Simple Field Storage of Fish Samples for Measurement of DNA Content by Flow Cytometry
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
18-09323S
Czech Science Foundation
Biodiversity / CZ.02.1.01/0.0/0.0/16_025/0007370
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
33215865
PubMed Central
PMC8359303
DOI
10.1002/cyto.a.24271
Knihovny.cz E-zdroje
- Klíčová slova
- blood, coefficient of variation, fin tissue, fixation, fluorescence intensity, larva tail tissue, preservation, sterlet, tench,
- MeSH
- DNA * genetika MeSH
- ploidie * MeSH
- průtoková cytometrie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
Flow cytometry is an effective and widely used tool for determination of ploidy in fish, but it is not always possible to access the fresh samples for analysis. We investigated the potential for extended storage of fish tissue with sterlet and tench as representative species of Chondrostei and Teleostei, using blood and fin of subadult/adult specimens and tail of larvae. Thirteen procedures for extending storage, selected for rapidity and simplicity in both field and laboratory conditions, were tested for each tissue sample. Flow cytometry was applied to fresh tissue immediately after sampling and to tissue subjected to experimental protocols, always along with species-specific standard, after 1, 5, and 10 days storage at 0-4°C or freezing at -80°C. The fluorochrome 4',6-diamidine-2'-phenylindole dihydrochloride was used with excitation/emission maximum 358/461 nm. Based on the measurability of stored samples, evaluation of directly measured coefficients of variation of their DNA peaks and the changes in fluorescence intensity compared to fresh tissue, optimal procedures for extended storage of the selected tissue types of the model species are suggested. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.
Zobrazit více v PubMed
Shapiro HM. Practical Flow Cytometry. 4th ed.Hoboken: John Wiley & Sons Inc.; 2003; p. 681.
Ormerod MG. Flow Cytometry: A Practical Approach. 3th ed.Oxford: Bios Scientific Publishers; 1994; p. 77.
Suda J. Co se skrývá za rostlinnou průtokovou cytometrií. Živa 2005;53:46–48.
Thorgaard GH, Rabinovitch PS, Shen MW, Gall GA, Propp J, Utter FM. Triploid rainbow trout identified by flow cytometry. Aquac Int 1982;29:305–309.
Benfey TJ, Solar II, De Jong G, Donaldson EM. Flow‐cytometric confirmation of aneuploidy in sperm from triploid rainbow trout. Trans Am Fish Soc 1986;115:838–840.
Vinogradov AE. Genome size and GC‐percent in vertebrates as determined by flow cytometry: The triangular relationship. Cytometry 1998;31:100–109. PubMed
Ráb P, Bohlen J, Rábová M, Flajšhans M, Kalous L. Cytogenetics as a tool in fish conservation: The present situation in Europe. In: Pisano E, Ozouf‐Costaz C, Foresti F, Kapoor BG, editors. Fish Cytogenetics. Enfield: Science Publishers; 2007; p. 215–241.
Flajšhans M, Ráb P, Linhart O. Polyploidie a genomové manipulace u ryb. In: Flajšhans M, editor. Genetika a šlechtění ryb. 2nd ed.Vodňany, Czech Republic: FROV JU, 2013; p. 151–195.
Ciudad J, Cid E, Velasco A, Lara JM, Aijón J, Orfao A. Flow cytometry measurement of the DNA contents of G0/G1 diploid cells from three different teleost fish species. Cytometry 2002;48:20–25. PubMed
Gregory TR. The bigger the C‐value, the larger the cell: Genome size and red blood cell size in vertebrates. Blood Cells Mol Dis 2001;27:830–843. PubMed
Weaver JL, Stetler‐Stevenson M. Biomedical uses of flow cytometry. In: Walker JM, Rapley R, editors. Molecular Biomethods Handbook. 2nd ed.Totowa: Humana Press; 2008; p. 1039–1062.
