How to Improve the Management of Acute Ischemic Stroke by Modern Technologies, Artificial Intelligence, and New Treatment Methods
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
IMTS: 313011W875
This publication was created thanks to support under the Operational Program Integrated Infrastructure for the project: TENSION - complementary project, IMTS: 313011W875, co-financed by the European Regional Development Fund
PubMed
34072071
PubMed Central
PMC8229281
DOI
10.3390/life11060488
PII: life11060488
Knihovny.cz E-zdroje
- Klíčová slova
- artificial intelligence, diagnosis, ischemia, ischemic stroke, management, plan, rehabilitation, robotics, stroke, treatment,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Stroke remains one of the leading causes of death and disability in Europe. The European Stroke Action Plan (ESAP) defines four main targets for the years 2018 to 2030. The COVID-19 pandemic forced the use of innovative technologies and created pressure to improve internet networks. Moreover, 5G internet network will be helpful for the transfer and collecting of extremely big databases. Nowadays, the speed of internet connection is a limiting factor for robotic systems, which can be controlled and commanded potentially from various places in the world. Innovative technologies can be implemented for acute stroke patient management soon. Artificial intelligence (AI) and robotics are used increasingly often without the exception of medicine. Their implementation can be achieved in every level of stroke care. In this article, all steps of stroke health care processes are discussed in terms of how to improve them (including prehospital diagnosis, consultation, transfer of the patient, diagnosis, techniques of the treatment as well as rehabilitation and usage of AI). New ethical problems have also been discovered. Everything must be aligned to the concept of "time is brain".
Department of Biomedicine and Prevention University Hospital of Rome Tor Vergata 00133 Rome Italy
Department of Neuroradiology Royal Victoria Infirmary Newcastle upon Tyne NE14LP UK
Department of Neuroradiology Toronto Western Hospital Toronto ON M5T 2S8 Canada
Department of Neuroradiology University Clinical Center of Serbia 11000 Belgrade Serbia
ESMINT Artificial Intelligence and Robotics Ad hoc Committee ESMINT 8008 Zurich Switzerland
Interventional Neuroradiology Unit Hôpital de la Cavale Blanche 29200 Brest France
Zobrazit více v PubMed
Benjamin: E.J., Virani S.S., Callaway C.W., Chamberlain A.M., Chang A.R., Cheng S., Chiuve S.E., Cushman M., Delling F.N., Deo R., et al. Heart disease and stroke statistics-2018 update: A report from the american heart association [published correction appears in circulation. Circulation. 2018;137:e67–e492. doi: 10.1161/CIR.0000000000000558. PubMed DOI
Feigin V.L., Forouzanfar M.H., Krishnamurthi R., Mensah G.A., Connor M., Bennett D.A., Moran A.E., Sacco R.L., Anderson L., Truelsen T., et al. Global and regional burden of stroke during 1990-2010: Findings from the Global Burden of Disease Study 2010. Lancet. 2014;383:245–254. doi: 10.1016/S0140-6736(13)61953-4. PubMed DOI PMC
Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., Das S.R., De Ferranti S., Després J.-P., Fullerton H.J., et al. Heart disease and stroke statistics-2016 update: A report from the american heart association. Circulation. 2016;133:e38–e360. doi: 10.1161/CIR.0000000000000350. PubMed DOI
Norrving B., Barrick J., Davalos A., Dichgans M., Cordonnier C., Guekht A., Kutluk K., Mikulik R., Wardlaw J., Richard E., et al. Action plan for stroke in Europe 2018—2030. Eur. Stroke J. 2018;3:309–336. doi: 10.1177/2396987318808719. PubMed DOI PMC
Saver J.L. Time is brain-quantified. Stroke. 2006;37:263–266. doi: 10.1161/01.STR.0000196957.55928.ab. PubMed DOI
Bechstein M., Elsheikh S., Wodarg F., Taschner C.A., Hanning U., Buhk J.-H., McDonough R., Goebell E., Fiehler J., Bester M. Republished: Interhospital teleproctoring of endovascular intracranial aneurysm treatment using a dedicated live-streaming technology: First experiences during the COVID-19 pandemic. J. Neurointerv. Surg. 2021;13:e1. doi: 10.1136/neurintsurg-2020-016722.rep. PubMed DOI PMC
Fiehler J., Brouwer P., Díaz C., Hirsch J.A., Kulcsar Z., Liebeskind D., Linfante I., Lylyk P., Mack W.J., Milburn J., et al. COVID-19 and neurointerventional service worldwide: A survey of the European Society of Minimally Invasive Neurological Therapy (ESMINT), the Society Of Neurointerventional Surgery (SNIS), the Sociedad Iberolatinoamericana de Neuroradiologia Diagnostica y Terapeutica (SILAN), the Society of Vascular and Interventional Neurology (SVIN), and the World Federation of Interventional and Therapeutic Neuroradiology (WFITN) J. Neurointerv. Surg. 2020;12:726–730. doi: 10.1136/neurintsurg-2020-016349. PubMed DOI PMC
Goyal M., Sutherland G.R., Lama S., Cimflova P., Kashani N., Mayank A., Psychogios M.-N., Spelle L., Costalat V., Sakai N., et al. Neurointerventional robotics: Challenges and opportunities. Clin. Neuroradiol. 2020;30:203–208. doi: 10.1007/s00062-020-00913-2. PubMed DOI
