Tick-Borne Encephalitis Virus Adaptation in Different Host Environments and Existence of Quasispecies
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/P024270/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
32824843
PubMed Central
PMC7472235
DOI
10.3390/v12080902
PII: v12080902
Knihovny.cz E-zdroje
- Klíčová slova
- TBEV, flavivirus adaptation, genome mutation, host alternation, neuroinvasiveness, quasispecies, tick cell line,
- MeSH
- buněčné linie MeSH
- fyziologická adaptace genetika MeSH
- genetická variace MeSH
- genom virový MeSH
- klíště cytologie virologie MeSH
- klíšťová encefalitida virologie MeSH
- ledviny cytologie virologie MeSH
- mutace MeSH
- myši MeSH
- prasata MeSH
- quasispecies * MeSH
- virulence MeSH
- viry klíšťové encefalitidy genetika patogenita fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.
Zobrazit více v PubMed
Dumpis U., Crook D., Oksi J. Tick-borne encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI
Lindenbach B.D., Thiel H.J., Rice C.M. Flaviviridae: The viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 5th ed. Lippincott-Raven Publishers; Philadelphia, PA, USA: 2007. pp. 1101–1133.
Rehacek J. Cultivation of different viruses in tick tissue cultures. Acta Virol. 1965;9:332–337. PubMed
Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antivir. Res. 2003;57:129–146. doi: 10.1016/S0166-3542(02)00206-1. PubMed DOI
Nuttall P.A., Labuda M. Dynamics of infection in tick vectors and at the tick-host interface. Adv. Virus Res. 2003;60:233–272. PubMed
Weaver S.C., Brault A.C., Kang W.L., Holland J.J. Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J. Virol. 1999;73:4316–4326. doi: 10.1128/JVI.73.5.4316-4326.1999. PubMed DOI PMC
Cooper L.A., Scott T.W. Differential evolution of eastern equine encephalitis virus populations in response to host cell type. Genetics. 2001;157:1403–1412. PubMed PMC
Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. PubMed DOI
Domingo E., Holland J.J., Biebricher C., Eigen M. Quasispecies: The concept and the word. In: Gibbs A., Calisher C., García-Arenal F., editors. Molecular Basis of Virus Evolution. Cambridge University Press; Cambridge, UK: 1995. pp. 171–180.
Eigen M. On the nature of virus quasispecies. Trends Microbiol. 1996;4:216–218. doi: 10.1016/0966-842X(96)20011-3. PubMed DOI
Domingo E., Holland J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 1997;51:151–178. doi: 10.1146/annurev.micro.51.1.151. PubMed DOI
Schneider W.L., Roossinck M.J. Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. J. Virol. 2000;74:3130–3134. doi: 10.1128/JVI.74.7.3130-3134.2000. PubMed DOI PMC
Schneider W.L., Roossinck M.J. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. J. Virol. 2001;75:6566–6571. doi: 10.1128/JVI.75.14.6566-6571.2001. PubMed DOI PMC
Martínez M.A., Carrillo C., Gonzalezcandelas F., Moya A., Domingo E., Sobrino F. Fitness alteration of foot-and-mouth disease virus mutants: Measurement of adaptability of viral quasispecies. J. Virol. 1991;65:3954–3957. doi: 10.1128/JVI.65.7.3954-3957.1991. PubMed DOI PMC
Ruiz-Jarabo C.M., Arias A., Baranowski E., Escarmis C., Domingo E. Memory in viral quasispecies. J. Virol. 2000;74:3543–3547. doi: 10.1128/JVI.74.8.3543-3547.2000. PubMed DOI PMC
