Green synthesis of gold nanoparticles using Artemisia dracunculus extract: control of the shape and size by varying synthesis conditions
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
1201
Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.1.05/2.1.00/19.0386
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
29948700
DOI
10.1007/s11356-018-2510-4
PII: 10.1007/s11356-018-2510-4
Knihovny.cz E-zdroje
- Klíčová slova
- 4-Nitrophenol reduction, Catalysis, Gold nanoparticles, Green synthesis, Remediation, Selective synthesis,
- MeSH
- aminofenoly chemie MeSH
- borohydridy chemie MeSH
- katalýza MeSH
- koncentrace vodíkových iontů MeSH
- kovové nanočástice chemie MeSH
- mikroskopie elektronová rastrovací MeSH
- nitrofenoly chemie MeSH
- pelyněk chemie MeSH
- rostlinné extrakty analýza chemie MeSH
- spektrofotometrie ultrafialová MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- tandemová hmotnostní spektrometrie MeSH
- technologie zelené chemie metody MeSH
- velikost částic MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zlato chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 4-aminophenol MeSH Prohlížeč
- 4-nitrophenol MeSH Prohlížeč
- aminofenoly MeSH
- borohydridy MeSH
- nitrofenoly MeSH
- rostlinné extrakty MeSH
- sodium borohydride MeSH Prohlížeč
- zlato MeSH
In this study, selective green synthesis of gold nanoparticles (nAu) with the use of Tarragon extract (Artemisia dracunculus) was investigated. Characterization of the synthetized nAu was carried out using several techniques including: UV-Vis, SEM, zeta potential analysis, DLS, and ATR-FTIR. Based on measurements of Tarragon extract by HPLC-MS, significant chemical substances participating as reducing and stabilizing agents were identified. FTIR confirmed typical functional groups that could be found in these acids on the nAu surface, such as O-H, C=O and C-O. The effects of various parameters (concentration of Tarragon extract, Au precursor, and initial pH of the synthesis) on the shape and size of the nanoparticles have been investigated. UV-Vis and SEM confirmed the formation of nAu at various concentrations of the extract and Au precursor and showed correlation between the added extract concentration and shift in maximal absorbance towards higher frequencies, indicating the formation of smaller nanoplates. Zeta potential determined at various pH levels revealed that its value decreased with pH, but for all experiments in the pH range of 2.8 to 5.0, the value is below - 30 mV, an absolute value high enough for long-term nAu stability. In order to evaluate nAu catalytic activity, the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride was used as a model system. The reaction takes place 1.5 times faster on Au-triangles than on Au-spherical NPs.
Zobrazit více v PubMed
Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5:1665–1671. https://doi.org/10.1166/jnn.2005.184 DOI
Balasubramanian SK, Yang L, Yung L-YL, Ong C-N, Ong W-Y, Yu LE (2010) Characterization, purification, and stability of gold nanoparticles. Biomaterials 31:9023–9030. https://doi.org/10.1016/j.biomaterials.2010.08.012 DOI
Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of Black Tea leaf extracts. Colloids Surf B Biointerfaces 71:113–118. https://doi.org/10.1016/j.colsurfb.2009.01.012 DOI
Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:17–71. https://doi.org/10.1116/1.2815690 DOI
Chandran K, Song S, Il YS (2014) Effect of size and shape controlled biogenic synthesis of gold nanoparticles and their mode of interactions against food borne bacterial pathogens. Arab J Chem. https://doi.org/10.1016/j.arabjc.2014.11.041
Chronopoulou L, Palocci C, Valentino F, Pettiti I, Wacławek S, Černík M, Petrangeli Papini M (2016) Stabilization of iron (micro)particles with polyhydroxybutyrate for in situ remediation applications. Appl Sci 6:417. https://doi.org/10.3390/app6120417 DOI
Cruz D, Falé PL, Mourato A, Vaz PD, Luisa Serralheiro M, Lino ARL (2010) Preparation and physicochemical characterization of Ag nanoparticles biosynthesized by Lippia citriodora (Lemon Verbena). Colloids Surf B Biointerfaces 81:67–73. https://doi.org/10.1016/j.colsurfb.2010.06.025 DOI
