The Role of IFITM Proteins in Tick-Borne Encephalitis Virus Infection
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34613785
PubMed Central
PMC8754218
DOI
10.1128/jvi.01130-21
Knihovny.cz E-zdroje
- Klíčová slova
- IFITM, TBEV, cell-to-cell spread, flavivirus, host factors, interferon, intrinsic immunity,
- MeSH
- buněčné linie MeSH
- cytopatogenní efekt virový MeSH
- exprese genu MeSH
- genový knockdown MeSH
- interakce hostitele a patogenu * genetika imunologie MeSH
- interakční proteinové domény a motivy MeSH
- interferony metabolismus MeSH
- klíšťová encefalitida genetika imunologie metabolismus virologie MeSH
- lidé MeSH
- membránové proteiny chemie genetika metabolismus MeSH
- multigenová rodina MeSH
- náchylnost k nemoci MeSH
- odolnost vůči nemocem genetika imunologie MeSH
- replikace viru MeSH
- sekvence aminokyselin MeSH
- vazba proteinů MeSH
- viry klíšťové encefalitidy fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interferony MeSH
- membránové proteiny MeSH
Tick-borne encephalitis virus (TBEV), of the genus Flavivirus, is a causative agent of severe encephalitis in regions of endemicity of northern Asia and central and northern Europe. Interferon-induced transmembrane proteins (IFITMs) are restriction factors that inhibit the replication cycles of numerous viruses, including flaviviruses such as West Nile virus, dengue virus, and Zika virus. Here, we demonstrate the role of IFITM1, IFITM2, and IFITM3 in the inhibition of TBEV infection and in protection against virus-induced cell death. We show that the most significant role is that of IFITM3, including the dissection of its functional motifs by mutagenesis. Furthermore, through the use of CRISPR-Cas9-generated IFITM1/3-knockout monoclonal cell lines, we confirm the role and additive action of endogenous IFITMs in TBEV suppression. However, the results of coculture assays suggest that TBEV might partially escape interferon- and IFITM-mediated suppression during high-density coculture infection when the virus enters naive cells directly from infected donor cells. Thus, cell-to-cell spread may constitute a strategy for virus escape from innate host defenses. IMPORTANCE TBEV infection may result in encephalitis, chronic illness, or death. TBEV is endemic in northern Asia and Europe; however, due to climate change, new centers of endemicity have arisen. Although effective TBEV vaccines have been approved, vaccination coverage is low, and due to the lack of specific therapeutics, infected individuals depend on their immune responses to control the infection. IFITM proteins are components of the innate antiviral defenses that suppress cell entry of many viral pathogens. However, no studies on the role of IFITM proteins in TBEV infection have been published thus far. Understanding antiviral innate immune responses is crucial for the future development of antiviral strategies. Here, we show the important role of IFITM proteins in the inhibition of TBEV infection and virus-mediated cell death. However, our data suggest that TBEV cell-to-cell spread may be less prone to both interferon- and IFITM-mediated suppression, potentially facilitating escape from IFITM-mediated immunity.
Infection Medicine School of Biomedical Sciences University of Edinburghgrid 4305 2 Edinburgh UK
Institute of Genetics and Molecular Medicine University of Edinburghgrid 4305 2 Edinburgh UK
International Centre for Cancer Vaccine Science University of Gdańskgrid 8585 0 Gdansk Poland
Research Centre for Applied Molecular Oncology Masaryk Memorial Cancer Institute Brno Czech Republic
ZJU UoE Institute Zhejiang University Haining Zhejiang People's Republic of China