Asghar N., Lindblom P., Melik W., Lindqvist R., Haglund M., Forsberg P., Overby A.K., Andreassen A., Lindgren P.E., Johansson M. Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance. PLoS ONE. 2014;9:e103264. doi: 10.1371/journal.pone.0103264. PubMed DOI PMC
van Boheemen S., Tas A., Anvar S.Y., van Grootveld R., Albulescu I.C., Bauer M.P., Feltkamp M.C., Bredenbeek P.J., van Hemert M.J. Quasispecies composition and evolution of a typical Zika virus clinical isolate from Suriname. Sci. Rep. 2017;7:2368. doi: 10.1038/s41598-017-02652-w. PubMed DOI PMC
Jerzak G., Bernard K.A., Kramer L.D., Ebel G.D. Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J. Gen. Virol. 2005;86:2175–2183. doi: 10.1099/vir.0.81015-0. PubMed DOI PMC
Kurosu T., Khamlert C., Phanthanawiboon S., Ikuta K., Anantapreecha S. Highly efficient rescue of dengue virus using a co-culture system with mosquito/mammalian cells. Biochem. Biophys. Res. Commun. 2010;394:398–404. doi: 10.1016/j.bbrc.2010.02.181. PubMed DOI
Asghar N., Pettersson J.H., Dinnetz P., Andreassen A., Johansson M. Deep sequencing analysis of tick-borne encephalitis virus from questing ticks at natural foci reveals similarities between quasispecies pools of the virus. J. Gen. Virol. 2017;98:413–421. doi: 10.1099/jgv.0.000704. PubMed DOI PMC
Romanova L.I., Gmyl A.P., Dzhivanian T.I., Bakhmutov D.V., Lukashev A.N., Gmyl L.V., Rumyantsev A.A., Burenkova L.A., Lashkevich V.A., Karganova G.G. Microevolution of tick-borne encephalitis virus in course of host alternation. Virology. 2007;362:75–84. doi: 10.1016/j.virol.2006.12.013. PubMed DOI
Belova O.A., Litov A.G., Kholodilov I.S., Kozlovskaya L.I., Bell-Sakyi L., Romanova L.I., Karganova G.G. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines. Ticks Tick Borne Dis. 2017;8:895–906. doi: 10.1016/j.ttbdis.2017.07.008. PubMed DOI
Růžek D., Bell-Sakyi L., Kopecký J., Grubhoffer L. Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Res. 2008;137:142–146. doi: 10.1016/j.virusres.2008.05.013. PubMed DOI
Goto A., Hayasaka D., Yoshii K., Mizutani T., Kariwa H., Takashima I. A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine. 2003;21:4043–4051. doi: 10.1016/S0264-410X(03)00269-X. PubMed DOI
Mandl C.W., Kroschewski H., Allison S.L., Kofler R., Holzmann H., Meixner T., Heinz F.X. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J. Virol. 2001;75:5627–5637. doi: 10.1128/JVI.75.12.5627-5637.2001. PubMed DOI PMC
Nitayaphan S., Grant J.A., Chang G.J.J., Trent D.W. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology. 1990;177:541–552. doi: 10.1016/0042-6822(90)90519-W. PubMed DOI
Kozuch O., Mayer V. Pig kidney epithelial (PS) cells: A perfect tool for a study of flaviviruses and some other arboviruses. Acta Virol. 1975;19:498. PubMed
Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F. Tick cell lines: Tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI
Pospíšil L., Jandásek L., Pešek J. Isolation of new strains of meningoencephalitis virus in the Brno region during the summer of 1953. Lek List. 1954;9:3–5. PubMed
De Madrid A.T., Porterfield J.S. A simple microculture method for the study of group B arboviruses. Bull. World Health Org. 1969;40:113–121. PubMed PMC
Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC
Růžek D., Št’astná H., Kopecký J., Golovljová I., Grubhoffer L. Rapid subtyping of tick-borne encephalitis virus isolates using multiplex RT-PCR. J. Virol. Methods. 2007;144:133–137. doi: 10.1016/j.jviromet.2007.04.010. PubMed DOI
