing AG; Cham, Switzerland: 2017. p. 207.
Wang J., Li Y., Yin Y. Interface characteristics in diffusion bonding of Fe3Al with Cr18-Ni8 stainless steel. J. Colloid Interface Sci. 2005;285:201–205. doi: 10.1016/j.jcis.2004.10.071. PubMed DOI
Mikula P., Šaroun J., Stammers J., Em V. High-resolution analysis with bent perfect crystal (BPC) in powder diffraction - I. J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 2020 (in press)
Mikula P., Šaroun J., Stammers J., Em V. High-resolution analysis with bent perfect crystal (BPC) in powder diffraction - II. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2020 (in press)
(Sub)structure Development in Gradually Swaged Electroconductive Bars
The Effect of Hydrogen on the Stress-Strain Response in Fe3Al: An ab initio Molecular-Dynamics Study