Pereira V.M., Cancelliere N.M., Nicholson P., Radovanovic I., Drake K.E., Sungur J.-M., Krings T., Turk A. First-in-human, robotic-assisted neuroendovascular intervention. J. Neurointerv. Surg. 2020;12:338–340. doi: 10.1136/neurintsurg-2019-015671.rep. PubMed DOI PMC
Cresswell K., Williams R., Sheikh A. Using cloud technology in health care during the COVID-19 pandemic. Lancet Digit. Health. 2021;3:e4–e5. doi: 10.1016/S2589-7500(20)30291-0. PubMed DOI
Turc G., Bhogal P., Fischer U., Khatri P., Lobotesis K., Mazighi M., Schellinger P.D., Toni D., De Vries J., White P., et al. European Stroke Organisation (ESO)—European Society for Minimally Invasive Neurological Therapy (ESMINT) guidelines on mechanical thrombectomy in acute ischemic stroke. J. Neurointerv. Surg. 2019;11:535–538. doi: 10.1136/neurintsurg-2018-014568. PubMed DOI
Rudd A., Bladin C., Carli P., De Silva D., Field T., Jauch E., Kudenchuk P., Kurz M., Lærdal T., Ong M., et al. Utstein recommendation for emergency stroke care. Int. J. Stroke. 2020;15:555–564. doi: 10.1177/1747493020915135. PubMed DOI PMC
El-Ghanem M., Al-Mufti F., Thulasi V., Singh I.P., Gandhi C. Expanding the treatment window for ischemic stroke through the application of novel system-based technology. Neurosurg. Focus. 2017;42:E7. doi: 10.3171/2017.1.FOCUS16515. PubMed DOI
Duong M.T., Rauschecker A.M., Rudie J.D., Chen P.-H., Cook T.S., Bryan R.N., Mohan S. Artificial intelligence for precision education in radiology. Br. J. Radiol. 2019;92:20190389. doi: 10.1259/bjr.20190389. PubMed DOI PMC
Forney M.C., McBride A.F. Artificial intelligence in radiology residency training. Semin. Musculoskelet. Radiol. 2020;24:74–80. doi: 10.1055/s-0039-3400270. PubMed DOI
Soun J., Chow D., Nagamine M., Takhtawala R., Filippi C., Yu W., Chang P. Artificial intelligence and acute stroke imaging. Am. J. Neuroradiol. 2021;42:2–11. doi: 10.3174/ajnr.A6883. PubMed DOI PMC
Mokli Y., Pfaff J., Dos Santos D.P., Herweh C., Nagel S. Computer-aided imaging analysis in acute ischemic stroke—background and clinical applications. Neurol. Res. Pract. 2019;1:23. doi: 10.1186/s42466-019-0028-y. PubMed DOI PMC
Mouridsen K., Thurner P., Zaharchuk G. Artificial intelligence applications in stroke. Stroke. 2020;51:2573–2579. doi: 10.1161/STROKEAHA.119.027479. PubMed DOI
Heo J., Yoon J.G., Park H., Kim Y.D., Nam H.S., Heo J.H. Machine learning-based model for prediction of outcomes in acute stroke. Stroke. 2019;50:1263–1265. doi: 10.1161/STROKEAHA.118.024293. PubMed DOI
Ishii E., Ebner D.K., Kimura S., Agha-Mir-Salim L., Uchimido R., Celi L.A. The advent of medical artificial intelligence: Lessons from the Japanese approach. J. Intensive Care. 2020;8:35. doi: 10.1186/s40560-020-00452-5. PubMed DOI PMC
Zhang H., Wang T., Zhang Z., Lin B., Mei Y., Zhang Y., Chen G. The current status of stroke-related smartphone applications available to adopt in China: A systematic review study. Medicine. 2020;99:e20656. doi: 10.1097/MD.0000000000020656. PubMed DOI PMC
Bandini A., Green J., Richburg B., Yunusova Y. Automatic detection of orofacial impairment in stroke. Interspeech. 2018;2018:1711–1715. doi: 10.21437/Interspeech.2018-2475. DOI
Van Gaal S., Demchuk A. Clinical and technological approaches to the prehospital diagnosis of large vessel occlusion. Stroke. 2018;49:1036–1043. doi: 10.1161/STROKEAHA.117.017947. PubMed DOI
Nogueira R.G., Silva G.S., Lima F.O., Yeh Y.-C., Fleming C., Branco D., Yancey A.H., Ratcliff J.J., Wages R.K., Doss E., et al. The FAST-ED app: A smartphone platform for the field triage of patients with stroke. Stroke. 2017;48:1278–1284. doi: 10.1161/STROKEAHA.116.016026. PubMed DOI
Malka R., Miller M., Guarin D., Fullerton Z., Hadlock T., Banks C. Reliability between in-person and still photograph assessment of facial function in facial paralysis using the eFACE facial grading system. Facial Plast. Surg. Aesthet. Med. 2020 doi: 10.1089/fpsam.2020.0300. PubMed DOI
Torab-Miandoab A., Samad-Soltani T., Shams-Vahdati S., Rezaei-Hachesu P. An intelligent system for improving adherence to guidelines on acute stroke. Turk. J. Emerg. Med. 2020;20:118–134. doi: 10.4103/2452-2473.290062. PubMed DOI PMC
Lin M.P., Sanossian N., Liebeskind D.S. Imaging of prehospital stroke therapeutics. Expert Rev. Cardiovasc. Ther. 2015;13:1001–1015. doi: 10.1586/14779072.2015.1075882. PubMed DOI PMC
Powers W.J., Rabinstein A.A., Ackerson T., Adeoye O.M., Bambakidis N.C., Becker K., Biller J., Brown M., Demaerschalk B.M., Hoh B., et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2019;50:e344–e418. doi: 10.1161/STR.0000000000000211. PubMed DOI
Bayona H., Ropero B., Salazar A.J., Pérez J.C., Granja M.F., Martínez C.F., Useche J.N. Comprehensive telestroke network to optimize health care delivery for cerebrovascular diseases: Algorithm development. J. Med. Internet Res. 2020;22:e18058. doi: 10.2196/18058. PubMed DOI PMC
Hubert G.J., Santo G., Vanhooren G., Zvan B., Campos S.T., Alasheev A., Abilleira S., Corea F. Recommendations on telestroke in Europe. Eur. Stroke J. 2019;4:101–109. doi: 10.1177/2396987318806718. PubMed DOI PMC
Phan T.G., Beare R., Srikanth V., Ma H. Googling location for operating base of mobile stroke unit in metropolitan Sydney. Front. Neurol. 2019;10:810. doi: 10.3389/fneur.2019.00810. PubMed DOI PMC
Stemi. [(accessed on 1 February 2021)]; Available online: https://www.stemiglobal.com.