Zobrazit více v PubMed
Bogovic P, Strle F. 2015. Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management. World J Clin Cases 3:430–441. 10.12998/wjcc.v3.i5.430. PubMed DOI PMC
Donoso Mantke O, Escadafal C, Niedrig M, Pfeffer M, on behalf of The Working Group for Tick-Borne Encephalitis . 2011. Tick-borne encephalitis in Europe, 2007 to 2009. Euro Surveill 16:19976. 10.2807/ese.16.39.19976-en. PubMed DOI
Alfano N, Tagliapeitra V, Rosso F, Ziegler U, Arnoldi D, Rizzoli A. 2020. Tick-borne encephalitis foci in northeast Italy revealed by combined virus detection in ticks, serosurvey on goats and human cases. Emerg Microbes Infect 9:474–484. 10.1080/22221751.2020.1730246. PubMed DOI PMC
Boelke M, Bestehorn M, Marchwald B, Kubinski M, Liebig K, Glanz J, Schulz C, Dobler G, Monazahian M, Becker SC. 2019. First isolation and phylogenetic analyses of tick-borne encephalitis virus in Lower Saxony, Germany. Viruses 11:462. 10.3390/v11050462. PubMed DOI PMC
Gould EA, Solomon T. 2008. Pathogenic flaviviruses. Lancet 371:500–509. 10.1016/S0140-6736(08)60238-X. PubMed DOI
Gritsun TS, Lashkevich VA, Gould EA. 2003. Tick-borne encephalitis. Antiviral Res 57:129–146. 10.1016/S0166-3542(02)00206-1. PubMed DOI
Andersson CR, Vene S, Insulander M, Lindquist L, Lundkvist A, Günther G. 2010. Vaccine failures after active immunization against tick-borne encephalitis. Vaccine 28:2827–2831. 10.1016/j.vaccine.2010.02.001. PubMed DOI
Morozova OV, Bakhvalova VN, Potapova OF, Grishechkin AE, Isaeva EI, Aldarov KV, Klinov DV, Vorovich MF. 2014. Evaluation of immune response and protective effect of four vaccines against the tick-borne encephalitis virus. Vaccine 32:3101–3106. 10.1016/j.vaccine.2014.02.046. PubMed DOI
Petry M, Palus M, Leitzen E, Mitterreiter JG, Huang B, Kröger A, Verjans GMGM, Baumgärtner W, Rimmelzwaan GF, Růžek D, Osterhaus A, Prajeeth CK. 2021. Immunity to TBEV related flaviviruses with reduced pathogenicity protects mice from disease but not from TBEV entry into the CNS. Vaccines 9:196. 10.3390/vaccines9030196. PubMed DOI PMC
Zhang Y, Zhang W, Ogata S, Clements D, Strauss JH, Baker TS, Kuhn RJ, Rossmann MG. 2004. Conformational changes of the flavivirus E glycoprotein. Structure 12:1607–1618. 10.1016/j.str.2004.06.019. PubMed DOI PMC
Li L, Lok S-M, Yu I-M, Zhang Y, Kuhn RJ, Chen J, Rossmann MG. 2008. The flavivirus precursor membrane-envelope protein complex: structure and maturation. Science 319:1830–1834. 10.1126/science.1153263. PubMed DOI
Pulkkinen LIA, Butcher SJ, Anastasina M. 2018. Tick-borne encephalitis virus: a structural view. Viruses 10:350–320. 10.3390/v10070350. PubMed DOI PMC
Goto A, Yoshii K, Obara M, Ueki T, Mizutani T, Kariwa H, Takashima I. 2005. Role of the N-linked glycans of the prM and E envelope proteins in tick-borne encephalitis virus particle secretion. Vaccine 23:3043–3052. 10.1016/j.vaccine.2004.11.068. PubMed DOI
Perera-Lecoin M, Meertens L, Carnec X, Amara A. 2013. Flavivirus entry receptors: an update. Viruses 6:69–88. 10.3390/v6010069. PubMed DOI PMC
Acosta EG, Castilla V, Damonte EB. 2009. Alternative infectious entry pathways for dengue virus serotypes into mammalian cells. Cell Microbiol 11:1533–1549. 10.1111/j.1462-5822.2009.01345.x. PubMed DOI PMC
Kroschewski H, Allison SL, Heinz FX, Mandl CW. 2003. Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. Virology 308:92–100. 10.1016/S0042-6822(02)00097-1. PubMed DOI
Protopopova EV, Sorokin AV, Konovalova SN, Kachko AV, Netesov SV, Loktev VB. 1999. Human laminin binding protein as a cell receptor for the tick-borne encephalitis virus. Zentralblatt Für Bakteriol 289:632–638. 10.1016/S0934-8840(99)80021-8. DOI
