A newly developed cloning technique in sturgeons; an important step towards recovering endangered species
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31320687
PubMed Central
PMC6639416
DOI
10.1038/s41598-019-46892-4
PII: 10.1038/s41598-019-46892-4
Knihovny.cz E-zdroje
- MeSH
- embryonální vývoj * MeSH
- genom * MeSH
- klonování DNA metody MeSH
- ohrožené druhy statistika a číselné údaje MeSH
- ryby embryologie genetika MeSH
- techniky jaderného přenosu * MeSH
- zachování přírodních zdrojů metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Several steps of sturgeon somatic cell nuclear transfer (SCNT) have been recently established, but improvements are needed to make it a feasible tool to preserve the natural populations of this group of endangered species. The donor cell position inside the recipient egg seems to be crucial for its reprogramming; therefore by injecting multiple donor somatic cells instead of a single cell with a single manipulation, we increased the potential for embryo development. Using the Russian sturgeon Acipenser gueldenstaedtii as a multiple cell donor and sterlet Acipenser ruthenus as the non-enucleated egg recipient, we obtained higher proportion of eggs developing into embryos than previously reported with single-SCNT. Molecular data showed the production of a specimen (0.8%) contained only the donor genome with no contribution from the recipient, while two specimens (1.6%) showed both recipient and donor genome. These findings are the first report of donor DNA integration into a sturgeon embryo after interspecific cloning. In all, we provide evidence that cloning with the multiple donor somatic cells can be feasible in the future. Despite the fact that the sturgeon cloning faces limitations, to date it is the most promising technique for their preservation.
INRA Fish Physiology and Genomics department Campus de Beaulieu F 35000 Rennes France
South Ehime Fisheries Research Center Ehime University Ainan Ehime 798 4206 Japan
Zobrazit více v PubMed
Ludwig A, Makowiecki D, Benecke N. Further evidence of trans-Atlantic colonization of Western Europe by American Atlantic sturgeons. Archaeofauna. 2009;18:185–192.
Birstein VJ, Bemis WE, Waldman JR. The threatened status of acipenseriform species: a summary. Environ. Biol. Fishes. 1997;48:427–435. doi: 10.1023/A:1007382724251. DOI
IUCN. The IUCN Red List of Threatened Species. Version 2018-1, http://www.iucnredlist.org (Downloaded on 05 July 2018).
Wildt DE. Genetic resource banks for conserving wildlife species: justification, examples and becoming organized on a global basis. Anim. Reprod. Sci. 1992;28:247–257. doi: 10.1016/0378-4320(92)90111-P. DOI
Lanza RP, et al. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning. 2000;2:79–90. doi: 10.1089/152045500436104. PubMed DOI
Solti L, Crichton EG, Loskutoff NM, Cseh S. Economical and ecological importance of indigenous livestock and the application of assisted reproduction to their preservation. Theriogenology. 2000;53:149–162. doi: 10.1016/S0093-691X(99)00248-4. PubMed DOI
Li Y, et al. Cloned endangered species takin (Budorcas taxicolor) by inter-species nuclear transfer and comparison of the blastocyst development with yak (Bos grunniens) and bovine. Mol. Reprod. Dev. 2006;73:189–195. doi: 10.1002/mrd.20405. PubMed DOI
Oh HJ, et al. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology. 2008;70:638–647. doi: 10.1016/j.theriogenology.2008.04.032. PubMed DOI
Gómez MC, et al. Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer. Reprod. Fertil. Dev. 2009;21:76–82. doi: 10.1071/RD08222. PubMed DOI
Labbé, C., Robles, V. & Herraez, M. P. Cryopreservation of gametes for aquaculture and alternative cell sources for genome preservation. 76–116. In: Advances in aquaculture hatchery technology (Elsevier, 2013).