Noone M.L., Moideen F., Krishna R.B., Kumar V.P., Karadan U., Chellenton J., Salam K. Mobile app based strategy improves door-to-needle time in the treatment of acute ischemic stroke. J. Stroke Cerebrovasc. Dis. 2020;29:105319. doi: 10.1016/j.jstrokecerebrovasdis.2020.105319. PubMed DOI
Tian M., Ajay V.S., Dunzhu D., Hameed S.S., Li X., Liu Z., Li C., Chen H., Cho K., Li R., et al. A cluster-randomized, controlled trial of a simplified multifaceted management program for individuals at high cardiovascular risk (SimCard Trial) in Rural Tibet, China, and Haryana, India. Circulation. 2015;132:815–824. doi: 10.1161/CIRCULATIONAHA.115.015373. PubMed DOI PMC
Dubey D., Amritphale A., Sawhney A., Amritphale N., Dubey P., Pandey A. Smart phone applications as a source of information on stroke. J. Stroke. 2014;16:86–90. doi: 10.5853/jos.2014.16.2.86. PubMed DOI PMC
Forcier M.B., Gallois H., Mullan S., Joly Y. Integrating artificial intelligence into health care through data access: Can the GDPR act as a beacon for policymakers? J. Law Biosci. 2019;6:317–335. doi: 10.1093/jlb/lsz013. PubMed DOI PMC
Mansour O.Y., Ramadan I., Elfatatry A., Hamdi M., Abudu A., Hassan T., Eldeeb H., Marouf H., Mogahed M., Farouk M., et al. Using ESN-smartphone application to maximize ais reperfusion therapy in Alexandria Stroke Network: A stroke chain of survival organizational model. Front. Neurol. 2021;12:597717. doi: 10.3389/fneur.2021.597717. PubMed DOI PMC
Stroke Clock App. [(accessed on 20 May 2021)]; Available online: https://www.sublimestudio.ch/en/portfolio/stroke-clock-app-en/
Fousse M., Grün D., Helwig S.A., Walter S., Bekhit A., Wagenpfeil S., Lesmeister M., Kettner M., Roumia S., Mühl-Benninghaus R., et al. Effects of a feedback-demanding stroke clock on acute stroke management: A randomized study. Stroke. 2020;51:2895–2900. doi: 10.1161/STROKEAHA.120.029222. PubMed DOI
Bourcier R., Goyal M., Liebeskind D.S., Muir K.W., Desal H., Siddiqui A.H., Dippel D.W.J., Majoie C.B., Van Zwam W.H., Jovin T.G., et al. Association of time from stroke onset to groin puncture with quality of reperfusion after mechanical thrombectomy: A meta-analysis of individual patient data from 7 randomized clinical trials. JAMA Neurol. 2019;76:405–411. doi: 10.1001/jamaneurol.2018.4510. PubMed DOI PMC
Katsanos A.H. Updates in stroke treatment, diagnostic methods and predictors of outcome. J. Clin. Med. 2020;9:2789. doi: 10.3390/jcm9092789. PubMed DOI PMC
Psychogios M.-N., Maier I.L., Tsogkas I., Hesse A.C., Brehm A., Behme D., Schnieder M., Schregel K., Papageorgiou I., Liebeskind D.S., et al. One-stop management of 230 consecutive acute stroke patients: Report of procedural times and clinical outcome. J. Clin. Med. 2019;8:2185. doi: 10.3390/jcm8122185. PubMed DOI PMC
Bash S., Tanenbaum L.N. Deep learning: Promising to revolutionize image reconstruction. Appl. Radiol. 2021;50:32–37.
Nagendran M., Chen Y., Lovejoy C.A., Gordon A.C., Komorowski M., Harvey H., Topol E.J., Ioannidis J.P.A., Collins G.S., Maruthappu M. Artificial intelligence versus clinicians: Systematic review of design, reporting standards, and claims of deep learning studies. BMJ. 2020;368:m689. doi: 10.1136/bmj.m689. PubMed DOI PMC
Xie W., Cao X., Dong H., Liu Y. The use of smartphone-based triage to reduce the rate of outpatient error registration: Cross-sectional study. JMIR mHealth uHealth. 2019;7:e15313. doi: 10.2196/15313. PubMed DOI PMC
Hosny A., Parmar C., Quackenbush J., Schwartz L.H., Aerts H.J.W.L. Artificial intelligence in radiology. Nat. Rev. Cancer. 2018;18:500–510. doi: 10.1038/s41568-018-0016-5. PubMed DOI PMC
Sala E., Ursprung S. Artificial intelligence in radiology: The computer’s helping hand need guidance. Radiol. Artif. Intell. 2020;2:e200207. doi: 10.1148/ryai.2020200207. PubMed DOI PMC
Lotan E. Emerging artificial intelligence imaging applications for stroke interventions. Am. J. Neuroradiol. 2021;42:255–256. doi: 10.3174/ajnr.A6902. PubMed DOI PMC
Liaw N., Liebeskind D. Emerging therapies in acute ischemic stroke. F1000Research. 2020;9 doi: 10.12688/f1000research.21100.1. PubMed DOI PMC
Nagel S., Herweh C., Pfaff J.A.R., Schieber S., Schönenberger S., Möhlenbruch M.A., Bendszus M., Ringleb P.A. Simplified selection criteria for patients with longer or unknown time to treatment predict good outcome after mechanical thrombectomy. J. Neurointerv. Surg. 2019;11:559–562. doi: 10.1136/neurintsurg-2018-014347. PubMed DOI
Van Horn N., Kniep H., Broocks G., Meyer L., Flottmann F., Bechstein M., Götz J., Thomalla G., Bendszus M., Bonekamp S., et al. ASPECTS interobserver agreement of 100 investigators from the TENSION Study. Clin. Neuroradiol. 2021 doi: 10.1007/s00062-020-00988-x. PubMed DOI PMC
Seker F., Pfaff J., Nagel S., Vollherbst D., Gerry S., Möhlenbruch M.A., Bendszus M., Herweh C. CT Reconstruction levels affect automated and reader-based ASPECTS ratings in acute ischemic stroke. J. Neuroimaging. 2019;29:62–64. doi: 10.1111/jon.12562. PubMed DOI
Nagel S., Sinha D., Day D., Reith W., Chapot R., Papanagiotou P., Warburton E.A., Guyler P., Tysoe S., Fassbender K., et al. e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. Int. J. Stroke. 2017;12:615–622. doi: 10.1177/1747493016681020. PubMed DOI
