Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice

. 2003 Apr ; 71 (4) : 2041-6.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid12654824

The mouse strains BALB/cHeA (BALB/c) and STS/A (STS) are susceptible and resistant to Leishmania major-induced disease, respectively. We analyzed this difference using recombinant congenic (RC) BALB/c-c-STS/Dem (CcS/Dem) strains that carry different random subsets of 12.5% genes of the strain STS in a BALB/c background. Previously, testing the resistant strain CcS-5, we found five novel Lmr (Leishmania major response) loci, each associated with a different combination of pathological and immunological reactions. Here we analyze the response of RC strain CcS-16, which is even more susceptible to L. major than BALB/c. In the (CcS-16 x BALB/c)F(2) hybrids we mapped three novel loci that influence cutaneous or visceral pathology. Lmr14 (chromosome 2) controls splenomegaly and hepatomegaly. On the other hand Lmr15 (chromosome 11) determines hepatomegaly only, and Lmr13 (chromosome 18) determines skin lesions only. These data confirm the complex control of L. major-induced pathology, where cutaneous and visceral pathology are controlled by different combinations of genes. It indicates organ-specific control of antiparasite responses. The definition of genes controlling these responses will permit a better understanding of pathways and genetic diversity underlying the different disease phenotypes.

Zobrazit více v PubMed

Badalová, J., M. Svobodová, H. Havelková, V. Vladimirov, J. Vojtíšková, J. Engová, T. Pilčík, P. Volf, P. Demant, and M. Lipoldová. 2002. Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun. 3:187-195. PubMed

Baldini, M., I. C. Lohman, M. Halonen, R. P. Erickson, P. G. Holt, and F. D. Martinez. 1999. A polymorphism in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am. J. Respir. Cell Mol. Biol. 20:976-983. PubMed

Beebe, A. M., S. Mauze, N. J. Schork, and R. L. Coffman. 1997. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 6:551-557. PubMed

Bogdan, C., M. Röllinghoff, and A. Diefenbach. 2000. The role of nitric oxide in innate immunity. Immunol. Rev. 173:17-26. PubMed

Demant, P., and A. A. M. Hart. 1986. Recombinant congenic strains: a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24:416-422. PubMed

Demant, P., M. Lipoldová, and M. Svobodová. 1996. Resistance to Leishmania major in mice. Science 274:1392-1393. PubMed

Diamond, L. S., and C. M. Herman. 1954. Incidence of trypanosomes in the Canada goose as revealed by bone marrow culture. J. Parasitol. 40:195-202.

Garcia, A., S. Marquet, B. Bucheton, D. Hillaire, M. Cot, N. Fievet, A. J. Dessein, and L. Abel. 1998. Linkage analysis of blood Plasmodium falciparum levels: interest of the 5q31-q33 chromosome region. Am. J. Trop. Med. Hyg. 58:705-709. PubMed

Gorham, J. D., M. L. Güler, R. G. Steen, R. J. Mackey, M. I. Daly, K. Frederick, W. F. Dietrich, and K. M. Murphy. 1996. Genetic mapping of a murine locus controlling development of T helper 1/T helper 2 type responses. Proc. Natl. Acad. Sci. USA 93:12467-12472. PubMed PMC

Güler, M. L., J. D. Gorham, C.-S. Hsieh, A. J. Mackey, R. G. Steen, W. F. Dietrich, and K. M. Murphy. 1996. Genetic susceptibility to Leishmania: IL-12 responsiveness in Th1 cell development. Science 271:984-987. PubMed

Krulová, M., H. Havelková, M. Kosarová, V. Holán, A. A. M. Hart, P. Demant, and M. Lipoldová. 1997. IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentrations. Genomics 42:11-15. PubMed

Lander, E., and L. Kruglyak. 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting results. Nat. Genet. 11:241-247. PubMed

Lee, G. H., L. M. Benett, R. A. Carabeo, and N. R. Drinkwater. 1995. Identification of hepatocarcinogen resistance genes in DBA/2 mice. Genetics 193:387-397. PubMed PMC

Lipoldová, M., M. Svobodová, H. Havelková, M. Krulová, J. Badalová, E. Nohýnková, A. A. M. Hart, D. Schlegel, P. Volf, and P. Demant. 2002. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 54:174-183. PubMed

Lipoldová, M., M. Svobodová, M. Krulová, H. Havelková, J. Badalová, E. Nohýnková, V. Holán, A. A. M. Hart, P. Volf, and P. Demant. 2000. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. 1:200-206. PubMed