Kupca A.M., Essbauer S., Zoeller G., de Mendonca P.G., Brey R., Rinder M., Pfister K., Spiegel M., Doerrbecker B., Pfeffer M., et al. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis. 2010;1:44–51. doi: 10.1016/j.ttbdis.2009.11.002. PubMed DOI
Tamura K., Dudley J., Nei M., Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007;24:1596–1599. doi: 10.1093/molbev/msm092. PubMed DOI
Peitsch M.C. Protein modeling by E-mail. Nat. Biotechnol. 1995;13:658–660. doi: 10.1038/nbt0795-658. DOI
Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. doi: 10.1093/bioinformatics/bti770. PubMed DOI
Kiefer F., Arnold K., Kunzli M., Bordoli L., Schwede T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2009;37:D387–D392. doi: 10.1093/nar/gkn750. PubMed DOI PMC
Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. PubMed DOI
Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI
Růžek D., Kopecký J., Štěrba J., Golovchenko M., Rudenko N., Grubhoffer L. Non-virulent strains of TBE virus circulating in the Czech Republic. J. Clin. Virol. 2006;36:S41. doi: 10.1016/S1386-6532(06)80856-5. DOI
Wallner G., Mandl C.W., Ecker M., Holzmann H., Stiasny K., Kunz C., Heinz F.X. Characterisation and complete genome sequences of high- and low-virulence variants of tick-borne encephalitis virus. J. Gen. Virol. 1996;77:1035–1042. doi: 10.1099/0022-1317-77-5-1035. PubMed DOI
Mayer V. Study of virulence of tick-borne encephalitis virus. III. Biological evaluation of large-plaque and small-plaque variants of viruses of tick-borne encephalitis complex. Acta Virol. 1964;8:507–520. PubMed
Mitzel D.N., Best S.M., Masnick M.F., Porcella S.F., Wolfinbarger J.B., Bloom M.E. Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology. 2008;381:268–276. doi: 10.1016/j.virol.2008.08.030. PubMed DOI PMC
Kozlovskaya L.I., Osolodkin D.I., Shevtsova A.S., Romanova L.I., Rogova Y.V., Dzhivanian T.I., Lyapustin V.N., Pivanova G.P., Gmyl A.P., Palyulin V.A., et al. GAG-binding variants of tick-borne encephalitis virus. Virology. 2010;398:262–272. doi: 10.1016/j.virol.2009.12.012. PubMed DOI
Khasnatinov M.A., Ustanikova K., Frolova T.V., Pogodina V.V., Bochkova N.G., Levina L.S., Slovak M., Kazimirova M., Labuda M., Klempa B., et al. Non-hemagglutinating flaviviruses: Molecular mechanisms for the emergence of new strains via adaptation to European ticks. PLoS ONE. 2009;4:e7295. doi: 10.1371/journal.pone.0007295. PubMed DOI PMC
Goh K.C., Tang C.K., Norton D.C., Gan E.S., Tan H.C., Sun B., Syenina A., Yousuf A., Ong X.M., Kamaraj U.S., et al. Molecular determinants of plaque size as an indicator of dengue virus attenuation. Sci. Rep. 2016;6:26100. doi: 10.1038/srep26100. PubMed DOI PMC
Labuda M., Austyn J.M., Zuffova E., Kozuch O., Fuchsberger N., Lysy J., Nuttall P.A. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219:357–366. doi: 10.1006/viro.1996.0261. PubMed DOI
Fialova A., Cimburek Z., Iezzi G., Kopecky J. Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells. Microb. Infect. 2010;12:580–585. doi: 10.1016/j.micinf.2010.03.015. PubMed DOI
McMinn P.C., Dalgarno L., Weir R.C. A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation. Virology. 1996;220:414–423. doi: 10.1006/viro.1996.0329. PubMed DOI
Bressanelli S., Stiasny K., Allison S.L., Stura E.A., Duquerroy S., Lescar J., Heinz F.X., Rey F.A. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 2004;23:728–738. doi: 10.1038/sj.emboj.7600064. PubMed DOI PMC