Austein F., Wodarg F., Jürgensen N., Huhndorf M., Meyne J., Lindner T., Jansen O., Larsen N., Riedel C. Automated versus manual imaging assessment of early ischemic changes in acute stroke: Comparison of two software packages and expert consensus. Eur. Radiol. 2019;29:6285–6292. doi: 10.1007/s00330-019-06252-2. PubMed DOI
Murray N.M., Unberath M., Hager G.D., Hui F.K. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: A systematic review. J. Neurointerv. Surg. 2020;12:156–164. doi: 10.1136/neurintsurg-2019-015135. PubMed DOI
Takahashi N., Lee Y., Tsai D.Y., Matsuyama E., Kinoshita T., Ishii K. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT. Radiol. Phys. Technol. 2014;7:79–88. doi: 10.1007/s12194-013-0234-1. PubMed DOI
Chatterjee A., Somayaji N.R., Kabakis I.M. Abstract WMP16: Artificial intelligence detection of cerebrovascular large vessel occlusion—nine month, 650 patient evaluation of the diagnostic accuracy and performance of the Viz.ai LVO algorithm. Stroke. 2019;50:AWMP16. doi: 10.1161/str.50.suppl_1.WMP16. DOI
Olive-Gadea M., Crespo C., Granes C., Hernandez-Perez M., De La Ossa N.P., Laredo C., Urra X., Soler J.C., Soler A., Puyalto P., et al. Deep learning based software to identify large vessel occlusion on noncontrast computed tomography. Stroke. 2020;51:3133–3137. doi: 10.1161/STROKEAHA.120.030326. PubMed DOI
Hanning U., Sporns P.B., Psychogios M.N., Jeibmann A., Minnerup J., Gelderblom M., Schulte K., Nawabi J., Broocks G., Meyer L., et al. Imaging-based prediction of histological clot composition from admission CT imaging. J. Neurointerv. Surg. 2021 doi: 10.1136/neurintsurg-2020-016774. PubMed DOI
Rabinstein A.A. Update on treatment of acute ischemic stroke. Continuum. 2020;26:268–286. doi: 10.1212/CON.0000000000000840. PubMed DOI
Grunwald I.Q., Kulikovski J., Reith W., Gerry S., Namias R., Politi M., Papanagiotou P., Essig M., Mathur S., Joly O., et al. Collateral automation for triage in stroke: Evaluating automated scoring of collaterals in acute stroke on computed tomography scans. Cerebrovasc. Dis. 2019;47:217–222. doi: 10.1159/000500076. PubMed DOI PMC
Shah V.S., Eaton R.G., Cua S., Dornbos D., Hoang N., Schunemann V., Nimjee S., Youssef P., Powers C.J. Scoring of middle cerebral artery collaterals predicts RAPID CT-perfusion analysis and short-term outcomes in acute ischemic stroke patients undergoing thrombectomy. World Neurosurg. 2020;135:e494–e499. doi: 10.1016/j.wneu.2019.12.033. PubMed DOI
Faizy T.D., Kabiri R., Christensen S., Mlynash M., Kuraitis G., Meyer L., Marks M.P., Broocks G., Flottmann F., Lansberg M.G., et al. Venous outflow profiles are linked to cerebral edema formation at noncontrast head CT after treatment in acute ischemic stroke regardless of collateral vessel status at CT angiography. Radiology. 2021;299:682–690. doi: 10.1148/radiol.2021203651. PubMed DOI
Scheldeman L., Wouters A., Boutitie F., Dupont P., Christensen S., Cheng B., Ebinger M., Endres M., Fiebach J.B., Gerloff C., et al. Different mismatch concepts for magnetic resonance imaging-guided thrombolysis in unknown onset stroke. Ann. Neurol. 2020;87:931–938. doi: 10.1002/ana.25730. PubMed DOI
Koopman M.S., Berkhemer O.A., Geuskens R.R.E.G., Emmer B.J., Van Walderveen M.A.A., Jenniskens S.F.M., Van Zwam W.H., Van Oostenbrugge R.J., Van Der Lugt A., Dippel D.W.J., et al. Comparison of three commonly used CT perfusion software packages in patients with acute ischemic stroke. J. Neurointerv. Surg. 2019;11:1249–1256. doi: 10.1136/neurintsurg-2019-014822. PubMed DOI
Rava R., Snyder K., Mokin M., Waqas M., Allman A., Senko J., Podgorsak A., Bhurwani M.S., Hoi Y., Siddiqui A., et al. Assessment of a bayesian vitrea CT perfusion analysis to predict final infarct and penumbra volumes in patients with acute ischemic stroke: A comparison with RAPID. Am. J. Neuroradiol. 2020;41:206–212. doi: 10.3174/ajnr.A6395. PubMed DOI PMC
McDougall C., Chan L., Sachan S., Guo J., Sah R., Menon B., Demchuk A., Hill M., Forkert N., D’Esterre C., et al. Dynamic CTA-derived perfusion maps predict final infarct volume: The simple perfusion reconstruction algorithm. Am. J. Neuroradiol. 2020;41:2034–2040. doi: 10.3174/ajnr.A6783. PubMed DOI PMC
Reid M., Famuyide A.O., Forkert N.D., Talai A.S., Evans J.W., Sitaram A., Hafeez M., Najm M., Menon B.K., Demchuk A., et al. Accuracy and reliability of multiphase CTA perfusion for identifying ischemic core. Clin. Neuroradiol. 2019;29:543–552. doi: 10.1007/s00062-018-0717-x. PubMed DOI
Dundamadappa S., Iyer K., Agrawal A., Choi D.J. Multiphase CT angiography: A useful technique in acute stroke imaging-collaterals and beyond. Am. J. Neuroradiol. 2021;42:221–227. doi: 10.3174/ajnr.A6889. PubMed DOI PMC
Ospel J., Volny O., Qiu W., Najm M., Kashani N., Goyal M., Menon B. Displaying multiphase CT angiography using a time-variant color map: Practical considerations and potential applications in patients with acute stroke. Am. J. Neuroradiol. 2020;41:200–205. doi: 10.3174/ajnr.A6376. PubMed DOI PMC
Verdolotti T., Pilato F., Cottonaro S., Monelli E., Giordano C., Guadalupi P., Benenati M., Ramaglia A., Costantini A.M., Alexandre A., et al. ColorViz, a new and rapid tool for assessing collateral circulation during stroke. Brain Sci. 2020;10:882. doi: 10.3390/brainsci10110882. PubMed DOI PMC
