Single-Nanocrystal Studies on the Homogeneity of the Optical Properties of NaYF4:Yb3+,Er3
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33110981
PubMed Central
PMC7581227
DOI
10.1021/acsomega.0c03252
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Development of upconverting nanomaterials which are able to emit visible light upon near-infrared excitation opens a wide range of potential applications. Because of their remarkable photostability, they are widely used in bioimaging, optogenetics, and optoelectronics. In this work, we demonstrate the influence of several experimental conditions as well as a dopant concentration on the luminescence properties of upconverting nanocrystals (UPNCs) that need to be taken into account for their efficient use in the practical applications. We found that not only nanoparticle architecture affects the optical properties of UPNCs, but also factors such as sample concentration, excitation light power density, and temperature may influence the green-to-red emission ratio. We performed studies on both the single-nanoparticle and ensemble levels over a broad concentration range and found the heterogeneity in the optical properties of UPNCs with low dopant concentrations.
Zobrazit více v PubMed
Chen B.; Wang F.. Emerging Frontiers of Upconversion Nanoparticles. Trends in Chemistry; Cell Press, May 1, 2020; pp 427–439.
Scheps R. Upconversion Laser Processes. Prog. Quantum Electron. 1996, 20, 271–358. 10.1016/0079-6727(95)00007-0. DOI
Shalav A.; Richards B. S.; Trupke T.; Krämer K. W.; Güdel H. U. Application of NaYF4:Er3+ up-Converting Phosphors for Enhanced near-Infrared Silicon Solar Cell Response. Appl. Phys. Lett. 2005, 86, 013505.10.1063/1.1844592. DOI
Liu Q.; Liu H.; Li D.; Qiao W.; Chen G.; Ågren H. Microlens Array Enhanced Upconversion Luminescence at Low Excitation Irradiance. Nanoscale 2019, 11, 14070–14078. 10.1039/c9nr03105g. PubMed DOI
Kostiv U.; Patsula V.; Noculak A.; Podhorodecki A.; Větvička D.; Poučková P.; Sedláková Z.; Horák D. Phthalocyanine-Conjugated Upconversion NaYF4:Yb3+ /Er3+@SiO2 Nanospheres for NIR-Triggered Photodynamic Therapy in a Tumor Mouse Model. ChemMedChem 2017, 12, 2066–2073. 10.1002/cmdc.201700508. PubMed DOI
Downing E.; Hesselink L.; Ralston J.; Macfarlane R. A Three-Color, Solid-State, Three-Dimensional Display. Science 1996, 273, 1185–1189. 10.1126/science.273.5279.1185. DOI
Haase M.; Schäfer H. Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829. 10.1002/anie.201005159. PubMed DOI
Lim S. F.; Riehn R.; Ryu W. S.; Khanarian N.; Tung C.-k.; Tank D.; Austin R. H. In Vivo and Scanning Electron Microscopy Imaging of Upconverting Nanophosphors in Caenorhabditis Elegans. Nano Lett. 2006, 6, 169–174. 10.1021/nl0519175. PubMed DOI
Yi G.; Lu H.; Zhao S.; Ge Y.; Yang W.; Chen D.; Guo L.-H. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4 :Yb,Er Infrared-to-Visible Up-Conversion Phosphors. Nano Lett. 2004, 4, 2191–2196. 10.1021/nl048680h. DOI
Chatterjee D. K.; Gnanasammandhan M. K.; Zhang Y. Small Upconverting Fluorescent Nanoparticles for Biomedical Applications. Small 2010, 6, 2781–2795. 10.1002/smll.201000418. PubMed DOI
Sojka B.; Podhorodecki A.; Banski M.; Misiewicz J.; Drobczynski S.; Dumych T.; Lutsyk M. M.; Lutsyk A.; Bilyy R. β-NaGdF4 :Eu3+ Nanocrystal Markers for Melanoma Tumor Imaging. RSC Adv. 2016, 6, 57854–57862. 10.1039/C6RA10351K. DOI
Kostiv U.; Lobaz V.; Kučka J.; Švec P.; Sedláček O.; Hrubý M.; Janoušková O.; Francová P.; Kolářová V.; Šefc L.; Horák D. A Simple Neridronate-Based Surface Coating Strategy for Upconversion Nanoparticles: Highly Colloidally Stable 125I-Radiolabeled NaYF4:Yb3+/Er3+@PEG Nanoparticles for Multimodal in Vivo Tissue Imaging. Nanoscale 2017, 9, 16680–16688. 10.1039/c7nr05456d. PubMed DOI