Fatira E, et al. Application of interspecific Somatic Cell Nuclear Transfer (iSCNT) in sturgeons and an unexpectedly produced gynogenetic sterlet with homozygous quadruple haploid. Sci. Rep. 2018;8:5997. doi: 10.1038/s41598-018-24376-1. PubMed DOI PMC
Lee KY, Huang H, Ju B, Yang Z, Lin S. Cloned zebrafish by nuclear transfer from long-term-cultured cells. Nat. Biotechnol. 2002;20:795–799. doi: 10.1038/nbt721. PubMed DOI
Ju B, et al. Development and gene expression of nuclear transplants generated by transplantation of cultured cells nuclei into non-enucleated eggs in the medaka Oryzias latipes. Develop. Growth Differ. 2003;45:167–174. doi: 10.1034/j.1600-0854.2004.00687.x. PubMed DOI
Kaftanovskaya E, Motosugi N, Kinoshita M, Ozato K, Wakamatsu Y. Ploidy mosaicism in well-developed nuclear transplants produced by transfer of adult somatic cell nuclei to nonenucleated eggs of medaka (Oryzias latipes) Develop. Growth Differ. 2007;49:691–698. doi: 10.1111/j.1440-169X.2007.00962.x. PubMed DOI
Wakamatsu Y. Novel method for the nuclear transfer of adult somatic cells in medaka fish (Oryzias latipes): Use of diploidized eggs as recipients. Develop. Growth Differ. 2008;50:427–436. doi: 10.1111/j.1440-169X.2008.01050.x. PubMed DOI
Siripattarapravat K, Pinmee B, Venta PJ, Chang CC, Cibelli JB. Somatic cell nuclear transfer in zebrafish. Nat. Methods. 2009;6:733–735. doi: 10.1038/nmeth.1369. PubMed DOI
Luo DJ, Hu W, Chen SP, Zhu ZY. Critical developmental stages for the efficiency of somatic cell nuclear transfer in zebrafish. Int. J. Biol. Sci. 2011;7:476–486. doi: 10.7150/ijbs.7.476. PubMed DOI PMC
Le Bail PY, et al. Optimization of somatic cell injection in the perspective of nuclear transfer in goldfish. BMC Dev. Biol. 2010;10:64. doi: 10.1186/1471-213X-10-64. PubMed DOI PMC
Hochleithner, M. & Gessner, J. The Sturgeons and Paddlefishes (Acipenseriformes) of the World – Biology and Aquaculture. 1–248 (AquaTech Publications, 3rd edition, Kitzbühel, 2012).
Gesner, J., Freyhof, J. & Kottelat, M. Acipenser gueldenstaedtii. The IUCN Red List of Threatened Species: e.T232A13042340, 10.2305/IUCN.UK.2010-1.RLTS.T232A13042340.en (2010a).
Gesner, J., Chebanov, M. & Freyhof, J. Huso huso. The IUCN Red List of Threatened Species 2010: e.T10269A3187455, 10.2305/IUCN.UK.2010-1.RLTS.T10269A3187455.en (2010b).
Akimenko MA, Marí-Beffa M, Becerra J, Géraudie J. Old questions, new tools, and some answers to the mystery of fin regeneration. Dev. Dynam. 2003;226:190–201. doi: 10.1002/dvdy.10248. PubMed DOI
Gesner, J., Freyhof, J. & Kottelat, M. Acipenser ruthenus. The IUCN Red List of Threatened Species 2010: e.T227A13039007, 10.2305/IUCN.UK.2010-1.RLTS.T227A13039007.en (2010c).
Havelka M, Fujimoto T, Hagihara S, Adachi S, Arai K. Nuclear DNA markers for identification of Beluga and Sterlet sturgeons and their interspecific Bester hybrid. Sci. Rep. 2017;7:1694. doi: 10.1038/s41598-017-01768-3. PubMed DOI PMC
Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KHS. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385:810–813. doi: 10.1038/385810a0. PubMed DOI
Chesne P, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 2002;20:366–369. doi: 10.1038/nbt0402-366. PubMed DOI
Wani NA, Vettical BS, Hong SB. First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS One. 2017;12:e0177800. doi: 10.1371/journal.pone.0177800. PubMed DOI PMC
Ginsburg, A. S. & Dettlaff, T. A. The Russian Sturgeon Acipenser Güldenstädti. Part I. Gametes And Early Development Up To Time Of Hatching. In: Dettlaff, T. A. & Vassetzky, S. G. (eds) Animal Species for Developmental Studies (Springer, Boston, MA, 1991).
