Different genetic control of cutaneous and visceral disease after Leishmania major infection in mice
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
12654824
PubMed Central
PMC152088
DOI
10.1128/iai.71.4.2041-2046.2003
Knihovny.cz E-resources
- MeSH
- Genetic Predisposition to Disease * MeSH
- Genetic Linkage MeSH
- Genotype MeSH
- Hepatomegaly MeSH
- Mice, Inbred Strains genetics MeSH
- Crosses, Genetic MeSH
- Leishmania major pathogenicity MeSH
- Leishmaniasis, Cutaneous genetics immunology physiopathology MeSH
- Leishmaniasis, Visceral genetics immunology physiopathology MeSH
- Chromosome Mapping MeSH
- Mice, Inbred BALB C genetics MeSH
- Mice MeSH
- Splenomegaly MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The mouse strains BALB/cHeA (BALB/c) and STS/A (STS) are susceptible and resistant to Leishmania major-induced disease, respectively. We analyzed this difference using recombinant congenic (RC) BALB/c-c-STS/Dem (CcS/Dem) strains that carry different random subsets of 12.5% genes of the strain STS in a BALB/c background. Previously, testing the resistant strain CcS-5, we found five novel Lmr (Leishmania major response) loci, each associated with a different combination of pathological and immunological reactions. Here we analyze the response of RC strain CcS-16, which is even more susceptible to L. major than BALB/c. In the (CcS-16 x BALB/c)F(2) hybrids we mapped three novel loci that influence cutaneous or visceral pathology. Lmr14 (chromosome 2) controls splenomegaly and hepatomegaly. On the other hand Lmr15 (chromosome 11) determines hepatomegaly only, and Lmr13 (chromosome 18) determines skin lesions only. These data confirm the complex control of L. major-induced pathology, where cutaneous and visceral pathology are controlled by different combinations of genes. It indicates organ-specific control of antiparasite responses. The definition of genes controlling these responses will permit a better understanding of pathways and genetic diversity underlying the different disease phenotypes.
See more in PubMed
Badalová, J., M. Svobodová, H. Havelková, V. Vladimirov, J. Vojtíšková, J. Engová, T. Pilčík, P. Volf, P. Demant, and M. Lipoldová. 2002. Separation and mapping of multiple genes that control IgE level in Leishmania major infected mice. Genes Immun. 3:187-195. PubMed
Baldini, M., I. C. Lohman, M. Halonen, R. P. Erickson, P. G. Holt, and F. D. Martinez. 1999. A polymorphism in the 5′ flanking region of the CD14 gene is associated with circulating soluble CD14 levels and with total serum immunoglobulin E. Am. J. Respir. Cell Mol. Biol. 20:976-983. PubMed
Beebe, A. M., S. Mauze, N. J. Schork, and R. L. Coffman. 1997. Serial backcross mapping of multiple loci associated with resistance to Leishmania major in mice. Immunity 6:551-557. PubMed
Bogdan, C., M. Röllinghoff, and A. Diefenbach. 2000. The role of nitric oxide in innate immunity. Immunol. Rev. 173:17-26. PubMed
Demant, P., and A. A. M. Hart. 1986. Recombinant congenic strains: a new tool for analyzing genetic traits determined by more than one gene. Immunogenetics 24:416-422. PubMed
Demant, P., M. Lipoldová, and M. Svobodová. 1996. Resistance to Leishmania major in mice. Science 274:1392-1393. PubMed
Diamond, L. S., and C. M. Herman. 1954. Incidence of trypanosomes in the Canada goose as revealed by bone marrow culture. J. Parasitol. 40:195-202.