Marquet, S., L. Abel, D. Hillaire, H. Dessein, J. Kalil, J. Feingold, J. Weissenbach, and A. J. Dessein. 1996. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Nat. Genet. 14:181-184. PubMed

Molyneux, D. H., and R. Killick-Kendrick. 1987. Morphology, ultrastructure and life cycles, p. 121-176. In W. Peters and R. Killick-Kendrick (ed.), The leishmaniases in biology and medicine, vol. I. Academic Press, London, United Kingdom

Reiner, S. L., and R. M. Locksley. 1995. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13:151-177. PubMed

Roberts, L. J., T. M. Baldwin, J. M. Curtis, E. Handman, and S. J. Foote. 1997. Resistance to Leishmania major is linked to H2 region on chromosome 17 and to chromosome 9. J. Exp. Med. 9:1705-1710. PubMed PMC

Roberts, L. J., T. M. Baldwin, T. P. Speed, E. Handman, and S. J. Foote. 1999. Chromosomes X, 9 and the H2 locus interact epistatically to control Leishmania major infection. Eur. J. Immunol. 29:3047-3050. PubMed

Roberts, M., B. A. Mock, and J. M. Blackwell. 1993. Mapping of genes controlling Leishmania major infection in CXS recombinant inbred mice. Eur. J. Immunogenet. 20:349-362. PubMed

Roper, R. J., J. J. Weis, B. A. McCracken, C. B. Green, Y. Ma, K. S. Weber, D. Fairbairn, R. J. Butterfield, M. R. Potter, J. F. Zachary, R. W. Doerge, and C. Teuscher. 2001. Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun. 2:388-397. PubMed

Sander, C. 2000. Genomic medicine and the future of health care. Science 287:1977-1978. PubMed

Solbach, W., and T. Laskay. 1996. Evasion strategies of Leishmania parasites, p. 25-47. In F. J. Tapia, G. Cáceres-Dittmar, and M. A. Sánchez (ed.), Molecular and immune mechanisms in the pathogenesis of cutaneous leishmaniasis. R. G. Landes Company, Austin, Tex.

Stassen, A. P. M., P. C. Groot, J. T. Eppig, and P. Demant. 1996. Genetic composition of the recombinant congenic strains. Mamm. Genome 7:55-58. PubMed

Stenger, S., N. Donhauser, H. Thüring, M. Röllinghoff, and C. Bogdan. 1996. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 183:1501-1514. PubMed PMC

Theodos, C. M., A. Shankar, A. L. Glasebrook, W. D. Roeder, and R. G. Titus. 1994. The effect of treating with anti-interleukin-1 receptor antibody on the course of experimental murine cutaneous leishmaniasis. Parasite Immunol. 16:571-577. PubMed

van Wezel, T., M. Lipoldová, and P. Demant. 2001. Identification of disease susceptibility genes (modifiers) in mouse models: cancer and infectious diseases, p. 107-130. In S. Malcolm and J. Goodship (ed.), Genotype to phenotype, 2nd ed. BIOS Scientific Publishers Ltd., Oxford, United Kingdom

van Wezel, T., A. P. M. Stassen, C. J. A. Moen, A. A. M. Hart, M. A. van der Valk, and P. Demant. 1996. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat. Genet. 14:468-470. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Functionally distinct regions of the locus Leishmania major response 15 control IgE or IFNγ level in addition to skin lesions

. 2023 ; 14 () : 1145269. [epub] 20230803

Novel Loci Controlling Parasite Load in Organs of Mice Infected With Leishmania major, Their Interactions and Sex Influence

. 2019 ; 10 () : 1083. [epub] 20190607

A novel locus on mouse chromosome 7 that influences survival after infection with tick-borne encephalitis virus

. 2018 Jul 06 ; 19 (1) : 39. [epub] 20180706

Gene-specific sex effects on eosinophil infiltration in leishmaniasis

. 2016 ; 7 () : 59. [epub] 20161122

Mapping the genes for susceptibility and response to Leishmania tropica in mouse

. 2013 ; 7 (7) : e2282. [epub] 20130711

Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system

. 2013 Jun 27 ; 10 () : 77. [epub] 20130627

Genetics of host response to Leishmania tropica in mice - different control of skin pathology, chemokine reaction, and invasion into spleen and liver

. 2012 ; 6 (6) : e1667. [epub] 20120605

Genetic control of resistance to Trypanosoma brucei brucei infection in mice

. 2011 Jun ; 5 (6) : e1173. [epub] 20110607

Distinct genetic control of parasite elimination, dissemination, and disease after Leishmania major infection

. 2009 Sep ; 61 (9) : 619-33. [epub] 20090825

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace