The Influence of Powder Milling on Properties of SPS Compacted FeAl

. 2020 May 11 ; 25 (9) : . [epub] 20200511

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32403351

Grantová podpora
A1_FCHT_2020_003 Specific university research
LM2015056 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015073 Ministerstvo Školství, Mládeže a Tělovýchovy

The Fe-28 at.% Al alloy was studied in this article. The aim was to describe the influence of gas atomized powder pre-milling before SPS (Spark Plasma Sintering) sintering on the structure and properties of the bulk materials. The initial powder was milled for 0.5, 1, and 8 h. It was proven that 1 h milling leads to the change in size and morphology of the particles, B2→A2 phase transformation, and to the contamination with the material from a milling vessel. Powder materials were compacted by the SPS process at 900, 1000, and 1100 °C. The differences between the bulk materials were tested by LM, SEM, and TEM microscopy, XRD, and neutron diffraction methods. It was proven that, although the structures of initial powder (B2) and milled powder (A2) were different, both provide after-sintering material with the same structure (D03) with similar structural parameters. Higher hardness and improved ductility of the material sintered from the milled powder are likely caused by the change in chemical composition during the milling process.

Zobrazit více v PubMed

Suryanarayana C. Mechanical alloying and milling. Prog. Mater. Sci. 2001;46:1–184. doi: 10.1016/S0079-6425(99)00010-9. DOI

Zhu S.M., Tamura M., Sakamoto K., Iwasaki K. Characterization of Fe3Al-based intermetallic alloys fabricated by mechanical alloying and HIP consolidation. Mater. Sci. Eng. A. 2000;292:83–89. doi: 10.1016/S0921-5093(00)01025-X. DOI

Park B.G., Ko S.H., Park Y.H., Lee J.H. Mechanical properties of in situ Fe3Al matrix composites fabricated by MA–PDS process. Intermetallics. 2006;14:660–665. doi: 10.1016/j.intermet.2005.10.007. DOI

Krasnowski M., Grabias A., Kulik T. Phase transformations during mechanical alloying of Fe–50% Al and subsequent heating of the milling product. J. Alloys Compd. 2006;424:119–127. doi: 10.1016/j.jallcom.2005.12.077. DOI

Pang L., Kumar K.S. Mechanical behavior of an Fe–40Al–0.6C alloy. Acta Mater. 1998;46:4017–4028. doi: 10.1016/S1359-6454(98)00075-5. DOI

Moris D.G., Munos-Moris M.A., Chao J. Development of high strength, high ductility and high creep resistant iron aluminide. Intermetallics. 2004;12:821–826. doi: 10.1016/j.intermet.2004.02.032. DOI

Varin R.A., Bystrzycki J., Calka A. Effect of annealing on the microstructure, ordering and microhardness of ball milled cubic (L12) titanium trialuminide intermetallic powder. Intermetallics. 1999;7:785–796. doi: 10.1016/S0966-9795(98)00127-7. DOI

Deevi S.C., Gedevanishvili S., Paldey S. Iron Aluminide Fuel Injector Component. No. 6489043. U.S. Patent. 2002 Dec 3;

Morris D.G., Munoz-Morris M.A. Recent Developments Toward the Application of Iron Aluminides in Fossil Fuel Technologies. Adv. Eng. Mater. 2010;13:43–47. doi: 10.1002/adem.201000210. DOI

Palm M., Stein F., Dehm G. Iron Aluminides. Annu. Rev. Mater. Res. 2019;49:297–326. doi: 10.1146/annurev-matsci-070218-125911. DOI

LaBarge W.J., Anderson C., Kupe J. Exhaust Manifold Comprising Aluminide. No. 8020378. U.S. Patent. 2011 Sep 20;

Morris D.G., Morris-Munoz M.A. The influence of microstructure on the ductility of iron aluminides. Intermetallics. 1999;7:1121–1129. doi: 10.1016/S0966-9795(99)00038-2. DOI

Grosdidier T., Ji G., Launois S. Processing dense hetero-nanostructured metallic materials by spark plasma sintering. Scr. Mater. 2007;57:525–528. doi: 10.1016/j.scriptamat.2007.05.022. DOI

Paris S., Valot C., Gosmain L., Gaffet E., Bernard F., Munir Z., Valot C. Investigation of mechanically activated field-activated pressure-assisted synthesis processing parameters for producing dense nanostructured FeAl. J. Mater. Res. 2003;18:2331–2338. doi: 10.1557/JMR.2003.0327. DOI