Holzmann H., Heinz F.X., Mandl C.W., Guirakhoo F., Kunz C. A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J. Virol. 1990;64:5156–5159. doi: 10.1128/JVI.64.10.5156-5159.1990. PubMed DOI PMC
Mandl C.W., Allison S.L., Holzmann H., Meixner T., Heinz F.X. Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site. J. Virol. 2000;74:9601–9609. doi: 10.1128/JVI.74.20.9601-9609.2000. PubMed DOI PMC
Holzmann H., Stiasny K., Ecker M., Kunz C., Heinz F.X. Characterization of monoclonal antibody-escape mutants of tick-borne encephalitis virus with reduced neuroinvasiveness in mice. J. Gen. Virol. 1997;78:31–37. doi: 10.1099/0022-1317-78-1-31. PubMed DOI
Mackenzie J.M., Khromykh A.A., Jones M.K., Westaway E.G. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology. 1998;245:203–215. doi: 10.1006/viro.1998.9156. PubMed DOI
Kümmerer B.M., Rice C.M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J. Virol. 2002;76:4773–4784. doi: 10.1128/JVI.76.10.4773-4784.2002. PubMed DOI PMC
Leung J.Y., Pijlman G.P., Kondratieva N., Hyde J., Mackenzie J.M., Khromykh A.A. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol. 2008;82:4731–4741. doi: 10.1128/JVI.00002-08. PubMed DOI PMC
Chambers T.J., Hahn C.S., Galler R., Rice C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 1990;44:649–688. doi: 10.1146/annurev.mi.44.100190.003245. PubMed DOI
Miller S., Sparacio S., Bartenschlager R. Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J. Biol. Chem. 2006;281:8854–8863. doi: 10.1074/jbc.M512697200. PubMed DOI
Yau W.L., Nguyen-Dinh V., Larsson E., Lindqvist R., Overby A.K., Lundmark R. Model system for the formation of tick-borne encephalitis virus replication compartments without viral RNA replication. J. Virol. 2019;93:e00292-19. doi: 10.1128/JVI.00292-19. PubMed DOI PMC
Koonin E.V. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J. Gen. Virol. 1993;74:733–740. doi: 10.1099/0022-1317-74-4-733. PubMed DOI
Yap T.L., Xu T., Chen Y.L., Malet H., Egloff M.P., Canard B., Vasudevan S.G., Lescar J. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-Angstrom resolution. J. Virol. 2007;81:4753–4765. doi: 10.1128/JVI.02283-06. PubMed DOI PMC
Guirakhoo F., Heinz F.X., Mandl C.W., Holzmann H., Kunz C. Fusion activity of flaviviruses: Comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J. Gen. Virol. 1991;72:1323–1329. doi: 10.1099/0022-1317-72-6-1323. PubMed DOI
Goto A., Yoshii K., Obara M., Ueki T., Mizutani T., Kariwa H., Takashima I. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine. 2005;23:3043–3052. doi: 10.1016/j.vaccine.2004.11.068. PubMed DOI
Muylaert I.R., Chambers T.J., Galler R., Rice C.M. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: Effects on virus replication and mouse neurovirulence. Virology. 1996;222:159–168. doi: 10.1006/viro.1996.0406. PubMed DOI
Falgout B., Pethel M., Zhang Y.M., Lai C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol. 1991;65:2467–2475. doi: 10.1128/JVI.65.5.2467-2475.1991. PubMed DOI PMC
Erbel P., Schiering N., D’Arcy A., Renatus M., Kroemer M., Lim S.P., Yin Z., Keller T.H., Vasudevan S.G., Hommel U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol. 2006;13:372–373. doi: 10.1038/nsmb1073. PubMed DOI