Tessitore G.; Mandl G. A.; Brik M. G.; Park W.; Capobianco J. A. Recent Insights into Upconverting Nanoparticles: Spectroscopy, Modeling, and Routes to Improved Luminescence. Nanoscale 2019, 11, 12015–12029. 10.1039/c9nr02291k. PubMed DOI
Wu S.; Han G.; Milliron D. J.; Aloni S.; Altoe V.; Talapin D. V.; Cohen B. E.; Schuck P. J. Non-Blinking and Photostable Upconverted Luminescence from Single Lanthanide-Doped Nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 10917–10921. 10.1073/pnas.0904792106. PubMed DOI PMC
Schuck P. J.; Willets K. A.; Fromm D. P.; Twieg R. J.; Moerner W. E. A Novel Fluorophore for Two-Photon-Excited Single-Molecule Fluorescence. Chem. Phys. 2005, 318, 7–11. 10.1016/J.CHEMPHYS.2005.03.010. DOI
Chen S.; Weitemier A. Z.; Zeng X.; He L.; Wang X.; Tao Y.; Huang A. J. Y.; Hashimotodani Y.; Kano M.; Iwasaki H.; Parajuli L. K.; Okabe S.; Teh D. B. L.; All A. H.; Tsutsui-Kimura I.; Tanaka K. F.; Liu X.; McHugh T. J. Near-Infrared Deep Brain Stimulation via Upconversion Nanoparticle-Mediated Optogenetics. Science 2018, 359, 679–684. 10.1126/science.aaq1144. PubMed DOI
Hososhima S.; Yuasa H.; Ishizuka T.; Hoque M. R.; Yamashita T.; Yamanaka A.; Sugano E.; Tomita H.; Yawo H. Near-Infrared (NIR) up-Conversion Optogenetics. Sci. Rep. 2015, 5, 16533.10.1038/srep16533. PubMed DOI PMC
Zheng B.; Wang H.; Pan H.; Liang C.; Ji W.; Zhao L.; Chen H.; Gong X.; Wu X.; Chang J. Near-Infrared Light Triggered Upconversion Optogenetic Nanosystem for Cancer Therapy. ACS Nano 2017, 11, 11898–11907. 10.1021/acsnano.7b06395. PubMed DOI
Ekimov A. I.; Efros A. L.; Onushchenko A. A. Quantum Size Effect in Semiconductor Microcrystals. Solid State Commun. 1985, 56, 921–924. 10.1016/S0038-1098(85)80025-9. DOI
Noculak A.; Podhorodecki A.; Pawlik G.; Banski M.; Misiewicz J. Ion-Ion Interactions in β-NaGdF4:Yb3+,Er3+ Nanocrystals - the Effect of Ion Concentration and Their Clustering. Nanoscale 2015, 7, 13784–13792. 10.1039/c5nr03385c. PubMed DOI
Bouzigues C.; Gacoin T.; Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles. ACS Nano 2011, 5, 8488–8505. 10.1021/nn202378b. PubMed DOI
Drees C.; Raj A. N.; Kurre R.; Busch K. B.; Haase M.; Piehler J. Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells. Angew. Chem., Int. Ed. 2016, 55, 11668–11672. 10.1002/anie.201603028. PubMed DOI
Guo H.; Idris N. M.; Zhang Y. LRET-Based Biodetection of DNA Release in Live Cells Using Surface-Modified Upconverting Fluorescent Nanoparticles. Langmuir 2011, 27, 2854–2860. 10.1021/la102872v. PubMed DOI
Homann C.; Krukewitt L.; Frenzel F.; Grauel B.; Würth C.; Resch-Genger U.; Haase M. NaYF4 :Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew. Chem., Int. Ed. 2018, 57, 8765–8769. 10.1002/anie.201803083. PubMed DOI
Podhorodecki A.; Krajnik B.; Golacki L. W.; Kostiv U.; Pawlik G.; Kaczmarek M.; Horák D. Percolation Limited Emission Intensity from Upconverting NaYF4:Yb3+,Er3+ Nanocrystals – a Single Nanocrystal Optical Study. Nanoscale 2018, 10, 21186–21196. 10.1039/C8NR05961F. PubMed DOI
Lin X.; Chen X.; Zhang W.; Sun T.; Fang P.; Liao Q.; Chen X.; He J.; Liu M.; Wang F.; Shi P. Core-Shell-Shell Upconversion Nanoparticles with Enhanced Emission for Wireless Optogenetic Inhibition. Nano Lett. 2018, 18, 948–956. 10.1021/acs.nanolett.7b04339. PubMed DOI
Rinkel T.; Raj A. N.; Dühnen S.; Haase M. Synthesis of 10 nm β-NaYF4:Yb,Er/NaYF4 Core/Shell Upconversion Nanocrystals with 5 nm Particle Cores. Angew. Chem., Int. Ed. 2015, 55, 1164–1167. 10.1002/anie.201508838. PubMed DOI
Wang F.; Deng R.; Liu X. Preparation of Core-Shell NaGdF4 Nanoparticles Doped with Luminescent Lanthanide Ions to Be Used as Upconversion-Based Probes. Nat. Protoc. 2014, 9, 1634–1644. 10.1038/nprot.2014.111. PubMed DOI