Lamatsch DK, Steinlein C, Schmid M, Schartl M. Noninvasive determination of genome size and ploidy level in fishes by flow cytometry: Detection of triploid Poecilia formosa . Cytometry 2000;39:91–95. PubMed
Havelka M, Bytyutskyy D, Symonová R, Ráb P, Flajšhans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet Sel Evol 2016;48:12. PubMed PMC
Iegorova V, Pšenička M, Lebeda I, Rodina M, Saito T. Polyspermy produces viable haploid/diploid mosaics in sturgeon. Biol Reprod 2018;99:695–706. PubMed PMC
Filipiak M, Tylko G, Kilarski W. Flow cytometric determination of genome size in European sunbleak Leucaspius delineatus (Heckel, 1843). Fish Physiol Biochem 2012;38:355–362. PubMed PMC
Rousselle C, Robert‐Nicoud M, Ronot X. Flow cytometric analysis of DNA content of living and fixed cells: A comparative study using various fixatives. Histochem J 1998;30:773–781. PubMed
Murphy RW, Lowcock LA, Smith C, Darevsky IS, Orlov N, MacCulloch RD, Upton DE. Flow cytometry in biodiversity surveys: Methods, utility, and constraints. Amphib‐Reptil 1997;18:1–13.
Vindelov LL, Christensen IJ, Keiding N, Spang‐Thomsen M, Nissen NI. Long‐term storage of samples for flow cytometric DNA analysis. Cytometry 1983;3:317–322. PubMed
Gold JR, Ragland CJ, Birkner MC, Garrett GP. Technical notes: A simple procedure for long‐term storage and preparation of fish cells for DNA content analysis using flow cytometry. Prog Fish‐Cult 1991;53:108–110.
Darzynkiewicz Z, Halicka HD, Zhao H. Analysis of cellular DNA content by flow and laser scanning cytometry. In: Poon RYC, editor. Polyploidization and Cancer. New York: Springer; 2010; p. 137–147. PubMed PMC
Vindelov LL, Christensen IJ, Nissen NI. A detergent‐trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 1983;3:323–327. PubMed
Pierrez J, Ronot X. Use of diploid and triploid trout erythrocytes as internal standards in flow cytometry. Cytometry 1991;12:275–278. PubMed
Lecommandeur D, Haffray P, Philippe L. Rapid flow cytometry method for ploidy determination in salmonid eggs. Aquacul Fish Manag 1994;25:345–350.
Brown BL, Schultz SL, White FK. A convenient field method of tissue preservation for flow cytometric ploidy assessment of grass carp. Trans Am Fish Soc 2000;129:1354–1359.
Xavier PL, Senhorini JA, Pereira‐Santos M, Fujimoto T, Shimoda E, Silva LA, dos Santos SA, Yasui GS. A flow cytometry protocol to estimate DNA content in the yellowtail tetra Astyanax altiparanae . Front Genet 2017;8:131. PubMed PMC
Burns ER, Anson JF, Hinson WG, Pipkin JL, Kleve MG, Goetz RC. Effect of fixation with formalin on flow cytometric measurement of DNA in nucleated blood cells. Aquac Int 1986;55:149–155.
Allen SK. Flow cytometry: Assaying experimental polyploid fish and shellfish. Aquac Int 1983;33:317–328.
Dawley RM, Rupprecht JD, Schultz RJ. Genome size of bisexual and unisexual Poeciliopsis. J Hered 1997;88:249–252.
Lingenfelser SF, Dallas CE, Jagoe CH, Chesser RK, Smith MH, Lomakin M. Variation in blood cell DNA in Carassius carassius from ponds near Chernobyl, Ukraine. Ecotoxicology 1997;6:187–203.
Lingenfelser SF, Dallas CE, Jagoe CH, Smith MH, Brisbin IL, Chesser RK. Variation in DNA content of blood cells of largemouth bass from contaminated and uncontaminated waters. Environ Toxicol Chem 1997;16:2136–2143.
Gela D, Rodina M, Linhart O. Řízená reprodukce jeseterů (Acipenser). Vodňany, Czech Republic: VÚRH JU; 2008; p. 24.
Kouřil J, Podhorec P. Umělý výtěr lína obecného. Vodňany, Czech Republic: FROV JU; 2011; p. 24.
Bytyutskyy D, Srp J, Flajšhans M. Use of Feulgen image analysis densitometry to study the effect of genome size on nuclear size in polyploid sturgeons. J Appl Ichthyol 2012;28:704–708.
Hardie DC, Hebert PDN. The nucleotypic effects of cellular DNA content in cartilaginous and ray‐finned fishes. Genome 2003;46:683–706. PubMed
Svobodová Z, Pravda D, Modrá H. Metody hematologického vyšetřování ryb. Vodňany, Czech Republic: FROV JU; 2012; p. 38.
Doležel J, Bartoš J. Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 2005;95:99–110. PubMed PMC
Kumari S, Tyor AK, Bhatnagar A. Evaluation of the antibacterial activity of skin mucus of three carp species. International Aquatic Research 2019;11:225–239.