Garcia, A., S. Marquet, B. Bucheton, D. Hillaire, M. Cot, N. Fievet, A. J. Dessein, and L. Abel. 1998. Linkage analysis of blood Plasmodium falciparum levels: interest of the 5q31-q33 chromosome region. Am. J. Trop. Med. Hyg. 58:705-709. PubMed
Gorham, J. D., M. L. Güler, R. G. Steen, R. J. Mackey, M. I. Daly, K. Frederick, W. F. Dietrich, and K. M. Murphy. 1996. Genetic mapping of a murine locus controlling development of T helper 1/T helper 2 type responses. Proc. Natl. Acad. Sci. USA 93:12467-12472. PubMed PMC
Güler, M. L., J. D. Gorham, C.-S. Hsieh, A. J. Mackey, R. G. Steen, W. F. Dietrich, and K. M. Murphy. 1996. Genetic susceptibility to Leishmania: IL-12 responsiveness in Th1 cell development. Science 271:984-987. PubMed
Krulová, M., H. Havelková, M. Kosarová, V. Holán, A. A. M. Hart, P. Demant, and M. Lipoldová. 1997. IL-2-induced proliferative response is controlled by loci Cinda1 and Cinda2 on mouse chromosomes 11 and 12: a distinct control of the response induced by different IL-2 concentrations. Genomics 42:11-15. PubMed
Lander, E., and L. Kruglyak. 1995. Genetic dissection of complex traits: guidelines for interpreting and reporting results. Nat. Genet. 11:241-247. PubMed
Lee, G. H., L. M. Benett, R. A. Carabeo, and N. R. Drinkwater. 1995. Identification of hepatocarcinogen resistance genes in DBA/2 mice. Genetics 193:387-397. PubMed PMC
Lipoldová, M., M. Svobodová, H. Havelková, M. Krulová, J. Badalová, E. Nohýnková, A. A. M. Hart, D. Schlegel, P. Volf, and P. Demant. 2002. Mouse genetic model for clinical and immunological heterogeneity of leishmaniasis. Immunogenetics 54:174-183. PubMed
Lipoldová, M., M. Svobodová, M. Krulová, H. Havelková, J. Badalová, E. Nohýnková, V. Holán, A. A. M. Hart, P. Volf, and P. Demant. 2000. Susceptibility to Leishmania major infection in mice: multiple loci and heterogeneity of immunopathological phenotypes. Genes Immun. 1:200-206. PubMed
Marquet, S., L. Abel, D. Hillaire, H. Dessein, J. Kalil, J. Feingold, J. Weissenbach, and A. J. Dessein. 1996. Genetic localization of a locus controlling the intensity of infection by Schistosoma mansoni on chromosome 5q31-q33. Nat. Genet. 14:181-184. PubMed
Molyneux, D. H., and R. Killick-Kendrick. 1987. Morphology, ultrastructure and life cycles, p. 121-176. In W. Peters and R. Killick-Kendrick (ed.), The leishmaniases in biology and medicine, vol. I. Academic Press, London, United Kingdom
Reiner, S. L., and R. M. Locksley. 1995. The regulation of immunity to Leishmania major. Annu. Rev. Immunol. 13:151-177. PubMed
Roberts, L. J., T. M. Baldwin, J. M. Curtis, E. Handman, and S. J. Foote. 1997. Resistance to Leishmania major is linked to H2 region on chromosome 17 and to chromosome 9. J. Exp. Med. 9:1705-1710. PubMed PMC
Roberts, L. J., T. M. Baldwin, T. P. Speed, E. Handman, and S. J. Foote. 1999. Chromosomes X, 9 and the H2 locus interact epistatically to control Leishmania major infection. Eur. J. Immunol. 29:3047-3050. PubMed
Roberts, M., B. A. Mock, and J. M. Blackwell. 1993. Mapping of genes controlling Leishmania major infection in CXS recombinant inbred mice. Eur. J. Immunogenet. 20:349-362. PubMed
Roper, R. J., J. J. Weis, B. A. McCracken, C. B. Green, Y. Ma, K. S. Weber, D. Fairbairn, R. J. Butterfield, M. R. Potter, J. F. Zachary, R. W. Doerge, and C. Teuscher. 2001. Genetic control of susceptibility to experimental Lyme arthritis is polygenic and exhibits consistent linkage to multiple loci on chromosome 5 in four independent mouse crosses. Genes Immun. 2:388-397. PubMed
Sander, C. 2000. Genomic medicine and the future of health care. Science 287:1977-1978. PubMed
Solbach, W., and T. Laskay. 1996. Evasion strategies of Leishmania parasites, p. 25-47. In F. J. Tapia, G. Cáceres-Dittmar, and M. A. Sánchez (ed.), Molecular and immune mechanisms in the pathogenesis of cutaneous leishmaniasis. R. G. Landes Company, Austin, Tex.
Stassen, A. P. M., P. C. Groot, J. T. Eppig, and P. Demant. 1996. Genetic composition of the recombinant congenic strains. Mamm. Genome 7:55-58. PubMed
Stenger, S., N. Donhauser, H. Thüring, M. Röllinghoff, and C. Bogdan. 1996. Reactivation of latent leishmaniasis by inhibition of inducible nitric oxide synthase. J. Exp. Med. 183:1501-1514. PubMed PMC
Theodos, C. M., A. Shankar, A. L. Glasebrook, W. D. Roeder, and R. G. Titus. 1994. The effect of treating with anti-interleukin-1 receptor antibody on the course of experimental murine cutaneous leishmaniasis. Parasite Immunol. 16:571-577. PubMed
van Wezel, T., M. Lipoldová, and P. Demant. 2001. Identification of disease susceptibility genes (modifiers) in mouse models: cancer and infectious diseases, p. 107-130. In S. Malcolm and J. Goodship (ed.), Genotype to phenotype, 2nd ed. BIOS Scientific Publishers Ltd., Oxford, United Kingdom
van Wezel, T., A. P. M. Stassen, C. J. A. Moen, A. A. M. Hart, M. A. van der Valk, and P. Demant. 1996. Gene interaction and single gene effects in colon tumour susceptibility in mice. Nat. Genet. 14:468-470. PubMed
Gene-specific sex effects on eosinophil infiltration in leishmaniasis
Mapping the genes for susceptibility and response to Leishmania tropica in mouse
Genetic control of resistance to Trypanosoma brucei brucei infection in mice