Abel K. A.; Boyer J.-C.; Andrei C. M.; van Veggel F. C. J. M. Analysis of the Shell Thickness Distribution on NaYF4/NaGdF4 Core/Shell Nanocrystals by EELS and EDS. J. Phys. Chem. Lett. 2011, 2, 185–189. 10.1021/jz101593g. DOI
Gainer C. F.; Joshua G. S.; De Silva C. R.; Romanowski M. Control of Green and Red Upconversion in NaYF4:Yb3+,Er3+ Nanoparticles by Excitation Modulation. J. Mater. Chem. 2011, 21, 18530.10.1039/c1jm13684d. PubMed DOI PMC
Han Y.; Li H.; Wang Y.; Pan Y.; Huang L.; Song F.; Huang W. Upconversion Modulation through Pulsed Laser Excitation for Anti-Counterfeiting. Sci. Rep. 2017, 7, 1320.10.1038/s41598-017-01611-9. PubMed DOI PMC
Vetrone F.; Naccache R.; Zamarrón A.; Juarranz de la Fuente A.; Sanz-Rodríguez F.; Martinez Maestro L.; Martín Rodriguez E.; Jaque D.; García Solé J.; Capobianco J. A. Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano 2010, 4, 3254–3258. 10.1021/nn100244a. PubMed DOI
Jaque D.; Vetrone F. Luminescence Nanothermometry. Nanoscale 2012, 4, 4301.10.1039/c2nr30764b. PubMed DOI
Zhou B.; Shi B.; Jin D.; Liu X. Controlling Upconversion Nanocrystals for Emerging Applications. Nat. Nanotechnol. 2015, 10, 924–936. 10.1038/nnano.2015.251. PubMed DOI
Pawlik G.; Niczyj J.; Noculak A.; Radosz W.; Podhorodecki A. Multiband Monte Carlo Modeling of Upconversion Emission in Sub 10 nm β-NaGdF4:Yb3+,Er3+ Nanocrystals-Effect of Yb3+ Content. J. Chem. Phys. 2017, 146, 244111.10.1063/1.4989473. PubMed DOI
Yuan D.; Tan M. C.; Riman R. E.; Chow G. M. Comprehensive Study on the Size Effects of the Optical Properties of NaYF4 :Yb,Er Nanocrystals. J. Phys. Chem. C 2013, 117, 13297–13304. 10.1021/jp403061h. DOI
Noculak A.; Podhorodecki A. Size and Shape Effects in β-NaGdF4: Yb3+, Er3+ Nanocrystals. Nanotechnology 2017, 28, 175706.10.1088/1361-6528/aa6522. PubMed DOI
Schietinger S.; Menezes L. d. S.; Lauritzen B.; Benson O. Observation of Size Dependence in Multicolor Upconversion in Single Yb3+, Er3+ Codoped NaYF4 Nanocrystals. Nano Lett. 2009, 9, 2477–2481. 10.1021/nl901253t. PubMed DOI
Noculak A.The Synthesis and Optical Investigations of Upconverting NaGdF4:Yb3+, Er3+ (Tm3+) Nanocrystals, Wroclaw University of Science and Technology, 2017.
Rodríguez-Sevilla P.; Labrador-Páez L.; Wawrzyńczyk D.; Nyk M.; Samoć M.; Kar A. K.; Mackenzie M. D.; Paterson L.; Jaque D.; Haro-González P. Determining the 3D Orientation of Optically Trapped Upconverting Nanorods by in Situ Single-Particle Polarized Spectroscopy. Nanoscale 2016, 8, 300–308. 10.1039/C5NR06419H. PubMed DOI
Sarkar S.; Meesaragandla B.; Hazra C.; Mahalingam V. Sub-5 nm Ln3+ -Doped BaLuF5 Nanocrystals: A Platform to Realize Upconversion via Interparticle Energy Transfer (IPET). Adv. Mater. 2013, 25, 856–860. 10.1002/adma.201203641. PubMed DOI
Rodríguez-Sevilla P.; Rodríguez-Rodríguez H.; Pedroni M.; Speghini A.; Bettinelli M.; Solé J. G.; Jaque D.; Haro-González P. Assessing Single Upconverting Nanoparticle Luminescence by Optical Tweezers. Nano Lett. 2015, 15, 5068–5074. 10.1021/acs.nanolett.5b01184. PubMed DOI
Wang F.; Liu X. Upconversion Multicolor Fine-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF 4 Nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643. 10.1021/ja800868a. PubMed DOI
Liu F.; Ma E.; Chen D.; Yu Y.; Wang Y. Tunable Red-Green Upconversion Luminescence in Novel Transparent Glass Ceramics Containing Er: NaYF4 Nanocrystals. J. Phys. Chem. B 2006, 110, 20843.10.1021/jp063145m. PubMed DOI
Wawrzynczyk D.; Bednarkiewicz A.; Nyk M.; Strek W.; Samoc M. Neodymium(Iii) Doped Fluoride Nanoparticles as Non-Contact Optical Temperature Sensors. Nanoscale 2012, 4, 6959.10.1039/c2nr32203j. PubMed DOI
Marciniak L.; Prorok K.; Francés-Soriano L.; Pérez-Prieto J.; Bednarkiewicz A. A Broadening Temperature Sensitivity Range with a Core–Shell YbEr@YbNd Double Ratiometric Optical Nanothermometer. Nanoscale 2016, 8, 5037–5042. 10.1039/C5NR08223D. PubMed DOI