Bluyssen HA, Muzaffar R, Vlieststra RJ, van der Made AC, Leung S, Stark GR, Kerr IM, Trapman J, Levy DE. 1995. Combinatorial association and abundance of components of interferon-stimulated gene factor 3 dictate the selectivity of interferon responses. Proc Natl Acad Sci USA 92:5645–5649. 10.1073/pnas.92.12.5645. PubMed DOI PMC
Muller M, Laxton C, Briscoe J, Schindler C, Improta T, Darnell JE, Jr, Stark GR, Kerr IM. 1993. Complementation of a mutant cell line: central role of the 91-kDa polypeptide of ISGF3 in the interferon-α and -γ signal transduction pathways. EMBO J 1:4221–4228. PubMed PMC
Huang I-C, Bailey CC, Weyer JL, Radoshitzky SR, Becker MM, Chiang JJ, Brass AL, Ahmed AA, Chi X, Dong L, Longobardi LE, Boltz D, Kuhn JH, Elledge SJ, Bavari S, Denison MR, Choe H, Farzan M. 2011. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus, and influenza A virus. PLoS Pathog 7:e1001258. 10.1371/journal.ppat.1001258. PubMed DOI PMC
Wilkins C, Woodward J, Lau DT-Y, Barnes A, Joyce M, McFarlane N, McKeating JA, Tyrrell DL, Gale M. 2013. IFITM1 is a tight junction protein that inhibits hepatitis C virus entry. Hepatology 57:461–469. 10.1002/hep.26066. PubMed DOI PMC
Bailey CC, Zhong G, Huang I-C, Farzan M. 2014. IFITM-family proteins: the cell’s first line of antiviral defense. Annu Rev Virol 1:261–283. 10.1146/annurev-virology-031413-085537. PubMed DOI PMC
Jiang D, Weidner JM, Qing M, Pan X-B, Guo H, Xu C, Zhang X, Birk A, Chang J, Shi P-Y, Block TM, Guo J-T. 2010. Identification of five interferon-induced cellular proteins that inhibit West Nile virus and dengue virus infections. J Virol 84:8332–8341. 10.1128/JVI.02199-09. PubMed DOI PMC
Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. 2009. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–444. 10.1016/j.cell.2009.02.046. PubMed DOI PMC
Lu J, Pan Q, Rong L, He W, Liu S-L, Liang C. 2011. The IFITM proteins inhibit HIV-1 infection. J Virol 85:2126–2137. 10.1128/JVI.01531-10. PubMed DOI PMC
Jia R, Ding S, Pan Q, Liu S-L, Qiao W, Liang C. 2015. The C-terminal sequence of IFITM1 regulates its anti-HIV-1 activity. PLoS One 10:e0118794. 10.1371/journal.pone.0118794. PubMed DOI PMC
Tartour K, Nguyen X-N, Appourchaux R, Assil S, Barateau V, Bloyet L-M, Burlaud Gaillard J, Confort M-P, Escudero-Perez B, Gruffat H, Hong SS, Moroso M, Reynard O, Reynard S, Decembre E, Ftaich N, Rossi A, Wu N, Arnaud F, Baize S, Dreux M, Gerlier D, Paranhos-Baccala G, Volchkov V, Roingeard P, Cimarelli A. 2017. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathog 13:e1006610. 10.1371/journal.ppat.1006610. PubMed DOI PMC
Lee W-YJ, Fu RM, Liang C, Sloan RD. 2018. IFITM proteins inhibit HIV-1 protein synthesis. Sci Rep 8:1–15. PubMed PMC
Compton AA, Bruel T, Porrot F, Mallet A, Sachse M, Euvrard M, Liang C, Casartelli N, Schwartz O. 2014. IFITM proteins incorporated into HIV-1 virions impair viral fusion and spread. Cell Host Microbe 16:736–747. 10.1016/j.chom.2014.11.001. PubMed DOI PMC
Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS. 2016. A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720–730. 10.1016/j.chom.2016.03.010. PubMed DOI PMC
Weber E, Finsterbusch K, Lindquist R, Nair S, Lienenklaus S, Gekara NO, Janik D, Weiss S, Kalinke U, Överby AK, Kröger A. 2014. Type I interferon protects mice from fatal neurotropic infection with Langat virus by systemic and local antiviral responses. J Virol 88:12202–12212. 10.1128/JVI.01215-14. PubMed DOI PMC
Schreier S, Cebulski K, Kröger A. 2021. Contact-dependent transmission of Langat and tick-borne encephalitis virus in type I interferon receptor 1-deficient mice. J Virol 95:e02039-20. 10.1128/JVI.02039-20. PubMed DOI PMC
