Tick-Borne Encephalitis Virus Adaptation in Different Host Environments and Existence of Quasispecies

. 2020 Aug 18 ; 12 (8) : . [epub] 20200818

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32824843

Grantová podpora
BB/P024270/1 Biotechnology and Biological Sciences Research Council - United Kingdom

A highly virulent strain (Hypr) of tick-borne encephalitis virus (TBEV) was serially subcultured in the mammalian porcine kidney stable (PS) and Ixodes ricinus tick (IRE/CTVM19) cell lines, producing three viral variants. These variants exhibited distinct plaque sizes and virulence in a mouse model. Comparing the full-genome sequences of all variants, several nucleotide changes were identified in different genomic regions. Furthermore, different sequential variants were revealed to co-exist within one sample as quasispecies. Interestingly, the above-mentioned nucleotide changes found within the whole genome sequences of the new variants were present alongside the nucleotide sequence of the parental strain, which was represented as a minority quasispecies. These observations further imply that TBEV exists as a heterogeneous population that contains virus variants pre-adapted to reproduction in different environments, probably enabling virus survival in ticks and mammals.

Zobrazit více v PubMed

Dumpis U., Crook D., Oksi J. Tick-borne encephalitis. Clin. Infect. Dis. 1999;28:882–890. doi: 10.1086/515195. PubMed DOI

Lindenbach B.D., Thiel H.J., Rice C.M. Flaviviridae: The viruses and their replication. In: Knipe D.M., Howley P.M., editors. Fields Virology. 5th ed. Lippincott-Raven Publishers; Philadelphia, PA, USA: 2007. pp. 1101–1133.

Rehacek J. Cultivation of different viruses in tick tissue cultures. Acta Virol. 1965;9:332–337. PubMed

Gritsun T.S., Lashkevich V.A., Gould E.A. Tick-borne encephalitis. Antivir. Res. 2003;57:129–146. doi: 10.1016/S0166-3542(02)00206-1. PubMed DOI

Nuttall P.A., Labuda M. Dynamics of infection in tick vectors and at the tick-host interface. Adv. Virus Res. 2003;60:233–272. PubMed

Weaver S.C., Brault A.C., Kang W.L., Holland J.J. Genetic and fitness changes accompanying adaptation of an arbovirus to vertebrate and invertebrate cells. J. Virol. 1999;73:4316–4326. doi: 10.1128/JVI.73.5.4316-4326.1999. PubMed DOI PMC

Cooper L.A., Scott T.W. Differential evolution of eastern equine encephalitis virus populations in response to host cell type. Genetics. 2001;157:1403–1412. PubMed PMC

Holland J., Spindler K., Horodyski F., Grabau E., Nichol S., VandePol S. Rapid evolution of RNA genomes. Science. 1982;215:1577–1585. doi: 10.1126/science.7041255. PubMed DOI

Domingo E., Holland J.J., Biebricher C., Eigen M. Quasispecies: The concept and the word. In: Gibbs A., Calisher C., García-Arenal F., editors. Molecular Basis of Virus Evolution. Cambridge University Press; Cambridge, UK: 1995. pp. 171–180.

Eigen M. On the nature of virus quasispecies. Trends Microbiol. 1996;4:216–218. doi: 10.1016/0966-842X(96)20011-3. PubMed DOI

Domingo E., Holland J.J. RNA virus mutations and fitness for survival. Annu. Rev. Microbiol. 1997;51:151–178. doi: 10.1146/annurev.micro.51.1.151. PubMed DOI

Schneider W.L., Roossinck M.J. Evolutionarily related Sindbis-like plant viruses maintain different levels of population diversity in a common host. J. Virol. 2000;74:3130–3134. doi: 10.1128/JVI.74.7.3130-3134.2000. PubMed DOI PMC

Schneider W.L., Roossinck M.J. Genetic diversity in RNA virus quasispecies is controlled by host-virus interactions. J. Virol. 2001;75:6566–6571. doi: 10.1128/JVI.75.14.6566-6571.2001. PubMed DOI PMC

Martínez M.A., Carrillo C., Gonzalezcandelas F., Moya A., Domingo E., Sobrino F. Fitness alteration of foot-and-mouth disease virus mutants: Measurement of adaptability of viral quasispecies. J. Virol. 1991;65:3954–3957. doi: 10.1128/JVI.65.7.3954-3957.1991. PubMed DOI PMC

Ruiz-Jarabo C.M., Arias A., Baranowski E., Escarmis C., Domingo E. Memory in viral quasispecies. J. Virol. 2000;74:3543–3547. doi: 10.1128/JVI.74.8.3543-3547.2000. PubMed DOI PMC