Meier R., Lux P., Med B., Jung S., Fischer U., Gralla J., Reyes M., Wiest R., McKinley R., Kaesmacher J. Neural network–derived perfusion maps for the assessment of lesions in patients with acute ischemic stroke. Radiol. Artif. Intell. 2019;1:5. doi: 10.1148/ryai.2019190019. PubMed DOI PMC
Lee H., Yune S., Mansouri M., Kim M., Tajmir S.H., Guerrier C.E., Ebert S.A., Pomerantz S.R., Romero J.M., Kamalian S., et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat. Biomed. Eng. 2019;3:173–182. doi: 10.1038/s41551-018-0324-9. PubMed DOI
Ye H., Gao F., Yin Y., Guo D., Zhao P., Lu Y., Wang X., Bai J., Cao K., Song Q., et al. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. Eur. Radiol. 2019;29:6191–6201. doi: 10.1007/s00330-019-06163-2. PubMed DOI PMC
Chilamkurthy S., Ghosh R., Tanamala S., Biviji M., Campeau N.G., Venugopal V.K., Mahajan V., Rao P., Warier P. Deep learning algorithms for detection of critical findings in head CT scans: A retrospective study. Lancet. 2018;392:2388–2396. doi: 10.1016/S0140-6736(18)31645-3. PubMed DOI
Desai V., Flanders A.E., Lakhani P. Application of deep learning in neuroradiology: Automated detection of basal ganglia hemorrhage using 2D-convolutional neural networks. [(accessed on 20 February 2021)];arXiv. 2017 Available online: https://arxiv.org/ftp/arxiv/papers/1710/1710.03823.pdf.1710.03823
Yeo M., Tahayori B., Kok H.K., Maingard J., Kutaiba N., Russell J., Thijs V., Jhamb A., Chandra R.V., Brooks M., et al. Review of deep learning algorithms for the automatic detection of intracranial hemorrhages on computed tomography head imaging. J. Neurointerv. Surg. 2021;13:369–378. doi: 10.1136/neurintsurg-2020-017099. PubMed DOI
Ginat D.T. Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology. 2020;62:335–340. doi: 10.1007/s00234-019-02330-w. PubMed DOI
Kaka H., Zhang E., Khan N. Artificial intelligence and deep learning in neuroradiology: Exploring the New Frontier. Can. Assoc. Radiol. J. 2021;72:35–44. doi: 10.1177/0846537120954293. PubMed DOI
Lui Y.W., Chang P.D., Zaharchuk G., Barboriak D.P., Flanders A.E., Wintermark M., Hess C.P., Filippi C.G. Artificial intelligence in neuroradiology: Current status and future directions. Am. J. Neuroradiol. 2020;41:E52–E59. doi: 10.3174/ajnr.A6681. PubMed DOI PMC
Ho K.C., Scalzo F., Sarma K.V., Speier W., El-Saden S., Arnold C. Predicting ischemic stroke tissue fate using a deep convolutional neural network on source magnetic resonance perfusion images. J. Med. Imaging. 2019;6:026001. doi: 10.1117/1.JMI.6.2.026001. PubMed DOI PMC
Yu Y., Xie Y., Thamm T., Gong E., Ouyang J., Huang C., Christensen S., Marks M.P., Lansberg M.G., Albers G.W., et al. Use of deep learning to predict final ischemic stroke lesions from initial magnetic resonance imaging. JAMA Netw. Open. 2020;3:e200772. doi: 10.1001/jamanetworkopen.2020.0772. PubMed DOI PMC
Debs N., Cho T.-H., Rousseau D., Berthezène Y., Buisson M., Eker O., Mechtouff L., Nighoghossian N., Ovize M., Frindel C. Impact of the reperfusion status for predicting the final stroke infarct using deep learning. Neuroimage. Clin. 2021;29:102548. doi: 10.1016/j.nicl.2020.102548. PubMed DOI PMC
Pfaff J., Herweh C., Schieber S., Schönenberger S., Bösel J., Ringleb P., Möhlenbruch M., Bendszus M., Nagel S. e-ASPECTS correlates with and is predictive of outcome after mechanical thrombectomy. Am. J. Neuroradiol. 2017;38:1594–1599. doi: 10.3174/ajnr.A5236. PubMed DOI PMC
Yu Y., Guo D., Lou M., Liebeskind D., Scalzo F. Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans. Biomed. Eng. 2018;65:2058–2065. doi: 10.1109/TBME.2017.2783241. PubMed DOI
Bacchi S., Oakden-Rayner L., Zerner T., Kleinig T., Patel S., Jannes J. Deep learning natural language processing successfully predicts the cerebrovascular cause of transient ischemic attack-like presentations. Stroke. 2019;50:758–760. doi: 10.1161/STROKEAHA.118.024124. PubMed DOI
Cimflova P., Volny O., Mikulik R., Tyshchenko B., Belaskova S., Vinklarek J., Cervenak V., Krivka T., Vanicek A.P.J., Krajina A. Detection of ischemic changes on baseline multimodal computed tomography: Expert reading vs. Brainomix and RAPID software. J. Stroke Cerebrovasc. Dis. 2020;29:104978. doi: 10.1016/j.jstrokecerebrovasdis.2020.104978. PubMed DOI
Goyal M., Menon B.K., Van Zwam W.H., Dippel D.W., Mitchell P.J., Demchuk A.M., Dávalos A., Majoie C.B., Van Der Lugt A., De Miquel M.A., et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet. 2016;387:1723–1731. doi: 10.1016/S0140-6736(16)00163-X. PubMed DOI
Albers G.W., Marks M.P., Kemp S., Christensen S., Tsai J.P., Ortega-Gutierrez S., McTaggart R.A., Torbey M.T., Kim-Tenser M., Leslie-Mazwi T., et al. Thrombectomy for stroke at 6 to 16 h with selection by perfusion imaging. N. Engl. J. Med. 2018;378:708–718. doi: 10.1056/NEJMoa1713973. PubMed DOI PMC
Nogueira R.G., Jadhav A.P., Haussen D.C., Bonafe A., Budzik R.F., Bhuva P., Yavagal D.R., Ribo M., Cognard C., Hanel R.A., et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N. Engl. J. Med. 2018;378:11–21. doi: 10.1056/NEJMoa1706442. PubMed DOI