Robertson SJ, Lubick KJ, Freedman BA, Carmody AB, Best SM. 2014. Tick-borne flaviviruses antagonize both IRF-1 and type I IFN signaling to inhibit dendritic cell function. J Immunol 192:2744–2755. 10.4049/jimmunol.1302110. PubMed DOI PMC
Werme K, Wigerius M, Johansson M. 2008. Tick‐borne encephalitis virus NS5 associates with membrane protein scribble and impairs interferon-stimulated JAK/STAT signaling. Cell Microbiol 10:696–712. 10.1111/j.1462-5822.2007.01076.x. PubMed DOI
Shi G, Schwartz O, Compton AA. 2017. More than meets the I: the diverse antiviral and cellular functions of interferon-induced transmembrane proteins. Retrovirology 14:1–11. 10.1186/s12977-017-0377-y. PubMed DOI PMC
Narayana SK, Helbig KJ, McCartney EM, Eyre NS, Bull RA, Eltahla A, Lloyd AR, Beard MR. 2015. The interferon-induced transmembrane proteins, IFITM1, IFITM2, and IFITM3 inhibit hepatitis C virus entry. J Biol Chem 290:25946–25959. 10.1074/jbc.M115.657346. PubMed DOI PMC
Raychoudhuri A, Shrivastava S, Steele R, Kim H, Ray R, Ray RB. 2011. ISG56 and IFITM1 proteins inhibit hepatitis C virus replication. J Virol 85:12881–12889. 10.1128/JVI.05633-11. PubMed DOI PMC
Yount JS, Moltedo B, Yang Y-Y, Charron G, Moran TM, López CB, Hang HC. 2010. Palmitoylome profiling reveals S-palmitoylation-dependent antiviral activity of IFITM3. Nat Chem Biol 6:610–614. 10.1038/nchembio.405. PubMed DOI PMC
John SP, Chin CR, Perreira JM, Feeley EM, Aker AM, Savidis G, Smith SE, Elia AEH, Everitt AR, Vora M, Pertel T, Elledge SJ, Kellam P, Brass AL. 2013. The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J Virol 87:7837–7852. 10.1128/JVI.00481-13. PubMed DOI PMC
Zhao X, Sehgal M, Hou Z, Cheng J, Shu S, Wu S, Guo F, Le Marchand SJ, Lin H, Chang J, Guo J-T. 2018. Identification of residues controlling restriction versus enhancing activities of IFITM proteins on entry of human coronaviruses. J Virol 92:e01535-17. 10.1128/JVI.01535-17. PubMed DOI PMC
Jia R, Pan Q, Ding S, Rong L, Liu S-L, Geng Y, Qiao W, Liang C. 2012. The N-terminal region of IFITM3 modulates its antiviral activity by regulating IFITM3 cellular localization. J Virol 86:13697–13707. 10.1128/JVI.01828-12. PubMed DOI PMC
Wu W-L, Grotefend CR, Tsai M-T, Wang Y-L, Radic V, Eoh H, Huang I-C. 2017. Δ20 IFITM2 differentially restricts X4 and R5 HIV-1. Proc Natl Acad Sci USA 114:7112–7117. 10.1073/pnas.1619640114. PubMed DOI PMC
Gómez-Herranz M, Nekulova M, Faktor J, Hernychova L, Kote S, Sinclair EH, Nenutil R, Vojtesek B, Ball KL, Hupp TR. 2019. The effects of IFITM1 and IFITM3 gene deletion on IFNγ stimulated protein synthesis. Cell Signal 60:39–56. 10.1016/j.cellsig.2019.03.024. PubMed DOI PMC
Sattentau Q. 2008. Avoiding the void: cell-to-cell spread of human viruses. Nat Rev Microbiol 6:815–826. 10.1038/nrmicro1972. PubMed DOI
Savidis G, Perreira JM, Portmann JM, Meraner P, Guo Z, Green S, Brass AL. 2016. The IFITMs inhibit Zika virus replication. Cell Rep 15:2323–2330. 10.1016/j.celrep.2016.05.074. PubMed DOI
Perreira JM, Chin CR, Feeley EM, Brass AL. 2013. IFITMs restrict the replication of multiple pathogenic viruses. J Mol Biol 425:4937–4955. 10.1016/j.jmb.2013.09.024. PubMed DOI PMC
Lindquist L, Vapalahti O. 2008. Tick-borne encephalitis. Lancet 371:1861–1871. 10.1016/S0140-6736(08)60800-4. PubMed DOI
Sledz CA, Holko M, De Veer MJ, Silverman RH, Williams BR. 2003. Activation of the interferon system by short-interfering RNAs. Nat Cell Biol 5:834–839. 10.1038/ncb1038. PubMed DOI
Spence JS, He R, Hoffmann H-H, Das T, Thinon E, Rice CM, Peng T, Chandran K, Hang HC. 2019. IFITM3 directly engages and shuttles incoming virus particles to lysosomes. Nat Chem Biol 15:259–268. 10.1038/s41589-018-0213-2. PubMed DOI PMC