Asghar N., Lindblom P., Melik W., Lindqvist R., Haglund M., Forsberg P., Overby A.K., Andreassen A., Lindgren P.E., Johansson M. Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance. PLoS ONE. 2014;9:e103264. doi: 10.1371/journal.pone.0103264. PubMed DOI PMC

van Boheemen S., Tas A., Anvar S.Y., van Grootveld R., Albulescu I.C., Bauer M.P., Feltkamp M.C., Bredenbeek P.J., van Hemert M.J. Quasispecies composition and evolution of a typical Zika virus clinical isolate from Suriname. Sci. Rep. 2017;7:2368. doi: 10.1038/s41598-017-02652-w. PubMed DOI PMC

Jerzak G., Bernard K.A., Kramer L.D., Ebel G.D. Genetic variation in West Nile virus from naturally infected mosquitoes and birds suggests quasispecies structure and strong purifying selection. J. Gen. Virol. 2005;86:2175–2183. doi: 10.1099/vir.0.81015-0. PubMed DOI PMC

Kurosu T., Khamlert C., Phanthanawiboon S., Ikuta K., Anantapreecha S. Highly efficient rescue of dengue virus using a co-culture system with mosquito/mammalian cells. Biochem. Biophys. Res. Commun. 2010;394:398–404. doi: 10.1016/j.bbrc.2010.02.181. PubMed DOI

Asghar N., Pettersson J.H., Dinnetz P., Andreassen A., Johansson M. Deep sequencing analysis of tick-borne encephalitis virus from questing ticks at natural foci reveals similarities between quasispecies pools of the virus. J. Gen. Virol. 2017;98:413–421. doi: 10.1099/jgv.0.000704. PubMed DOI PMC

Romanova L.I., Gmyl A.P., Dzhivanian T.I., Bakhmutov D.V., Lukashev A.N., Gmyl L.V., Rumyantsev A.A., Burenkova L.A., Lashkevich V.A., Karganova G.G. Microevolution of tick-borne encephalitis virus in course of host alternation. Virology. 2007;362:75–84. doi: 10.1016/j.virol.2006.12.013. PubMed DOI

Belova O.A., Litov A.G., Kholodilov I.S., Kozlovskaya L.I., Bell-Sakyi L., Romanova L.I., Karganova G.G. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines. Ticks Tick Borne Dis. 2017;8:895–906. doi: 10.1016/j.ttbdis.2017.07.008. PubMed DOI

Růžek D., Bell-Sakyi L., Kopecký J., Grubhoffer L. Growth of tick-borne encephalitis virus (European subtype) in cell lines from vector and non-vector ticks. Virus Res. 2008;137:142–146. doi: 10.1016/j.virusres.2008.05.013. PubMed DOI

Goto A., Hayasaka D., Yoshii K., Mizutani T., Kariwa H., Takashima I. A BHK-21 cell culture-adapted tick-borne encephalitis virus mutant is attenuated for neuroinvasiveness. Vaccine. 2003;21:4043–4051. doi: 10.1016/S0264-410X(03)00269-X. PubMed DOI

Mandl C.W., Kroschewski H., Allison S.L., Kofler R., Holzmann H., Meixner T., Heinz F.X. Adaptation of tick-borne encephalitis virus to BHK-21 cells results in the formation of multiple heparan sulfate binding sites in the envelope protein and attenuation in vivo. J. Virol. 2001;75:5627–5637. doi: 10.1128/JVI.75.12.5627-5637.2001. PubMed DOI PMC

Nitayaphan S., Grant J.A., Chang G.J.J., Trent D.W. Nucleotide sequence of the virulent SA-14 strain of Japanese encephalitis virus and its attenuated vaccine derivative, SA-14-14-2. Virology. 1990;177:541–552. doi: 10.1016/0042-6822(90)90519-W. PubMed DOI

Kozuch O., Mayer V. Pig kidney epithelial (PS) cells: A perfect tool for a study of flaviviruses and some other arboviruses. Acta Virol. 1975;19:498. PubMed

Bell-Sakyi L., Zweygarth E., Blouin E.F., Gould E.A., Jongejan F. Tick cell lines: Tools for tick and tick-borne disease research. Trends Parasitol. 2007;23:450–457. doi: 10.1016/j.pt.2007.07.009. PubMed DOI

Pospíšil L., Jandásek L., Pešek J. Isolation of new strains of meningoencephalitis virus in the Brno region during the summer of 1953. Lek List. 1954;9:3–5. PubMed