Bendszus M., Bonekamp S., Berge E., Boutitie F., Brouwer P., Gizewski E., Krajina A., Pierot L., Randall G., Simonsen C.Z., et al. A randomized controlled trial to test efficacy and safety of thrombectomy in stroke with extended lesion and extended time window. Int. J. Stroke. 2019;14:87–93. doi: 10.1177/1747493018798558. PubMed DOI PMC
Goyal M., Ospel J.M., Menon B.K., Hill M.D. MeVO: The next frontier? J. Neurointerv. Surg. 2020;12:545–547. doi: 10.1136/neurintsurg-2020-015807. PubMed DOI
Meyer L., Stracke C.P., Jungi N., Wallocha M., Broocks G., Sporns P.B., Maegerlein C., Dorn F., Zimmermann H., Naziri W., et al. Thrombectomy for primary distal posterior cerebral artery occlusion stroke: The TOPMOST study. JAMA Neurol. 2021;78:434–444. doi: 10.1001/jamaneurol.2021.0001. PubMed DOI PMC
Zi W., Qiu Z., Wu D., Li F., Liu H., Liu W., Huang W., Shi Z., Bai Y., Liu Z., et al. Assessment of endovascular treatment for acute basilar artery occlusion via a nationwide prospective registry. JAMA Neurol. 2020;77:561–573. doi: 10.1001/jamaneurol.2020.0156. PubMed DOI PMC
Liu X., Dai Q., Ye R., Zi W., Liu Y., Wang H., Zhu W., Ma M., Yin Q., Li M., et al. Endovascular treatment versus standard medical treatment for vertebrobasilar artery occlusion (BEST): An open-label, randomised controlled trial. Lancet Neurol. 2020;19:115–122. doi: 10.1016/S1474-4422(19)30395-3. PubMed DOI
Zaidat O.O., Castonguay A.C., Linfante I., Gupta R., Martin C.O., Holloway W.E., Mueller-Kronast N., English J.D., Dabus G., Malisch T.W., et al. First pass effect: A new measure for stroke thrombectomy devices. Stroke. 2018;49:660–666. doi: 10.1161/STROKEAHA.117.020315. PubMed DOI
Kaesmacher J., Dobrocky T., Heldner M.R., Bellwald S., Mosimann P.J., Mordasini P., Bigi S., Arnold M., Gralla J., Fischer U. Systematic review and meta-analysis on outcome differences among patients with TICI2b versus TICI3 reperfusions: Success revisited. J. Neurol. Neurosurg. Psychiatry. 2018;89:910–917. doi: 10.1136/jnnp-2017-317602. PubMed DOI PMC
Brinjikji W., Starke R.M., Murad M.H., Fiorella D., Pereira V.M., Goyal M., Kallmes D.F. Impact of balloon guide catheter on technical and clinical outcomes: A systematic review and meta-analysis. J. Neurointerv. Surg. 2018;10:335–339. doi: 10.1136/neurintsurg-2017-013179. PubMed DOI
Baek J.-H., Kim B.M., Kang D.-H., Heo J.H., Nam H.S., Kim Y.D., Hwang Y.-H., Kim Y.-W., Kim D.J., Kwak H.S., et al. Balloon guide catheter is beneficial in endovascular treatment regardless of mechanical recanalization modality. Stroke. 2019;50:1490–1496. doi: 10.1161/STROKEAHA.118.024723. PubMed DOI
Zaidat O.O., Mueller-Kronast N.H., Hassan A.E., Haussen D.C., Jadhav A.P., Froehler M.T., Jahan R., Aziz-Sultan M.A., Klucznik R.P., Saver J.L., et al. Impact of balloon guide catheter use on clinical and angiographic outcomes in the STRATIS stroke thrombectomy registry. Stroke. 2019;50:697–704. doi: 10.1161/STROKEAHA.118.021126. PubMed DOI
Ospel J.M., Volny O., Jayaraman M., McTaggart R., Goyal M. Optimizing fast first pass complete reperfusion in acute ischemic stroke—the BADDASS approach (BAlloon guiDe with large bore Distal Access catheter with dual aspiration with Stent-retriever as Standard approach) Expert. Rev. Med. Devices. 2019;16:955–963. doi: 10.1080/17434440.2019.1684263. PubMed DOI
Haussen D.C., Al-Bayati A.R., Grossberg J.A., Bouslama M., Barreira C., Bianchi N., Frankel M.R., Nogueira R.G. Longer stent retrievers enhance thrombectomy performance in acute stroke. J. Neurointerv. Surg. 2019;11:6–8. doi: 10.1136/neurintsurg-2018-013918. PubMed DOI
Maus V., Brehm A., Tsogkas I., Henkel S., Psychogios M.N. Stent retriever placement in embolectomy: The choice of the post-bifurcational trunk influences the first-pass reperfusion result in M1 occlusions. J. Neurointerv. Surg. 2019;11:237–240. doi: 10.1136/neurintsurg-2018-014114. PubMed DOI
Bernava G., Rosi A., Boto J., Brina O., Kulcsar Z., Czarnetzki C., Carrera E., Schaller K., Lovblad K.-O., Machi P. Direct thromboaspiration efficacy for mechanical thrombectomy is related to the angle of interaction between the aspiration catheter and the clot. J. Neurointerv. Surg. 2020;12:396–400. doi: 10.1136/neurintsurg-2019-015113. PubMed DOI PMC
Haussen D.C., Rebello L.C., Nogueira R.G. Optimizating clot retrieval in acute stroke: The push and fluff technique for closed-cell stentrievers. Stroke. 2015;46:2838–2842. doi: 10.1161/STROKEAHA.115.010044. PubMed DOI
Fennell V.S., Nagesh S.V.S., Meess K.M., Gutierrez L., James R.H., Springer M.E., Siddiqui A.H. What to do about fibrin rich ‘tough clots’? Comparing the solitaire stent retriever with a novel geometric clot extractor in an in vitro stroke model. J. Neurointerv. Surg. 2018;10:907–910. doi: 10.1136/neurintsurg-2017-013507. PubMed DOI
Gupta R., Saver J.L., Levy E.I., Zaidat O.O., Yavagal D.R., Liebeskind D.S., Khaldi A., Gross B.A., Lang M.J., Narayanan S., et al. A new class of radially adjustable stentrievers for acute ischemic stroke: Primary results of the multicenter tiger trial. Stroke. 2021;52:1534–1544. doi: 10.1161/STROKEAHA.121.034436. PubMed DOI PMC
Almandoz J.E.D., Kayan Y., Young M.L., Fease J.L., Scholz J.M., Milner A.M., Hehr T.H., Roohani P., Mulder M., Tarrel R.M. Comparison of clinical outcomes in patients with acute ischemic strokes treated with mechanical thrombectomy using either Solumbra or ADAPT techniques. J. Neurointerv. Surg. 2016;8:1123–1128. doi: 10.1136/neurintsurg-2015-012122. PubMed DOI