Das RK, Gogoi N, Bora U (2011) Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst Eng 34:615–619. https://doi.org/10.1007/s00449-010-0510-y DOI
Dinakar S, Isacc Fenn Fenn R, Sobczak-Kupiec A, Basavegowda N (2013) Bioreduction of chloroaurate ions using fruit extract Punica granatum (Pomegranate) for synthesis of highly stable gold nanoparticles and assessment of its antibacterial activity. Micro Nano Lett 8:400–404. https://doi.org/10.1049/mnl.2013.0137 DOI
Fazal S, Jayasree A, Sasidharan S, Koyakutty M, Nair SV, Menon D (2014) Green synthesis of anisotropic gold nanoparticles for photothermal therapy of cancer. ACS Appl Mater Interfaces 6:8080–8089. https://doi.org/10.1021/am500302t DOI
Ghosh S, Patil S, Ahire M, Kitture R, Jabgunde A, Kale S, Pardesi K, Bellare J, Dhavale DD, Chopade BA (2011) Synthesis of gold nanoanisotrops using Dioscorea bulbifera tuber extract. J Nanomater 2011:354793. https://doi.org/10.1155/2011/354793 DOI
Ha TH, Kim YJ, Park SH, Buckland BC, Lee AL, Lu Z, Yin Y (2010) Complete separation of triangular gold nanoplates through selective precipitation under CTAB micelles in aqueous solution. Chem Commun 46:3164–3166. https://doi.org/10.1039/c001574a DOI
Hajfathalian M, Gilroy KD, Yaghoubzade A, Sundar A, Tan T, Hughes RA, Neretina S (2015) Photocatalytic enhancements to the reduction of 4-nitrophenol by resonantly excited triangular gold–copper nanostructures. J Phys Chem C 119:17308–17315. https://doi.org/10.1021/acs.jpcc.5b04618 DOI
Hrabák P, Homolková M, Wacławek S, Černík M (2016) Chemical degradation of PCDD/F in contaminated sediment. Ecol Chem Eng S 23:473–482. https://doi.org/10.1515/eces-2016-0034 DOI
Huang X, Wu H, Liao X, Shi B (2010) One-step, size-controlled synthesis of gold nanoparticles at room temperature using plant tannin. Green Chem 12:395–399. https://doi.org/10.1039/B918176H DOI
Jain PK (2014) Gold nanoparticles for physics, chemistry, and biology. Edited by Catherine Louis and Olivier Pluchery. Angew Chemie Int Ed 53:1197–1197. https://doi.org/10.1002/anie.201309807 DOI
Kalyan Kamal SS, Vimala J, Sahoo PK, Ghosal P, Ram S, Durai L (2014) A green chemical approach for synthesis of shape anisotropic gold nanoparticles. Int Nano Lett 4:109. https://doi.org/10.1007/s40089-014-0109-4 DOI
Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y DOI
Khezrilu Bandli J, Heidari R (2014) The evaluation of antioxidant activities and phenolic compounds in leaves and inflorescence of Artemisia dracunculus L. by HPLC. J Med Plants 13:41–50
Kudlek E, Silvestri D, Wacławek S, Padil VVT, Stuchlík M, Voleský L, Kejzlar P, Černík M (2017) TiO DOI
Kumari M, Mishra A, Pandey S, Singh SP, Chaudhry V, Mudiam MKR, Shukla S, Kakkar P, Nautiyal CS (2016) Physico-chemical condition optimization during biosynthesis lead to development of improved and catalytically efficient gold Nano particles. Sci Rep 6:27575. https://doi.org/10.1038/srep27575 DOI
Lenert A, Bierman DM, Nam Y, Chan WR, Celanović I, Soljačić M, Wang EN (2014) A nanophotonic solar thermophotovoltaic device. Nat Nanotechnol 9:126–130. https://doi.org/10.1038/nnano.2013.286 DOI
Li S, Jiang Q, Liu S, Zhang Y, Tian Y, Song C, Wang J, Zou Y, Anderson GJ, Han JY, Chang Y, Liu Y, Zhang C, Chen L, Zhou G, Nie G, Yan H, Ding B, Zhao Y (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258–264. https://doi.org/10.1038/nbt.4071 DOI
Liu B, Xie J, Lee JY, Ting YP, Chen JP (2005) Optimization of high-yield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 109:15256–15263. https://doi.org/10.1021/jp051449n DOI
Ma T, Yang W, Liu S, Zhang H, Liang F (2017) A comparison reduction of 4-nitrophenol by gold nanospheres and gold nanostars. Catalysts 7:38. https://doi.org/10.3390/catal7020038 DOI
Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Green’ nanotechnologies: synthesis of metal nanoparticles using plants. Acta Nat 6:35–44. https://doi.org/10.1039/c1gc15386b DOI
Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313. https://doi.org/10.1021/ja043245a DOI
Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18:20–52. https://doi.org/10.1039/C5GC01403D DOI
Nadagouda MN, Varma RS (2008) Green synthesis of silver and palladium nanoparticles at room temperature using coffee and tea extract. Green Chem 10:859–862. https://doi.org/10.1039/b804703k DOI
Obolskiy D, Pischel I, Feistel B, Glotov N, Heinrich M (2011) Artemisia dracunculus L. (Tarragon): a critical review of its traditional. J Agric Food Chem 59:11367–11384. https://doi.org/10.1021/jf202277w DOI
Padil VVT, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, Somashekarappa HM (2017) Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv 7:13997–14009. https://doi.org/10.1039/C7RA00464H DOI
Padil VVT, Wacławek S, Černík M (2016) Green synthesis: nanoparticles and nanofibres based on tree gums for environmental applications. Ecol Chem Eng S 23:533–557. https://doi.org/10.1515/eces-2016-0038 DOI
Polyakova NY, Polyakov AY, Sukhorukova IV, Shtansky DV, Grigorieva AV (2017) The defining role of pH in the green synthesis of plasmonic gold nanoparticles using Citrus limon extract. Gold Bull 50:131–136. https://doi.org/10.1007/s13404-017-0203-2 DOI
Quester K, Avalos-Borja M, Vilchis-Nestor AR, Camacho-López MA, Castro-Longoria E (2013) SERS properties of different sized and shaped gold nanoparticles biosynthesized under different environmental conditions by Neurospora crassa extract. PLoS One 8:e77486. https://doi.org/10.1371/journal.pone.0077486 DOI
Sahu N, Soni D, Chandrashekhar B, Satpute DB, Saravanadevi S, Sarangi BK, Pandey RA (2016) Synthesis of silver nanoparticles using flavonoids: hesperidin, naringin and diosmin, and their antibacterial effects and cytotoxicity. Int Nano Lett 6:173–181. https://doi.org/10.1007/s40089-016-0184-9 DOI
Shankar SS, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826. https://doi.org/10.1039/b303808b DOI
Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488. https://doi.org/10.1038/nmat1152 DOI
Sharma RK, Gulati S, Mehta S (2012) Preparation of gold nanoparticles using tea: a green chemistry experiment. J Chem Educ 89:1316–1318. https://doi.org/10.1021/ed2002175 DOI
Singh AK, Srivastava ON (2015) One-step green synthesis of gold nanoparticles using black cardamom and effect of pH on its synthesis. Nanoscale Res Lett 10:353. https://doi.org/10.1186/s11671-015-1055-4 DOI
Suman TY, Radhika Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta A Mol Biomol Spectrosc 118:11–16. https://doi.org/10.1016/j.saa.2013.08.066 DOI
Uskoković V (2012) Dynamic light scattering based microelectrophoresis: main prospects and limitations. J Dispers Sci Technol 33:1762–1786. https://doi.org/10.1080/01932691.2011.625523 DOI
Valcárcel Cases M, López-Lorente AI (2014) Gold nanoparticles in analytical chemistry. Elsevier, Amsterdam
Varma RS (2012) Greener approach to nanomaterials and their sustainable applications. Curr Opin Chem Eng 1:123–128. https://doi.org/10.1016/j.coche.2011.12.002 DOI
Vijayakumar S (2014) In vitro stability studies on gold nanoparticles with different stabilizing agents. Int J Curr Sci 11:84–93
Wacławek S, Lutze HV, Grübel K, Padil VVT, Černík M, Dionysiou DD (2017) Chemistry of persulfates in water and wastewater treatment: a review. Chem Eng J 330:44–62. https://doi.org/10.1016/j.cej.2017.07.132 DOI
Wacławek S, Padil VVT, Černík M (2018) Major advances and challenges in heterogeneous catalysis for environmental applications: a review. Ecol Chem Eng S 25:9–34. https://doi.org/10.1515/ECES-2018-0001 DOI
Wang Z, Zhang Q, Kuehner D, Ivaska A, Niu L (2008) Green synthesis of 1–2 nm gold nanoparticles stabilized by amine-terminated ionic liquid and their electrocatalytic activity in oxygen reduction. Green Chem 10:907. https://doi.org/10.1039/b806453a DOI
Yee FY, Periasamy V, Malek SNA (2015) Green synthesis of gold nanoparticles using aqueous ethanol extract of Curcuma mangga rhizomes as reducing agent. In: AIP conference proceedings
Zeng J, Zhang Q, Chen J, Xia Y (2010) A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett 10:30–35. https://doi.org/10.1021/nl903062e DOI
Zhao P, Feng X, Huang D, Yang G, Astruc D (2015) Basic concepts and recent advances in nitrophenol reduction by gold- and other transition metal nanoparticles. Coord Chem Rev 287:114–136. https://doi.org/10.1016/j.ccr.2015.01.002 DOI