Iegorova, V., Pšenička, M., Lebeda, I., Rodina, M. & Saito, T. Polyspermy produces viable haploid/diploid mosaics in sturgeon. Biol. Reprod. ioy092 (2018). PubMed PMC
Siripattarapravat K, et al. The influence of donor nucleus source on the outcome of zebrafish somatic cell nuclear transfer. Int. J. Dev. Biol. 2010;54:1679–1683. doi: 10.1387/ijdb.103189ks. PubMed DOI
Dettlaff, T. A., Ginsburg, A. S. & Schmalhausen, O. I. Sturgeon Fishes. Developmental Biology and Aquaculture, ISBN: 3-540-54744-4 (Springer-Verlag Berlin Heidelberg New York, 1993).
Gurdon JB. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 1962;10:622–640. PubMed
Gurdon JB, Laskey RA, Reeves OR. The developmental capacity of nuclei transplanted from keratinized skin cells of adult frogs. J. Embryol. Exp. Morphol. 1975;34:93–112. PubMed
Ballard WW. Morphogenetic movements and fate maps of vertebrates. Am. Zool. 1981;21:391–399. doi: 10.1093/icb/21.2.391. DOI
Niwa K, Ladygina T, Kinoshita M, Ozato K, Wakamatsu Y. Transplantation of blastula nuclei to non-enucleated eggs in the medaka, Oryzias latipes. Dev. Growth. Dif. 1999;41:163–172. doi: 10.1046/j.1440-169x.1999.00423.x. PubMed DOI
Niwa K, Kani S, Kinoshita M, Ozato K, Wakamatsu Y. Expression of GFP in nuclear transplants generated by transplantation of embryonic cell nuclei from GFP-transgenic fish into nonenucleated eggs of medaka, Oryzias latipes. Cloning. 2000;2:23–34. doi: 10.1089/15204550050145102. PubMed DOI
Wakamatsu, Y. & Ozato, K. Cloning of Fish. In: Principles of Cloning, 287–299 (2002).
Bubenshchikova E, et al. Generation of fertile and diploid fish, medaka (Oryzias latipes), from nuclear transplantation of blastula and four-somite-stage embryonic cells into nonenucleated unfertilized eggs. Clon. Stem Cells. 2005;7:255–264. PubMed
Hattori M, Hashimoto H, Bubenshchikova E, Wakamatsu Y. Nuclear transfer of embryonic cell nuclei to non-enucleated eggs in zebrafish, Danio rerio. Int. J. Biol. Sci. 2011;7:460–468. doi: 10.7150/ijbs.7.460. PubMed DOI PMC
Bubenshchikova E, et al. Nuclear transplants from adult somatic cells generated by a novel method using diploidized eggs as recipients in medaka fish (Oryzias latipes) Clon. Stem Cells. 2008;10:443–452. doi: 10.1089/clo.2008.0014. PubMed DOI
Kishigami S, Wakayama S, Hosoi Y, Iritani A, Wakayama T. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome. Exp. Cell Res. 2008;314:1945–1950. doi: 10.1016/j.yexcr.2008.01.027. PubMed DOI
Loi P, Iuso D, Czernik M, Zacchini F, Ptak G. Towards storage of cells and gametes in dry form. Trends Biotechnol. 2013;31:688–695. doi: 10.1016/j.tibtech.2013.09.004. PubMed DOI
Chenais N, et al. Nuclear import of Xenopus egg extract components into cultured cells for reprogramming purposes: a case study on goldfish fin cells. Sci. Rep. 2019;9:2861. doi: 10.1038/s41598-019-39500-y. PubMed DOI PMC
Luo D, et al. Identification of differentially expressed genes between cloned and zygote-developing zebrafish (Danio rerio) embryos at the dome stage using suppression subtractive hybridization. Biol. Reprod. 2009;80:674–684. doi: 10.1095/biolreprod.108.074203. PubMed DOI
Rouillon, C., Depincé, A., Chênais, N., Le Bail, P. Y. & Labbé, C. Somatic cell nuclear transfer in non-enucleated goldfish oocytes: understanding DNA fate during meiosis resumption and first cellular division. Sci. Rep. (submitted), bioRxiv 630194; doi: 10.1101/630194. PubMed PMC
Gorshkova G, Gorshkov S, Gordin H, Knibb W. Karyological study in hybrids of beluga, Huso huso (L.) and the Russian sturgeon Acipenser gueldenstaedti brandt. Israel J. Aquacult. 1996;48:35–39.