Shephard KL. Mucus on the epidermis of fish and its influence on drug delivery. Adv Drug Deliv Rev 1993;11:403–417.
Davis MC, Shubin NH, Force A. Pectoral fin and girdle development in the basal actinopterygians Polyodon spathula and Acipenser transmontanus . J Morphol 2004;262:608–628. PubMed
Shute L, Huebner E, Anderson WG. Microscopic identification of novel cell types in the integument of larval lake sturgeon, Acipenser fulvescens . J Morphol 2016;277:86–95. PubMed
Cabrita E, Sarasquete C, Martínez‐Páramo S, Robles V, Beirao J, Pérez‐Cerezales S, Herráez MP. Cryopreservation of fish sperm: Applications and perspectives. J Appl Ichthyol 2010;26:623–635.
Piačková V, Čížek A, Veselý T, Pokorová D. Odběr vzorků pro bakteriologické a virologické vyšetření ryb. Vodňany, Czech Republic: FROV JU; 2014; p. 26.
Jakobsen A. The use of trout erythrocytes and human lymphocytes for standardization in flow cytometry. Cytometry 1983;4:161–165. PubMed
Tiersch TR, Chandler RW, Kallman KD, Wachtel SS. Estimation of nuclear DNA content by flow cytometry in fishes of the genus Xiphophorus. Comp Biochem Physiol 1989;94:465–468. PubMed
Tiersch TR, Chandler RW, Wachtel SS, Elias S. Reference standards for flow cytometry and application in comparative studies of nuclear DNA content. Cytometry 1989;10:706–710. PubMed
Birstein VJ, Poletaev AI, Goncharov BF. DNA content in Eurasian sturgeon species determined by flow cytometry. Cytometry 1993;14:377–383. PubMed
Darzynkiewicz Z, Traganos F, Kapuscinski J, Staiano‐Coico L, Melamed MR. Accessibility of DNA in situ to various fluorochromes: Relationship to chromatin changes during erythroid differentiation of friend leukemia cells. Cytometry 1984;5:355–363. PubMed
Lebeda I, Gazo I, Flajšhans M. Chemical induction of haploid gynogenesis in sterlet Acipenser ruthenus . Czech J Anim Sci 2014;59:310–318.
Blecha M, Flajšhans M, Lebeda I, Krišťan J, Svačina P, Policar T. Triploidisation of pikeperch (Sander lucioperca), first success. Aquac Int 2016;462:115–117.
Lebeda I, Flajšhans M. Production of tetraploid sturgeons. J Anim Sci 2015;93:3759–3764. PubMed
Omoto N, Maebayashi M, Adachi S, Arai K, Yamauchi K. The influence of oocyte maturational stage on hatching and triploidy rates in hybrid (bester) sturgeon, Huso huso × Acipenser ruthenus . Aquaculture 2005;245:287–294.
Ewing RR, Scalet CG, Evenson DP. Flow cytometric identification of larval triploid walleyes. Prog Fish‐Cult 1991;53:177–180.
Lu M, Li XY, Li Z, Du WX, Zhou L, Wang Y, Zhang XJ, Wang ZW, Gui JF. Regain of sex determination system and sexual reproduction ability in a synthetic octoploid male fish. Sci China Life Sci 2020;63:1–11. PubMed
Bi S, Lai H, Wang G, Guo D, Liu S, Chen X, Zhao X, Liu X, Li G. Triploidy induction by hydrostatic pressure shock in mandarin fish (Siniperca chuatsi). Aquaculture 2020;520:734979.
Flajšhans M, Havelka M, Lebeda I, Rodina M, Gela D, Hubálek M. Application of hydrostatic pressure shock for retention of the second polar body in sterlet (Acipenser ruthenus). Aquaculture 2020;520:734947.
Doležel J, Sgorbati S, Lucretti S. Comparison of three DNA fluorochromes for flow cytometric estimation of nuclear DNA content in plants. Physiol Plant 1992;85:625–631.
Káldy J, Mozsár A, Fazekas G, Farkas M, Fazekas DL, Fazekas GL, Goda K, Bercsényi M. Hybridization of Russian Sturgeon (Acipenser gueldenstaedtii, Brandt and Ratzeberg, 1833) and American Paddlefish (Polyodon spathula, Walbaum 1792) and evaluation of their progeny. Genes 2020;11:753. PubMed PMC