De Madrid A.T., Porterfield J.S. A simple microculture method for the study of group B arboviruses. Bull. World Health Org. 1969;40:113–121. PubMed PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Růžek D., Št’astná H., Kopecký J., Golovljová I., Grubhoffer L. Rapid subtyping of tick-borne encephalitis virus isolates using multiplex RT-PCR. J. Virol. Methods. 2007;144:133–137. doi: 10.1016/j.jviromet.2007.04.010. PubMed DOI

Kupca A.M., Essbauer S., Zoeller G., de Mendonca P.G., Brey R., Rinder M., Pfister K., Spiegel M., Doerrbecker B., Pfeffer M., et al. Isolation and molecular characterization of a tick-borne encephalitis virus strain from a new tick-borne encephalitis focus with severe cases in Bavaria, Germany. Ticks Tick Borne Dis. 2010;1:44–51. doi: 10.1016/j.ttbdis.2009.11.002. PubMed DOI

Tamura K., Dudley J., Nei M., Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 2007;24:1596–1599. doi: 10.1093/molbev/msm092. PubMed DOI

Peitsch M.C. Protein modeling by E-mail. Nat. Biotechnol. 1995;13:658–660. doi: 10.1038/nbt0795-658. DOI

Arnold K., Bordoli L., Kopp J., Schwede T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. doi: 10.1093/bioinformatics/bti770. PubMed DOI

Kiefer F., Arnold K., Kunzli M., Bordoli L., Schwede T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Res. 2009;37:D387–D392. doi: 10.1093/nar/gkn750. PubMed DOI PMC

Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. PubMed DOI

Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis. 1997;18:2714–2723. doi: 10.1002/elps.1150181505. PubMed DOI

Růžek D., Kopecký J., Štěrba J., Golovchenko M., Rudenko N., Grubhoffer L. Non-virulent strains of TBE virus circulating in the Czech Republic. J. Clin. Virol. 2006;36:S41. doi: 10.1016/S1386-6532(06)80856-5. DOI

Wallner G., Mandl C.W., Ecker M., Holzmann H., Stiasny K., Kunz C., Heinz F.X. Characterisation and complete genome sequences of high- and low-virulence variants of tick-borne encephalitis virus. J. Gen. Virol. 1996;77:1035–1042. doi: 10.1099/0022-1317-77-5-1035. PubMed DOI

Mayer V. Study of virulence of tick-borne encephalitis virus. III. Biological evaluation of large-plaque and small-plaque variants of viruses of tick-borne encephalitis complex. Acta Virol. 1964;8:507–520. PubMed

Mitzel D.N., Best S.M., Masnick M.F., Porcella S.F., Wolfinbarger J.B., Bloom M.E. Identification of genetic determinants of a tick-borne flavivirus associated with host-specific adaptation and pathogenicity. Virology. 2008;381:268–276. doi: 10.1016/j.virol.2008.08.030. PubMed DOI PMC

Kozlovskaya L.I., Osolodkin D.I., Shevtsova A.S., Romanova L.I., Rogova Y.V., Dzhivanian T.I., Lyapustin V.N., Pivanova G.P., Gmyl A.P., Palyulin V.A., et al. GAG-binding variants of tick-borne encephalitis virus. Virology. 2010;398:262–272. doi: 10.1016/j.virol.2009.12.012. PubMed DOI

Khasnatinov M.A., Ustanikova K., Frolova T.V., Pogodina V.V., Bochkova N.G., Levina L.S., Slovak M., Kazimirova M., Labuda M., Klempa B., et al. Non-hemagglutinating flaviviruses: Molecular mechanisms for the emergence of new strains via adaptation to European ticks. PLoS ONE. 2009;4:e7295. doi: 10.1371/journal.pone.0007295. PubMed DOI PMC

Goh K.C., Tang C.K., Norton D.C., Gan E.S., Tan H.C., Sun B., Syenina A., Yousuf A., Ong X.M., Kamaraj U.S., et al. Molecular determinants of plaque size as an indicator of dengue virus attenuation. Sci. Rep. 2016;6:26100. doi: 10.1038/srep26100. PubMed DOI PMC

Labuda M., Austyn J.M., Zuffova E., Kozuch O., Fuchsberger N., Lysy J., Nuttall P.A. Importance of localized skin infection in tick-borne encephalitis virus transmission. Virology. 1996;219:357–366. doi: 10.1006/viro.1996.0261. PubMed DOI

Fialova A., Cimburek Z., Iezzi G., Kopecky J. Ixodes ricinus tick saliva modulates tick-borne encephalitis virus infection of dendritic cells. Microb. Infect. 2010;12:580–585. doi: 10.1016/j.micinf.2010.03.015. PubMed DOI