Grosdidier T., Ji G., Bernard F., Gaffet E., Munir Z.A., Launois S. Synthesis of bulk FeAl nanostructured materials by HVOF spray forming and Spark Plasma Sintering. Intermetallics. 2006;14:1208–1213. doi: 10.1016/j.intermet.2005.11.033. DOI

Yang G.J., Wang H.-T., Li C.J., Li C.-X. Effect of annealing on the microstructure and erosion performance of cold-sprayed FeAl intermetallic coatings. Surf. Coat. Technol. 2011;205:5502–5509. doi: 10.1016/j.surfcoat.2011.06.033. DOI

Łyszkowski R., Bystrzycki J. Hot deformation and processing maps of a Fe–Al intermetallic alloy. Mater. Charact. 2014;96:196–205. doi: 10.1016/j.matchar.2014.07.004. DOI

Skoglund H., Wedel M.K., Karlsson B. Processing of fine-grained mechanically alloyed FeAl. Intermetallics. 2004;12:977–983. doi: 10.1016/j.intermet.2004.03.004. DOI

Senderowski C., Bojar Z., Wołczyński W., Pawłowski A. Microstructure characterization of D-gun sprayed Fe–Al intermetallic coatings. Intermetallics. 2010;18:1405–1409. doi: 10.1016/j.intermet.2010.01.015. DOI

Song B., Dong S., Coddet P., Liao H., Coddet C. Fabrication and microstructure characterization of selective laser-melted FeAl intermetallic parts. Surf. Coatings Technol. 2012;206:4704–4709. doi: 10.1016/j.surfcoat.2012.05.072. DOI

Bernard F., Charlot F., Gaffet E., Munir Z.A.J. One-Step Synthesis and Consolidation of Nanophase Iron Aluminide. J. Am. Ceram. Soc. 2001;84:910–914. doi: 10.1111/j.1151-2916.2001.tb00767.x. DOI

Paris S., Gaffet E., Bernard F., Munir Z. Spark plasma synthesis from mechanically activated powders: A versatile route for producing dense nanostructured iron aluminides. Scr. Mater. 2004;50:691–696. doi: 10.1016/j.scriptamat.2003.11.019. DOI

Elkedim O., Paris S., Phigini C., Bernard F., Gaffet E., Munir Z. Electrochemical behavior of nanocrystalline iron aluminide obtained by mechanically activated field activated pressure assisted synthesis. Mater. Sci. Eng. A. 2004;369:49–55. doi: 10.1016/j.msea.2003.10.271. DOI

Ji G., Goran D., Bernard F., Grosdidier T., Gaffet E., Munir Z.A. Structure and composition heterogeneity of a FeAl alloy prepared by one-step synthesis and consolidation processing and their influence on grain size characterization. J. Alloys Compd. 2006;420:158–164. doi: 10.1016/j.jallcom.2005.10.058. DOI

Sasaki T.T., Mukai T., Hono K. A high-strength bulk nanocrystalline Al–Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 2007;57:189–192. doi: 10.1016/j.scriptamat.2007.04.010. DOI

Ji G., Grosdidier T., Bozzolo N., Launois S. The mechanisms of microstructure formation in a nanostructured oxide dispersion strengthened FeAl alloy obtained by spark plasma sintering. Intermetallics. 2007;15:108–118. doi: 10.1016/j.intermet.2006.03.006. DOI

Ko I.-Y., Jo S.-H., Doh J.-M., Yoon J.-K., Shon I.-J. Rapid consolidation of nanostructured FeAl compound by high frequency induction heating and its mechanical properties. J. Alloys Compd. 2010;496:L1–L3. doi: 10.1016/j.jallcom.2010.01.148. DOI

Ji G., Bernard F., Launois S., Grosdidier T. Processing conditions, microstructure and mechanical properties of hetero-nanostructured ODS FeAl alloys produced by spark plasma sintering. Mater. Sci. Eng. A. 2013;559:566–573. doi: 10.1016/j.msea.2012.08.142. DOI

Jian W., Xing J.-D., Tang H.-P., Yang B.-J., Li Y.-N. Microstructure and mechanical properties of Fe3Al alloys prepared by MA-PAS and MA-HP. Trans. Nonferr. Met. Soc. China. 2011;21:2408–2414. doi: 10.1016/s1003-6326(11)61028-5. DOI

He Q., Jia C., Meng J. Influence of iron powder particle size on the microstructure and properties of Fe3Al intermetallics prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A. 2006;428:314–318. doi: 10.1016/j.msea.2006.05.024. DOI

Wang J., Xing J., Qiu Z., Zhi X., Cao L. Effect of fabrication methods on microstructure and mechanical properties of Fe3Al-based alloys. J. Alloys Compd. 2009;488:117–122. doi: 10.1016/j.jallcom.2009.08.138. DOI