Havelka M, et al. Fertility of a spontaneous hexaploid male Siberian sturgeon, Acipenser baerii. BMC Genet. 2014;15:5. doi: 10.1186/1471-2156-15-5. PubMed DOI PMC
Lagutina I, et al. Development, embryonic genome activity and mitochondrial characteristics of bovine-pig inter-family nuclear transfer embryos. Reproduction. 2010;140:273–85. doi: 10.1530/REP-09-0578. PubMed DOI
Mastromonaco GF, Favetta LA, Smith LC, Filion F, King WA. The influence of nuclear content on developmental competence of gaur x cattle hybrid in vitro fertilized and somatic cell nuclear transfer embryos. Biol. Reprod. 2007;76:514–523. doi: 10.1095/biolreprod.106.058040. PubMed DOI
Sohrabnezhad M, Kalbassi MR, Nazari RM, Bahmani M. Short-term storage of Persian sturgeon (Acipenser persicus) ova in artificial media and coelomic fluid. J. Appl. Ichthyol. 2006;22:395–399. doi: 10.1111/j.1439-0426.2007.00993.x. DOI
Börk K, et al. Development of new microsatellite primers for green and white sturgeon. Conserv. Genet. 2008;9:973–979. doi: 10.1007/s10592-007-9417-9. DOI
May B, Krueger CC, Kincaid HL. Genetic variation at microsatellite loci in sturgeon: primer sequence homology in Acipenser and Scaphirhynchus. Can. J. Fish. Aquat. Sci. 1997;54:1542–1547. doi: 10.1139/f97-061. DOI
Welsh AB, Blumberg M, May B. Identification of microsatellite loci in lake sturgeon, Acipenser fulvescens, and their variability in green sturgeon, A. medirostris. Mol. Ecol. Notes. 2003;3:47–55. doi: 10.1046/j.1471-8286.2003.00346.x. DOI
King TL, Lubinski BA, Spidle AP, Microsatellite DNA. variation in Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) and cross-species amplification in the Acipenseridae. Conserv. Genet. 2001;2:103–119. doi: 10.1023/A:1011895429669. DOI
McQuown EC, et al. Microsatellite analysis of genetic variation in Sturgeon: new primer sequences for Scaphirhynchus and Acipenser. Trans. Am. Fish. Soc. 2000;129:1380–1388. doi: 10.1577/1548-8659(2000)129<1380:MAOGVI>2.0.CO;2. DOI
Havelka M, Hulák M, Bailie DA, Prodöhl PA, Flajšhans M. Extensive genome duplications in sturgeons: new evidence from microsatellite data. J. Appl. Ichthyol. 2013;29:704–708. doi: 10.1111/jai.12224. DOI
Rodzen JA, Famula TR, May B. Estimation of parentage and relatedness in the polyploid white sturgeon (Acipenser transmontanus) using a dominant marker approach for duplicated microsatellite loci. Aquaculture. 2004;232:165–182. doi: 10.1016/S0044-8486(03)00450-2. DOI