Massari F., Henninger N., Lozano J.D., Patel A., Kuhn A.L., Howk M., Perras M., Brooks C., Gounis M.J., Kan P., et al. ARTS (Aspiration-Retriever Technique for Stroke): Initial clinical experience. Interv. Neuroradiol. 2016;22:325–332. doi: 10.1177/1591019916632369. PubMed DOI PMC
McTaggart R.A., Tung E.L., Yaghi S., Cutting S.M., Hemendinger M., Gale H.I., Baird G.L., Haas R.A., Jayaraman M. Continuous aspiration prior to intracranial vascular embolectomy (CAPTIVE): A technique which improves outcomes. J. Neurointerv. Surg. 2017;9:1154–1159. doi: 10.1136/neurintsurg-2016-012838. PubMed DOI
Maus V., Behme D., Kabbasch C., Borggrefe J., Tsogkas I., Nikoubashman O., Wiesmann M., Knauth M., Mpotsaris A., Psychogios M.N. Maximizing first-pass complete reperfusion with SAVE. Clin. Neuroradiol. 2018;28:327–338. doi: 10.1007/s00062-017-0566-z. PubMed DOI
Maegerlein C., Berndt M.T., Mönch S., Kreiser K., Boeckh-Behrens T., Lehm M., Wunderlich S., Zimmer C., Friedrich B. Further development of combined techniques using stent retrievers, aspiration catheters and BGC: The PROTECTPLUS Technique. Clin. Neuroradiol. 2020;30:59–65. doi: 10.1007/s00062-018-0742-9. PubMed DOI
Baek J.-H., Kim B.M., Heo J.H., Nam H.S., Kim Y.D., Park H., Bang O.Y., Yoo J., Kim D.J., Jeon P., et al. Number of stent retriever passes associated with futile recanalization in acute stroke. Stroke. 2018;49:2088–2095. doi: 10.1161/STROKEAHA.118.021320. PubMed DOI
Labeyrie M.-A., Civelli V., Reiner P., Aymard A., Saint-Maurice J.-P., Zetchi A., Houdart E. Prevalence and treatment of spontaneous intracranial artery dissections in patients with acute stroke due to intracranial large vessel occlusion. J. Neurointerv. Surg. 2018;10:761–764. doi: 10.1136/neurintsurg-2018-013763. PubMed DOI
Patro S.N., Iancu D. Dual-stent retrieval for mechanical thrombectomy of refractory clot in acute stroke as a rescue technique. Can. Med Assoc. J. 2017;189:E634–E637. doi: 10.1503/cmaj.160472. PubMed DOI PMC
Chang Y., Kim B.M., Bang O.Y., Baek J.-H., Heo J.H., Nam H.S., Kim Y.D., Yoo J., Kim D.J., Jeon P., et al. Rescue stenting for failed mechanical thrombectomy in acute ischemic stroke: A multicenter experience. Stroke. 2018;49:958–964. doi: 10.1161/STROKEAHA.117.020072. PubMed DOI
Chen V.H., Lee G.K., Tan C.-H., Leow A.S., Tan Y.-K., Goh C., Gopinathan A., Yang C., Chan B.P., Sharma V.K., et al. Intra-arterial adjunctive medications for acute ischemic stroke during mechanical thrombectomy: A meta-analysis. Stroke. 2021;49:958–964. doi: 10.1161/STROKEAHA.120.031738. PubMed DOI
Hofmeister J., Bernava G., Rosi A., Vargas M.I., Carrera E., Montet X., Burgermeister S., Poletti P.-A., Platon A., Lovblad K.-O., et al. Clot-based radiomics predict a mechanical thrombectomy strategy for successful recanalization in acute ischemic stroke. Stroke. 2020;51:2488–2494. doi: 10.1161/STROKEAHA.120.030334. PubMed DOI PMC
Bernsen M.L.E., Goldhoorn R.-J.B., Lingsma H.F., Van Oostenbrugge R.J., Van Zwam W.H., Uyttenboogaart M., Roos Y.B., Martens J.M., Hofmeijer J., Dippel D.W., et al. Importance of occlusion site for thrombectomy technique in stroke: Comparison between aspiration and stent retriever. Stroke. 2021;52:80–90. doi: 10.1161/STROKEAHA.120.030031. PubMed DOI
Lapergue B., Blanc R., Gory B., Labreuche J., Duhamel A., Marnat G., Saleme S., Costalat V., Bracard S., Desal H., et al. Effect of endovascular contact aspiration vs. stent retriever on revascularization in patients with acute ischemic stroke and large vessel occlusion: The ASTER randomized clinical trial. JAMA. 2017;318:443–452. doi: 10.1001/jama.2017.9644. PubMed DOI PMC
Turk A.S., Siddiqui A., Fifi J.T., De Leacy R.A., Fiorella D.J., Gu E., Levy E.I., Snyder K.V., Hanel R.A., Aghaebrahim A., et al. Aspiration thrombectomy versus stent retriever thrombectomy as first-line approach for large vessel occlusion (COMPASS): A multicentre, randomised, open label, blinded outcome, non-inferiority trial. Lancet. 2019;393:998–1008. doi: 10.1016/S0140-6736(19)30297-1. PubMed DOI
Alawieh A.M., Eid M., Anadani M., Sattur M., Maier I.L., Feng W., Goyal N., Starke R.M., Rai A., Fargen K.M., et al. Thrombectomy technique predicts outcome in posterior circulation stroke-insights from the STAR collaboration. Neurosurgery. 2020;87:982–991. doi: 10.1093/neuros/nyaa179. PubMed DOI
Ye G., Lu J., Qi P., Yin X., Wang L., Wang D. Firstline a direct aspiration first pass technique versus firstline stent retriever for acute basilar artery occlusion: A systematic review and meta-analysis. J. Neurointerv. Surg. 2019;11:740–746. doi: 10.1136/neurintsurg-2018-014573. PubMed DOI
Barchetti G., Cagnazzo F., Raz E., Barbagallo G., Toccaceli G., Peschillo S. Mechanical thrombectomy of distal occlusions using a direct aspiration first pass technique compared with new generation of Mini-0.017 microcatheter compatible-stent retrievers: A meta-analysis. World Neurosurg. 2020;134:111–119. doi: 10.1016/j.wneu.2019.10.030. PubMed DOI
Schramm P., Navia P., Papa R., Zamarro J., Tomasello A., Weber W., Fiehler J., Michel P., Pereira V.M., Krings T., et al. ADAPT technique with ACE68 and ACE64 reperfusion catheters in ischemic stroke treatment: Results from the PROMISE study. J. Neurointerv. Surg. 2019;11:226–231. doi: 10.1136/neurintsurg-2018-014122. PubMed DOI PMC