McMinn P.C., Dalgarno L., Weir R.C. A comparison of the spread of Murray Valley encephalitis viruses of high or low neuroinvasiveness in the tissues of Swiss mice after peripheral inoculation. Virology. 1996;220:414–423. doi: 10.1006/viro.1996.0329. PubMed DOI

Bressanelli S., Stiasny K., Allison S.L., Stura E.A., Duquerroy S., Lescar J., Heinz F.X., Rey F.A. Structure of a flavivirus envelope glycoprotein in its low-pH-induced membrane fusion conformation. EMBO J. 2004;23:728–738. doi: 10.1038/sj.emboj.7600064. PubMed DOI PMC

Holzmann H., Heinz F.X., Mandl C.W., Guirakhoo F., Kunz C. A single amino acid substitution in envelope protein E of tick-borne encephalitis virus leads to attenuation in the mouse model. J. Virol. 1990;64:5156–5159. doi: 10.1128/JVI.64.10.5156-5159.1990. PubMed DOI PMC

Mandl C.W., Allison S.L., Holzmann H., Meixner T., Heinz F.X. Attenuation of tick-borne encephalitis virus by structure-based site-specific mutagenesis of a putative flavivirus receptor binding site. J. Virol. 2000;74:9601–9609. doi: 10.1128/JVI.74.20.9601-9609.2000. PubMed DOI PMC

Holzmann H., Stiasny K., Ecker M., Kunz C., Heinz F.X. Characterization of monoclonal antibody-escape mutants of tick-borne encephalitis virus with reduced neuroinvasiveness in mice. J. Gen. Virol. 1997;78:31–37. doi: 10.1099/0022-1317-78-1-31. PubMed DOI

Mackenzie J.M., Khromykh A.A., Jones M.K., Westaway E.G. Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology. 1998;245:203–215. doi: 10.1006/viro.1998.9156. PubMed DOI

Kümmerer B.M., Rice C.M. Mutations in the yellow fever virus nonstructural protein NS2A selectively block production of infectious particles. J. Virol. 2002;76:4773–4784. doi: 10.1128/JVI.76.10.4773-4784.2002. PubMed DOI PMC

Leung J.Y., Pijlman G.P., Kondratieva N., Hyde J., Mackenzie J.M., Khromykh A.A. Role of nonstructural protein NS2A in flavivirus assembly. J. Virol. 2008;82:4731–4741. doi: 10.1128/JVI.00002-08. PubMed DOI PMC

Chambers T.J., Hahn C.S., Galler R., Rice C.M. Flavivirus genome organization, expression, and replication. Annu. Rev. Microbiol. 1990;44:649–688. doi: 10.1146/annurev.mi.44.100190.003245. PubMed DOI

Miller S., Sparacio S., Bartenschlager R. Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J. Biol. Chem. 2006;281:8854–8863. doi: 10.1074/jbc.M512697200. PubMed DOI

Yau W.L., Nguyen-Dinh V., Larsson E., Lindqvist R., Overby A.K., Lundmark R. Model system for the formation of tick-borne encephalitis virus replication compartments without viral RNA replication. J. Virol. 2019;93:e00292-19. doi: 10.1128/JVI.00292-19. PubMed DOI PMC

Koonin E.V. Computer-assisted identification of a putative methyltransferase domain in NS5 protein of flaviviruses and lambda 2 protein of reovirus. J. Gen. Virol. 1993;74:733–740. doi: 10.1099/0022-1317-74-4-733. PubMed DOI

Yap T.L., Xu T., Chen Y.L., Malet H., Egloff M.P., Canard B., Vasudevan S.G., Lescar J. Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-Angstrom resolution. J. Virol. 2007;81:4753–4765. doi: 10.1128/JVI.02283-06. PubMed DOI PMC

Guirakhoo F., Heinz F.X., Mandl C.W., Holzmann H., Kunz C. Fusion activity of flaviviruses: Comparison of mature and immature (prM-containing) tick-borne encephalitis virions. J. Gen. Virol. 1991;72:1323–1329. doi: 10.1099/0022-1317-72-6-1323. PubMed DOI

Goto A., Yoshii K., Obara M., Ueki T., Mizutani T., Kariwa H., Takashima I. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine. 2005;23:3043–3052. doi: 10.1016/j.vaccine.2004.11.068. PubMed DOI

Muylaert I.R., Chambers T.J., Galler R., Rice C.M. Mutagenesis of the N-linked glycosylation sites of the yellow fever virus NS1 protein: Effects on virus replication and mouse neurovirulence. Virology. 1996;222:159–168. doi: 10.1006/viro.1996.0406. PubMed DOI