Yount JS, Karssemeijer RA, Hang HC. 2012. S-palmitoylation and ubiquitination differentially regulate interferon-induced transmembrane protein 3 (IFITM3)-mediated resistance to influenza virus. J Biol Chem 287:19631–19641. 10.1074/jbc.M112.362095. PubMed DOI PMC
Lannes N, Garcia-Nicolàs O, Démoulins T, Summerfield A, Filgueira L. 2019. CX 3 CR1-CX 3 CL1-dependent cell-to-cell Japanese encephalitis virus transmission by human microglial cells. Sci Rep 9:1–13. PubMed PMC
Yang C-F, Tu C-H, Lo Y-P, Cheng C-C, Chen W-J. 2015. Involvement of tetraspanin C189 in cell-to-cell spreading of the dengue virus in C6/36 cells. PLoS Negl Trop Dis 9:e0003885. 10.1371/journal.pntd.0003885. PubMed DOI PMC
Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W. 2007. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9:310–315. 10.1038/ncb1544. PubMed DOI PMC
Tarr AW, Lafaye P, Meredith L, Damier-Piolle L, Urbanowicz RA, Meola A, Jestin J-L, Brown RJP, McKeating JA, Rey FA, Ball JK, Krey T. 2013. An alpaca nanobody inhibits hepatitis C virus entry and cell-to-cell transmission. Hepatology 58:932–939. 10.1002/hep.26430. PubMed DOI
Chmielewska AM, Naddeo M, Capone S, Ammendola V, Hu K, Meredith L, Verhoye L, Rychlowska M, Rappuoli R, Ulmer JB, Colloca S, Nicosia A, Cortese R, Leroux-Roels G, Balfe P, Bienkowska-Szewczyk K, Meuleman P, McKeating JA, Folgori A. 2014. Combined adenovirus vector and hepatitis C virus envelope protein prime-boost regimen elicits T cell and neutralizing antibody immune responses. J Virol 88:5502–5510. 10.1128/JVI.03574-13. PubMed DOI PMC
Vendrame D, Sourisseau M, Perrin V, Schwartz O, Mammano F. 2009. Partial inhibition of human immunodeficiency virus replication by type I interferons: impact of cell-to-cell viral transfer. J Virol 83:10527–10537. 10.1128/JVI.01235-09. PubMed DOI PMC
Richardson MW, Carroll RG, Stremlau M, Korokhov N, Humeau LM, Silvestri G, Sodroski J, Riley JL. 2008. Mode of transmission affects the sensitivity of human immunodeficiency virus type 1 to restriction by rhesus TRIM5α. J Virol 82:11117–11128. 10.1128/JVI.01046-08. PubMed DOI PMC
Jolly C, Booth NJ, Neil SJ. 2010. Cell-cell spread of human immunodeficiency virus type 1 overcomes tetherin/BST-2-mediated restriction in T cells. J Virol 84:12185–12199. 10.1128/JVI.01447-10. PubMed DOI PMC
Kuhl BD, Sloan RD, Donahue DA, Bar-Magen T, Liang C, Wainberg MA. 2010. Tetherin restricts direct cell-to-cell infection of HIV-1. Retrovirology 7:115–113. 10.1186/1742-4690-7-115. PubMed DOI PMC
Sigal A, Kim JT, Balazs AB, Dekel E, Mayo A, Milo R, Baltimore D. 2011. Cell-to-cell spread of HIV permits ongoing replication despite antiretroviral therapy. Nature 477:95–98. 10.1038/nature10347. PubMed DOI
Barretto N, Sainz B, Jr, Hussein S, Uprichard SL. 2014. Determining the involvement and therapeutic implications of host cellular factors in HCV cell-to-cell spread. J Virol 88:5050–5061. 10.1128/JVI.03241-13. PubMed DOI PMC
Mori K, Haruyama T, Nagata K. 2011. Tamiflu-resistant but HA-mediated cell-to-cell transmission through apical membranes of cell-associated influenza viruses. PLoS One 6:e28178. 10.1371/journal.pone.0028178. PubMed DOI PMC
Lipinska AD. 2006. Bovine herpesvirus 1 UL49. 5 protein inhibits the transporter associated with antigen processing despite complex formation with glycoprotein M. J Virol 80:5822–5832. 10.1128/JVI.02707-05. PubMed DOI PMC
Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784. 10.1038/nmeth.3047. PubMed DOI PMC
IFITM protein regulation and functions: Far beyond the fight against viruses