Hurrelbrink R.J., McMinn P.C. Molecular determinants of virulence: The structural and functional basis for flavivirus attenuation. Adv. Virus Res. 2003;60:1–42. PubMed
Gritsun T.S., Desai A., Gould E.A. The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations. J. Gen. Virol. 2001;82:1667–1675. doi: 10.1099/0022-1317-82-7-1667. PubMed DOI
Hayasaka D., Gritsun T.S., Yoshii K., Ueki T., Goto A., Mizutani T., Kariwa H., Iwasaki T., Gould E.A., Takashima I. Amino acid changes responsible for attenuation of virus neurovirulence in an infectious cDNA clone of the Oshima strain of tick-borne encephalitis virus. J. Gen. Virol. 2004;85:1007–1018. doi: 10.1099/vir.0.19668-0. PubMed DOI
Cahour A., Pletnev A., Vazeillefalcoz M., Rosen L., Lai C.J. Growth-restricted dengue virus mutants containing deletions in the 5′ noncoding region of the RNA genome. Virology. 1995;207:68–76. doi: 10.1006/viro.1995.1052. PubMed DOI
Proutski V., Gritsun T.S., Gould E.A., Holmes E.C. Biological consequences of deletions within the 3-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res. 1999;64:107–123. doi: 10.1016/S0168-1702(99)00079-9. PubMed DOI
Butrapet S., Huang C.Y.H., Pierro D.J., Bhamarapravati N., Gubler D.J., Kinney R.M. Attenuation markers of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 5’ noncoding region and nonstructural proteins 1 and 3. J. Virol. 2000;74:3011–3019. doi: 10.1128/JVI.74.7.3011-3019.2000. PubMed DOI PMC
Kellman E.M., Offerdahl D.K., Melik W., Bloom M.E. Viral Determinants of virulence in tick-borne flaviviruses. Viruses. 2018;10:329. doi: 10.3390/v10060329. PubMed DOI PMC
Basu M., Brinton M.A. West Nile virus (WNV) genome RNAs with up to three adjacent mutations that disrupt long distance 5’-3’ cyclization sequence basepairs are viable. Virology. 2011;412:220–232. doi: 10.1016/j.virol.2011.01.008. PubMed DOI PMC
Khasnatinov M.A., Tuplin A., Gritsun D.J., Slovak M., Kazimirova M., Lickova M., Havlikova S., Klempa B., Labuda M., Gould E.A., et al. Tick-borne encephalitis virus structural proteins are the primary viral determinants of non-viraemic transmission between ticks whereas non-structural proteins affect cytotoxicity. PLoS ONE. 2016;11:e0158105. doi: 10.1371/journal.pone.0158105. PubMed DOI PMC
Labuda M., Jiang W.R., Kaluzova M., Kozuch O., Nuttall P.A., Weismann P., Eleckova E., Zuffova E., Gould E.A. Change in phenotype of tick-borne encephalitis virus following passage in Ixodes ricinus ticks and associated amino acid substitution in the envelope protein. Virus Res. 1994;31:305–315. doi: 10.1016/0168-1702(94)90024-8. PubMed DOI
Malet I., Belnard M., Agut H., Cahour A. From RNA to quasispecies: A DNA polymerase with proofreading activity is highly recommended for accurate assessment of viral diversity. J. Virol. Methods. 2003;109:161–170. doi: 10.1016/S0166-0934(03)00067-3. PubMed DOI
Růžek D., Gritsun T.S., Forrester N.L., Gould E.A., Kopecký J., Golovchenko M., Rudenko N., Grubhoffer L. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology. 2008;374:249–255. doi: 10.1016/j.virol.2008.01.010. PubMed DOI
Davis C.T., Galbraith S.E., Zhang S.L., Whiteman M.C., Li L., Kinney R.M., Barrett A.D.T. A combination of naturally occurring mutations in North American West Nile virus nonstructural protein genes and in the 3’ untranslated region alters virus phenotype. J. Virol. 2007;81:6111–6116. doi: 10.1128/JVI.02387-06. PubMed DOI PMC