Falgout B., Pethel M., Zhang Y.M., Lai C.J. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J. Virol. 1991;65:2467–2475. doi: 10.1128/JVI.65.5.2467-2475.1991. PubMed DOI PMC

Erbel P., Schiering N., D’Arcy A., Renatus M., Kroemer M., Lim S.P., Yin Z., Keller T.H., Vasudevan S.G., Hommel U. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat. Struct. Mol. Biol. 2006;13:372–373. doi: 10.1038/nsmb1073. PubMed DOI

Hurrelbrink R.J., McMinn P.C. Molecular determinants of virulence: The structural and functional basis for flavivirus attenuation. Adv. Virus Res. 2003;60:1–42. PubMed

Gritsun T.S., Desai A., Gould E.A. The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations. J. Gen. Virol. 2001;82:1667–1675. doi: 10.1099/0022-1317-82-7-1667. PubMed DOI

Hayasaka D., Gritsun T.S., Yoshii K., Ueki T., Goto A., Mizutani T., Kariwa H., Iwasaki T., Gould E.A., Takashima I. Amino acid changes responsible for attenuation of virus neurovirulence in an infectious cDNA clone of the Oshima strain of tick-borne encephalitis virus. J. Gen. Virol. 2004;85:1007–1018. doi: 10.1099/vir.0.19668-0. PubMed DOI

Cahour A., Pletnev A., Vazeillefalcoz M., Rosen L., Lai C.J. Growth-restricted dengue virus mutants containing deletions in the 5′ noncoding region of the RNA genome. Virology. 1995;207:68–76. doi: 10.1006/viro.1995.1052. PubMed DOI

Proutski V., Gritsun T.S., Gould E.A., Holmes E.C. Biological consequences of deletions within the 3-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res. 1999;64:107–123. doi: 10.1016/S0168-1702(99)00079-9. PubMed DOI

Butrapet S., Huang C.Y.H., Pierro D.J., Bhamarapravati N., Gubler D.J., Kinney R.M. Attenuation markers of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 5’ noncoding region and nonstructural proteins 1 and 3. J. Virol. 2000;74:3011–3019. doi: 10.1128/JVI.74.7.3011-3019.2000. PubMed DOI PMC

Kellman E.M., Offerdahl D.K., Melik W., Bloom M.E. Viral Determinants of virulence in tick-borne flaviviruses. Viruses. 2018;10:329. doi: 10.3390/v10060329. PubMed DOI PMC

Basu M., Brinton M.A. West Nile virus (WNV) genome RNAs with up to three adjacent mutations that disrupt long distance 5’-3’ cyclization sequence basepairs are viable. Virology. 2011;412:220–232. doi: 10.1016/j.virol.2011.01.008. PubMed DOI PMC

Khasnatinov M.A., Tuplin A., Gritsun D.J., Slovak M., Kazimirova M., Lickova M., Havlikova S., Klempa B., Labuda M., Gould E.A., et al. Tick-borne encephalitis virus structural proteins are the primary viral determinants of non-viraemic transmission between ticks whereas non-structural proteins affect cytotoxicity. PLoS ONE. 2016;11:e0158105. doi: 10.1371/journal.pone.0158105. PubMed DOI PMC

Labuda M., Jiang W.R., Kaluzova M., Kozuch O., Nuttall P.A., Weismann P., Eleckova E., Zuffova E., Gould E.A. Change in phenotype of tick-borne encephalitis virus following passage in Ixodes ricinus ticks and associated amino acid substitution in the envelope protein. Virus Res. 1994;31:305–315. doi: 10.1016/0168-1702(94)90024-8. PubMed DOI

Malet I., Belnard M., Agut H., Cahour A. From RNA to quasispecies: A DNA polymerase with proofreading activity is highly recommended for accurate assessment of viral diversity. J. Virol. Methods. 2003;109:161–170. doi: 10.1016/S0166-0934(03)00067-3. PubMed DOI

Růžek D., Gritsun T.S., Forrester N.L., Gould E.A., Kopecký J., Golovchenko M., Rudenko N., Grubhoffer L. Mutations in the NS2B and NS3 genes affect mouse neuroinvasiveness of a Western European field strain of tick-borne encephalitis virus. Virology. 2008;374:249–255. doi: 10.1016/j.virol.2008.01.010. PubMed DOI

Davis C.T., Galbraith S.E., Zhang S.L., Whiteman M.C., Li L., Kinney R.M., Barrett A.D.T. A combination of naturally occurring mutations in North American West Nile virus nonstructural protein genes and in the 3’ untranslated region alters virus phenotype. J. Virol. 2007;81:6111–6116. doi: 10.1128/JVI.02387-06. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...