Michalcová A., Senčekova L., Rolink G., Weisheit A., Pešička J., Stobik M., Palm M. Laser additive manufacturing of iron aluminides strengthened by ordering, borides or coherent Heusler phase. Mater. Des. 2017;116:481–494. doi: 10.1016/j.matdes.2016.12.046. DOI

Skiba T., Haušild P., Karlík M., Vanmeensel K., Vleugels J. Mechanical properties of spark plasma sintered FeAl intermetallics. Intermetallics. 2010;18:1410–1414. doi: 10.1016/j.intermet.2010.02.009. DOI

Stein F., Palm M. Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis. Int. J. Mater. Res. 2007;98:580–588. doi: 10.3139/146.101512. DOI

Raabe D., Keichel J. Microstructure and crystallographic texture of rolled polycrystalline Fe3AI. J. Mater. Sci. 1996;31:339–344. doi: 10.1007/BF01139149. DOI

Ikeda O., Ohnuma I., Kainuma R., Ishida K. Phase equilibria and stability of ordered BCC phases in the Fe-rich portion of the Fe–Al system. Intermetallics. 2001;9:755–761. doi: 10.1016/S0966-9795(01)00058-9. DOI

Noh J.-Y., Kim H. Density Functional Theory Calculations on κ-carbides, (Fe,Mn)3AlC. J. Korean Phys. Soc. 2011;58:285–290. doi: 10.3938/jkps.58.285. DOI

Peteline S., Divinski S.V., Njiokep E.M.T., Mehrer H. Diffusion of Solute Elements in Fe3Al. Defect Diffus. Forum. 2003;216:175–180. doi: 10.4028/www.scientific.net/DDF.216-217.175. DOI

Golovin I., Divinski S.V., Čížek J., Prochazka I., Stein F. Study of atom diffusivity and related relaxation phenomena in Fe3Al–(Ti,Nb)–C alloys. Acta Mater. 2005;53:2581–2594. doi: 10.1016/j.actamat.2005.02.017. DOI

Morita K., Kim B., Yoshida H., Hiraga K., Sakka Y. Assessment of carbon contamination in MgAl2O4 spinel during spark-plasma-sintering (SPS) processing. J. Ceram. Soc. Jpn. 2015;123:983–988. doi: 10.2109/jcersj2.123.983. DOI

Morita K., Kim B., Yoshida H., Hiraga K., Sakka Y. Distribution of carbon contamination in oxide ceramics occurring during spark-plasma-sintering (SPS) processing: II - Effect of SPS and loading temperatures. J. Eur. Ceram. Soc. 2018;38:2596–2604. doi: 10.1016/j.jeurceramsoc.2017.12.004. DOI

Mackie A., Hatton G.D., Hamilton H.G., Dean J.S., Goodall R. Carbon uptake and distribution in Spark Plasma Sintering (SPS) processed Sm(Co, Fe, Cu, Zr) z. Mater. Lett. 2016;171:14–17. doi: 10.1016/j.matlet.2016.02.049. DOI

Kant R., Prakash U., Agarwala V., Prasad V.V.S. Microstructure and wear behaviour of FeAl-based composites containing in-situ carbides. Bull. Mater. Sci. 2016;39:1827–1834. doi: 10.1007/s12034-016-1326-4. DOI

Minamino Y., Koizumi Y., Tsuji N., Hirohata N., Mizuuchi K., Ohkanda Y. Microstructures and mechanical properties of bulk nanocrystalline Fe–Al–C alloys made by mechanically alloying with subsequent spark plasma sintering. Sci. Technol. Adv. Mater. 2004;5:133–143. doi: 10.1016/j.stam.2003.11.004. DOI

Pelleg J. Diffusion in the Iron Group L12 and B2 Intermetallic Compounds. Springer International Publishing AG; Cham, Switzerland: 2017. p. 207.

Wang J., Li Y., Yin Y. Interface characteristics in diffusion bonding of Fe3Al with Cr18-Ni8 stainless steel. J. Colloid Interface Sci. 2005;285:201–205. doi: 10.1016/j.jcis.2004.10.071. PubMed DOI

Mikula P., Šaroun J., Stammers J., Em V. High-resolution analysis with bent perfect crystal (BPC) in powder diffraction - I. J. Surf. Investig. X-ray, Synchrotron Neutron Tech. 2020 (in press)

Mikula P., Šaroun J., Stammers J., Em V. High-resolution analysis with bent perfect crystal (BPC) in powder diffraction - II. J. Surf. Investig. X-ray Synchrotron Neutron Tech. 2020 (in press)

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...