O’Neill D., Griffin E., Doyle K., Power S., Brennan P., Sheehan M., O’Hare A., Looby S., Santos A.D.S., Rossi R., et al. A standardized aspiration-first approach for thrombectomy to increase speed and improve recanalization rates. Am. J. Neuroradiol. 2019;40:1335–1341. doi: 10.3174/ajnr.A6117. PubMed DOI PMC
Chivot C., Renier J., Deramond H., Bouzerar R., Yzet T. Direct aspiration for thrombectomy in ischemic stroke: Impact of dwell time. Interv. Neuroradiol. 2020;26:211–215. doi: 10.1177/1591019919886410. PubMed DOI PMC
Alawieh A., Pierce A.K., Vargas J., Turk A.S., Turner R.D., Chaudry M.I., Spiotta A.M. The golden 35 min of stroke intervention with ADAPT: Effect of thrombectomy procedural time in acute ischemic stroke on outcome. J. Neurointerv. Surg. 2018;10:213–220. doi: 10.1136/neurintsurg-2017-013040. PubMed DOI
Keulers A., Nikoubashman O., Mpotsaris A., Wilson S.D., Wiesmann M. Preventing vessel perforations in endovascular thrombectomy: Feasibility and safety of passing the clot with a microcatheter without microwire: The wireless microcatheter technique. J. Neurointerv. Surg. 2019;11:653–658. doi: 10.1136/neurintsurg-2018-014267. PubMed DOI
Zeleňák K., Vorčák M., Sykora J., Trabalková Z., Zeleňáková J., Kantorová E., Nosáľ V. Management of ruptured hidden mirror intracranial aneurysm during mechanical thrombectomy. Interdiscip. Neurosurg. 2019;17:60–63. doi: 10.1016/j.inat.2019.01.017. DOI
Nozaki T., Noda M., Ishibashi T., Morita A. Ruptured hidden intracranial aneurysm during mechanical thrombectomy: A case report. Surg. Neurol. Int. 2020;11:446. doi: 10.25259/SNI_789_2020. PubMed DOI PMC
Ryska P., Lojik M., Kocer N., Zelenak K., Cesak T., Cimflova P., Bhorkar A.M., Vitkova E., Krajina A. Mechanical thrombectomy performed in thrombosed fusiform aneurysm after surgery for craniopharyngioma in adult: Case report. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2021 doi: 10.5507/bp.2021.018. PubMed DOI
Patel T.M., Shah S.C., Pancholy S.B. Long distance tele-robotic-assisted percutaneous coronary intervention: A report of first-in-human experience. EClinicalMedicine. 2019;14:53–58. doi: 10.1016/j.eclinm.2019.07.017. PubMed DOI PMC
Kim J., Chae M., Chang H.J., Kim Y.A., Park E. Predicting cardiac arrest and respiratory failure using feasible artificial intelligence with simple trajectories of patient data. J. Clin. Med. 2019;8:1336. doi: 10.3390/jcm8091336. PubMed DOI PMC
Zhang X., Yue Z., Wang J. Robotics in lower-limb rehabilitation after stroke. Behav. Neurol. 2017;2017:3731802. doi: 10.1155/2017/3731802. PubMed DOI PMC
Weber L.M., Stein J. The use of robots in stroke rehabilitation: A narrative review. NeuroRehabilitation. 2018;43:99–110. doi: 10.3233/NRE-172408. PubMed DOI
Lin D.J., Finklestein S.P., Cramer S.C. New directions in treatments targeting stroke recovery. Stroke. 2018;49:3107–3114. doi: 10.1161/STROKEAHA.118.021359. PubMed DOI PMC
Sofia–Hanson Robotics. [(accessed on 19 March 2021)]; Available online: https://www.hansonrobotics.com/sophia/
Zhang Y., Fan D., Ji H., Qiao S., Li X. Treatment adherence and secondary prevention of ischemic stroke among discharged patients using mobile phone- and wechat-based improvement services: Cohort study. JMIR mHealth uHealth. 2020;8:e16496. doi: 10.2196/16496. PubMed DOI PMC
European Society of Radiology (ESR) What the radiologist should know about artificial intelligence—An ESR white paper. Insights Imaging. 2019;10:44. doi: 10.1186/s13244-019-0738-2. PubMed DOI PMC
Tang A., Tam R., Cadrin-Chênevert A., Guest W., Chong J., Barfett J., Chepelev L., Cairns R., Mitchell J.R., Cicero M.D., et al. Canadian Association of Radiologists White Paper on Artificial Intelligence in Radiology. Can. Assoc. Radiol. J. 2018;69:120–135. doi: 10.1016/j.carj.2018.02.002. PubMed DOI
Parker W., Jaremko J.L., Cicero M., Azar M., El-Emam K., Gray B.G., Hurrell C., Lavoie-Cardinal F., Desjardins B., Lum A., et al. Canadian Association of Radiologists White Paper on De-Identification of Medical Imaging: Part 1, General Principles. Can. Assoc. Radiol. J. 2021;72:13–24. doi: 10.1177/0846537120967349. PubMed DOI
Parker W., Jaremko J.L., Cicero M., Azar M., El-Emam K., Gray B.G., Hurrell C., Lavoie-Cardinal F., Desjardins B., Lum A., et al. Canadian Association of Radiologists White Paper on De-identification of medical imaging: Part 2, practical considerations. Can. Assoc. Radiol. J. 2021;72:25–34. doi: 10.1177/0846537120967345. PubMed DOI
Geis J.R., Brady A.P., Wu C.C., Spencer J., Ranschaert E., Jaremko J.L., Langer S.G., Kitts A.B., Birch J., Shields W.F., et al. Ethics of artificial intelligence in radiology: Summary of the joint European and North American Multisociety Statement. Radiology. 2019;293:436–440. doi: 10.1148/radiol.2019191586. PubMed DOI
Brady A.P., Neri E. Artificial Intelligence in Radiology-Ethical Considerations. Diagnostics. 2020;10:231. doi: 10.3390/diagnostics10040231. PubMed DOI PMC
Lindqwister A.L., Hassanpour S., Lewis P.J., Sin J.M. AI-RADS: An artificial intelligence curriculum for residents. Acad. Radiol. 2020:1076. doi: 10.1016/j.acra.2020.09.017. PubMed DOI PMC